
BRETZEL GmbH Antriebs- und Elektrotechnik Am Rotböll 8 64331 Weiterstadt

www.bretzel-gmbh.de info@bretzel-gmbh.de Telefon: 0 61 50 / 8 65 60 - 0

Σ -7-Series AC Servo Drive Σ -7S SERVOPACK with Analog Voltage/Pulse Train References Product Manual

Model: SGD7S

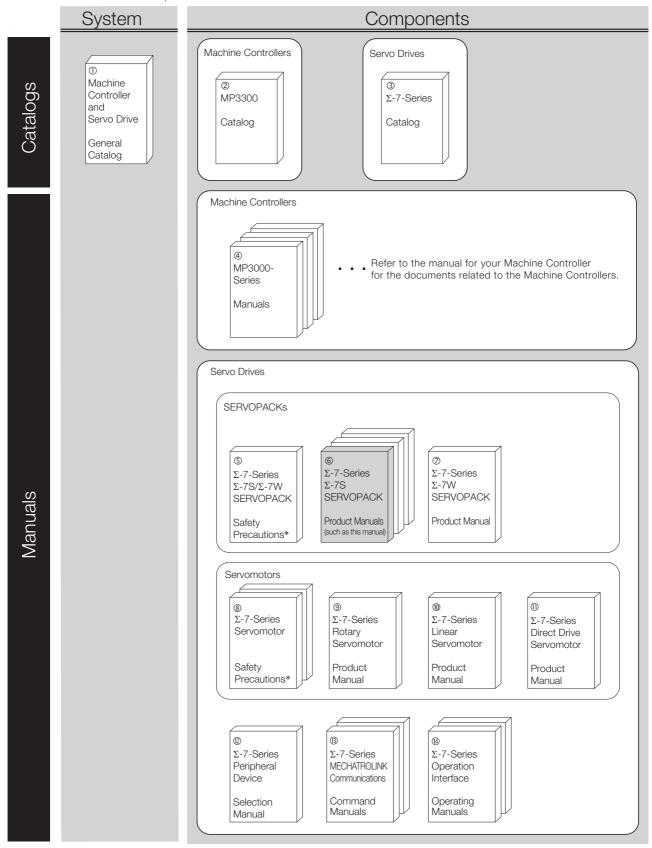
Copyright © 2014 YASKAWA ELECTRIC CORPORATION

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permission of Yaskawa. No patent liability is assumed with respect to the use of the information contained herein. Moreover, because Yaskawa is constantly striving to improve its high-quality products, the information contained in this manual is subject to change without notice. Every precaution has been taken in the preparation of this manual. Nevertheless, Yaskawa assumes no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained in this publication.

About this Manual

This manual provides information required to select Σ -7S SERVOPACKs with Analog Voltage/Pulse Train References for Σ -7-Series AC Servo Drives, and to design, perform trial operation of, tune, operate, and maintain the Servo Drives.

Read and understand this manual to ensure correct usage of the Σ -7-Series AC Servo Drives. Keep this manual in a safe place so that it can be referred to whenever necessary.


Outline of Manual

The contents of the chapters of this manual are described in the following table. Refer to these chapters as required.

Chapter	Chapter Title	Contents
1	Basic Information on SERVOPACKs	Provides information required to select SERVOPACKs, such as SER- VOPACK models and combinations with Servomotors.
2	Selecting a SERVOPACK	Provides information required to select SERVOPACKs, such as specifications, block diagrams, dimensional drawings, and connection examples.
3	SERVOPACK Installation	Provides information on installing SERVOPACKs in the required loca- tions.
4	Wiring and Connecting SERVOPACKs	Provides information on wiring and connecting SERVOPACKs to power supplies and peripheral devices.
5	Basic Functions That Require Set- ting before Operation	Describes the basic functions that must be set before you start servo system operation. It also describes the setting methods.
6	Application Functions	Describes the application functions that you can set before you start servo system operation. It also describes the setting methods.
7	Trial Operation and Actual Operation	Provides information on the flow and procedures for trial operation and convenient functions to use during trial operation.
8	Tuning	Provides information on the flow of tuning, details on tuning functions, and related operating procedures.
9	Monitoring	Provides information on monitoring SERVOPACK product information and SERVOPACK status.
10	Fully-Closed Loop Control	Provides detailed information on performing fully-closed loop control with the SERVOPACK.
11	Safety Functions	Provides detailed information on the safety functions of the SERVO- PACK.
12	Maintenance	Provides information on the meaning of, causes of, and corrections for alarms and warnings.
13	Panel Displays and Panel Opera- tor Procedures	Describes how to interpret panel displays and the operation of the Panel Operator.
14	Parameter Lists	Provides information on the parameters.
15	Appendices	Provides host controller connection examples and tables of corre- sponding SERVOPACK and SigmaWin+ function names.

Related Documents

The relationships between the documents that are related to the Servo Drives are shown in the following figure. The numbers in the figure correspond to the numbers in the table on the following pages. Refer to these documents as required.

* These documents are included with the product.

Classification	Document Name	Document No.	Description			
① Machine Controller and Servo Drive General Catalog	Machine Controller and AC Servo Drive Solutions Catalog	KAEP S800001 22	Describes the features and application examples for combinations of MP3000-Series Machine Controllers and Σ -7-Series AC Servo Drives.			
② MP3300 Catalog	Machine Controller MP3300	KAEP C880725 03	Provides detailed information on MP3300 Machine Controllers, including features and specifica- tions.			
③ Σ-7-Series Catalog	AC Servo Drives Σ-7 Series	KAEP S800001 23	Provides detailed information on Σ - 7-Series AC Servo Drives, including features and specifications.			
④ MP3000-Series Manuals	Machine Controller MP3000 Series MP3300 Product Manual	SIEP C880725 21	Describes the functions, specifica- tions, operating methods, mainte- nance, inspections, and troubleshooting of the MP3000- series MP3300 Machine Control- lers.			
(S) Σ-7-Series Σ-7S/Σ-7W SERVOPACK Safety Precautions	Σ-7-Series AC Servo Drive Σ-7S and $Σ$ -7W SERVOPACK Safety Precautions	TOMP C710828 00	Provides detailed information for the safe usage of Σ -7-Series SERVOPACKs.			
	Σ -7-Series AC Servo Drive Σ -7S SERVOPACK with MECHATROLINK-III Communications References Product Manual	SIEP S800001 28				
© Σ-7-Series Σ-7S SERVOPACK Product Manuals	Σ -7-Series AC Servo Drive Σ -7S SERVOPACK with MECHATROLINK-II Communications References Product Manual	SIEP S800001 27	Provide detailed information on selecting Σ -7-Series SERVO-PACKs and information on install-			
	Σ -7-Series AC Servo Drive Σ -7S SERVOPACK with Analog Voltage/Pulse Train References Product Manual	This manual (SIEP S800001 26)	ing, connecting, setting, performing trial operation for, tuning, and mon- itoring the Servo Drives.			
 Ø Σ-7-Series Σ-7W SERVOPACK Product Manual 	Σ -7-Series AC Servo Drive Σ -7W SERVOPACK with MECHATROLINK-III Communications References Product Manual	SIEP S800001 29				
® Σ-7-Series	AC Servo Drive Rotary Servomotor Safety Precautions	TOBP C230260 00	Provides detailed information for the safe usage of Σ -7-Series Rotary Servomotors and Direct Drive Servomotors.			
Servomotor Safety Precautions	AC Servomotor Linear Σ Series Safety Precautions	TOBP C230800 00	Provides detailed information for the safe usage of Σ -7-Series Linear Servomotors.			

Continued on next page.

Continued from previous page.

Classification	Continued from previous page.		
© Σ-7-Series Rotary Servomotor Product Manual	Document Name Σ-7-Series AC Servo Drive Rotary Servomotor Product Manual	Document No. SIEP S800001 36	Description
[®] Σ-7-Series Linear Servomotor Product Manual	Σ-7-Series AC Servo Drive Linear Servomotor Product Manual	SIEP S800001 37	Provide detailed information on selecting, installing, and connecting the Σ -7-Series Servomotors.
¹ Σ-7-Series Direct Drive Servomotor Product Manual	Σ-7-Series AC Servo Drive Direct Drive Servomotor Product Manual	SIEP S800001 38	
		Describes the peripheral devices for a Σ -7-Series Servo System.	
Σ -7-Series	Σ-7-Series AC Servo Drive MECHATROLINK-II Communications Command Manual	SIEP S800001 30	Provides detailed information on the MECHATROLINK-II communications commands that are used for a Σ -7-Series Servo System.
MECHATROLINK Communications Command Manuals	Σ-7-Series AC Servo Drive MECHATROLINK-III Communications Standard Servo Profile Command Manual	SIEP S800001 31	Provides detailed information on the MECHATROLINK-III communi- cations standard servo profile com- mands that are used for a Σ -7- Series Servo System.
[®] Σ-7-Series	Σ-7-Series AC Servo Drive Digital Operator Operating Manual	SIEP S800001 33	Describes the operating proce- dures for a Digital Operator for a Σ -7-Series Servo System.
Operation Interface Operating Manuals	AC Servo Drives Engineering Tool SigmaWin+ Online Manual Σ-7 Component	SIEP S800001 48	Provides detailed operating proce- dures for the SigmaWin+ Engineer- ing Tool for a Σ -7-Series Servo System.

Using This Manual

◆ Technical Terms Used in This Manual

The following terms are used in this manual.

Term	Meaning
Servomotor	A Σ -7-Series Rotary Servomotor, Direct Drive Servomotor, or Linear Servomotor.
Rotary Servomotor	A generic term used for a Σ -7-Series Rotary Servomotor (SGM7J, SGM7A, SGM7P, or SGM7G) or a Direct Drive Servomotor (SGMCS or SGMCV). The descriptions will specify when Direct Drive Servomotors are excluded.
Linear Servomotor	A Σ-7-Series Linear Servomotor (SGLG, SGLF, SGLT, or SGLC).
SERVOPACK	A Σ -7-Series Σ -7S Servo Amplifier with Analog Voltage/Pulse Train References.
Servo Drive	The combination of a Servomotor and SERVOPACK.
Servo System	A servo control system that includes the combination of a Servo Drive with a host controller and peripheral devices.
servo ON	Supplying power to the motor.
servo OFF	Not supplying power to the motor.
base block (BB)	Shutting OFF the power supply to the motor by shutting OFF the base current to the power transistor in the SERVOPACK.
servo lock	A state in which the motor is stopped and is in a position loop with a position reference of 0.
Main Circuit Cable	One of the cables that connect to the main circuit terminals, including the Main Circuit Power Supply Cable, Control Power Supply Cable, and Servomotor Main Circuit Cable.
SigmaWin+	The Engineering Tool for setting up and tuning Servo Drives or a computer in which the Engineering Tool is installed.

◆ Differences in Terms for Rotary Servomotors and Linear Servomotors

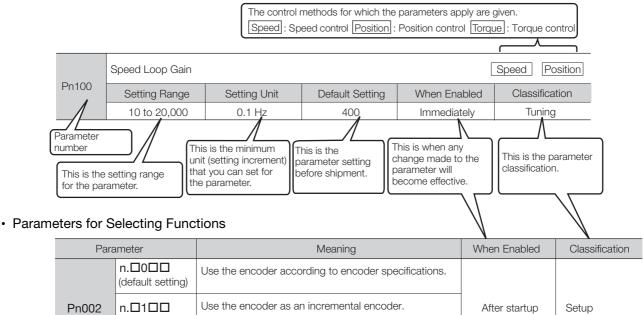
There are differences in the terms that are used for Rotary Servomotors and Linear Servomotors. This manual primarily describes Rotary Servomotors. If you are using a Linear Servomotor, you need to interpret the terms as given in the following table.

Rotary Servomotors	Linear Servomotors
torque	force
moment of inertia	mass
rotation	movement
forward rotation and reverse rotation	forward movement and reverse movement
CW and CCW pulse trains	forward and reverse pulse trains
rotary encoder	linear encoder
absolute rotary encoder	absolute linear encoder
incremental rotary encoder	incremental linear encoder
unit: min ⁻¹	unit: mm/s
unit: N·m	unit: N

Notation Used in this Manual

Notation for Reverse Signals

The names of reverse signals (i.e., ones that are valid when low) are written with a forward slash (/) before the signal abbreviation.


Notation Example

BK is written as /BK.

Notation for Parameters

The notation depends on whether the parameter requires a numeric setting (parameter for numeric setting) or requires the selection of a function (parameter for selecting functions).

Parameters for Numeric Settings

n. ______ Use the encoder as a single-turn absolute encoder. Parameter number The notation "n. _____" indicates a parameter for selecting functions. Each ______ indicates the setting for one digit. The notation shown here means that the third digit from the right is set to 2.

Notation Example

Notation Examples for Pn002

		Digit Notation		Numeric Value Notation
n.0000	Notation	Meaning	Notation	Meaning
	Pn002 = n.□□□X	Indicates the first digit from the right in Pn002.	Pn002 = n.□□□1	Indicates that the first digit from the right in Pn002 is set to 1.
	Pn002 = n.□□X□	Indicates the second digit from the right in Pn002.	Pn002 = n.□□1□	Indicates that the second digit from the right in Pn002 is set to 1.
▶	Pn002 = n.□X□□	Indicates the third digit from the right in Pn002.	Pn002 = n.⊡1⊡⊡	Indicates that the third digit from the right in Pn002 is set to 1.
►	Pn002 = n.X□□□	Indicates the fourth digit from the right in Pn002.	Pn002 = n.1□□□	Indicates that the fourth digit from the right in Pn002 is set to 1.

• Engineering Tools Used in This Manual

This manual uses the interfaces of the SigmaWin+ for descriptions.

♦ Trademarks

- QR code is a trademark of Denso Wave Inc.
- Other product names and company names are the trademarks or registered trademarks of the respective company. "TM" and the ® mark do not appear with product or company names in this manual.

Visual Aids

The following aids are used to indicate certain types of information for easier reference.

Ĩ
Important

Indicates precautions or restrictions that must be observed. Also indicates alarm displays and other precautions that will not result in machine damage.

Indicates definitions of difficult terms or terms that have not been previously explained in this manual.

Example Indicates operating or setting examples.

Information Indicates supplemental information to deepen understanding or useful information.

Safety Precautions

♦ Safety Information

To prevent personal injury and equipment damage in advance, the following signal words are used to indicate safety precautions in this document. The signal words are used to classify the hazards and the degree of damage or injury that may occur if a product is used incorrectly. Information marked as shown below is important for safety. Always read this information and heed the precautions that are provided.

• Indicates precautions that, if not heeded, are likely to result in loss of life, serious injury, or fire.

• Indicates precautions that, if not heeded, could result in loss of life, serious injury, or fire.

• Indicates precautions that, if not heeded, could result in relatively serious or minor injury, or in fire.

NOTICE

• Indicates precautions that, if not heeded, could result in property damage.

◆ Safety Precautions That Must Always Be Observed

General Precautions

- Read and understand this manual to ensure the safe usage of the product.
- Keep this manual in a safe, convenient place so that it can be referred to whenever necessary. Make sure that it is delivered to the final user of the product.
- Do not remove covers, cables, connectors, or optional devices while power is being supplied to the SERVOPACK.

There is a risk of electric shock, operational failure of the product, or burning.

- Use a power supply with specifications (number of phases, voltage, frequency, and AC/DC type) that are appropriate for the product. There is a risk of burning, electric shock, or fire.
- Connect the ground terminals on the SERVOPACK and Servomotor to ground poles according to local electrical codes (100 Ω or less for a SERVOPACK with a 100-VAC or 200-VAC power supply, and 10 Ω or less for a SERVOPACK with a 400-VAC power supply). There is a risk of electric shock or fire.
- Do not attempt to disassemble, repair, or modify the product. There is a risk of fire or failure. The warranty is void for the product if you disassemble, repair, or modify it.

• The SERVOPACK heat sinks, regenerative resistors, Servomotors, and other components can be very hot while power is ON or soon after the power is turned OFF. Implement safety measures, such as installing covers, so that hands and parts such as cables do not come into contact with hot components.

There is a risk of burn injury.

• For a 24-VDC power supply, use a power supply device with double insulation or reinforced insulation.

There is a risk of electric shock.

- Do not damage, pull on, apply excessive force to, place heavy objects on, or pinch cables. There is a risk of failure, damage, or electric shock.
- The person who designs the system that uses the hard wire base block safety function must have a complete knowledge of the related safety standards and a complete understanding of the instructions in this document.

There is a risk of injury, product damage, or machine damage.

• Do not use the product in an environment that is subject to water, corrosive gases, or flammable gases, or near flammable materials. There is a risk of electric shock or fire.

NOTICE

- Do not attempt to use a SERVOPACK or Servomotor that is damaged or that has missing parts.
- Install external emergency stop circuits that shut OFF the power supply and stops operation immediately when an error occurs.
- In locations with poor power supply conditions, install the necessary protective devices (such as AC reactors) to ensure that the input power is supplied within the specified voltage range. There is a risk of damage to the SERVOPACK.
- Use a Noise Filter to minimize the effects of electromagnetic interference. Electronic devices used near the SERVOPACK may be affected by electromagnetic interference.
- Always use a Servomotor and SERVOPACK in one of the specified combinations.
- Do not touch a SERVOPACK or Servomotor with wet hands. There is a risk of product failure.

Storage Precautions

 Do not place an excessive load on the product during storage. (Follow all instructions on the packages.)

There is a risk of injury or damage.

NOTICE

- Do not install or store the product in any of the following locations.
 - Locations that are subject to direct sunlight
 - · Locations that are subject to ambient temperatures that exceed product specifications
 - Locations that are subject to relative humidities that exceed product specifications
 - · Locations that are subject to condensation as the result of extreme changes in temperature
 - · Locations that are subject to corrosive or flammable gases
 - · Locations that are near flammable materials
 - · Locations that are subject to dust, salts, or iron powder
 - Locations that are subject to water, oil, or chemicals
 - · Locations that are subject to vibration or shock that exceeds product specifications
 - Locations that are subject to radiation
 - If you store or install the product in any of the above locations, the product may fail or be damaged.

Transportation Precautions

- Transport the product in a way that is suitable to the mass of the product.
- Do not use the eyebolts on a SERVOPACK or Servomotor to move the machine. There is a risk of damage or injury.
- When you handle a SERVOPACK or Servomotor, be careful of sharp parts, such as the corners. There is a risk of injury.
- Do not place an excessive load on the product during transportation. (Follow all instructions on the packages.)

There is a risk of injury or damage.

NOTICE

- Do not hold onto the front cover or connectors when you move a SERVOPACK. There is a risk of the SERVOPACK falling.
- A SERVOPACK or Servomotor is a precision device. Do not drop it or subject it to strong shock. There is a risk of failure or damage.
- Do not subject connectors to shock. There is a risk of faulty connections or damage.
- If disinfectants or insecticides must be used to treat packing materials such as wooden frames, plywood, or pallets, the packing materials must be treated before the product is packaged, and methods other than fumigation must be used.

Example: Heat treatment, where materials are kiln-dried to a core temperature of 56°C for 30 minutes or more.

If the electronic products, which include stand-alone products and products installed in machines, are packed with fumigated wooden materials, the electrical components may be greatly damaged by the gases or fumes resulting from the fumigation process. In particular, disinfectants containing halogen, which includes chlorine, fluorine, bromine, or iodine can contribute to the erosion of the capacitors.

• Do not overtighten the eyebolts on a SERVOPACK or Servomotor. If you use a tool to overtighten the eyebolts, the tapped holes may be damaged.

Installation Precautions

Install the Servomotor or SERVOPACK in a way that will support the mass given in technical documents.
 Install SERVOPACKs, Servomotors, and regenerative resistors on nonflammable materials. Installation directly onto or near flammable materials may result in fire.
 Provide the specified clearances between the SERVOPACK and the control panel as well as with other devices. There is a risk of fire or failure.
 Install the SERVOPACK in the specified orientation. There is a risk of fire or failure.
 Do not step on or place a heavy object on the product. There is a risk of failure, damage, or injury.
 Do not allow any foreign matter to enter the SERVOPACK or Servomotor. There is a risk of failure or fire.

NOTICE

- Do not install or store the product in any of the following locations.
 - Locations that are subject to direct sunlight
 - · Locations that are subject to ambient temperatures that exceed product specifications
 - Locations that are subject to relative humidities that exceed product specifications
 - · Locations that are subject to condensation as the result of extreme changes in temperature
 - · Locations that are subject to corrosive or flammable gases
 - · Locations that are near flammable materials
 - · Locations that are subject to dust, salts, or iron powder
 - Locations that are subject to water, oil, or chemicals
 - · Locations that are subject to vibration or shock that exceeds product specifications
 - Locations that are subject to radiation
 - If you store or install the product in any of the above locations, the product may fail or be damaged.
- Use the product in an environment that is appropriate for the product specifications. If you use the product in an environment that exceeds product specifications, the product may fail or be damaged.
- A SERVOPACK or Servomotor is a precision device. Do not drop it or subject it to strong shock. There is a risk of failure or damage.
- Always install a SERVOPACK in a control panel.
- Do not allow any foreign matter to enter a SERVOPACK or a Servomotor with a Cooling Fan and do not cover the outlet from the Servomotor's cooling fan. There is a risk of failure.

Wiring Precautions

• Do not change any wiring while power is being supplied. There is a risk of electric shock or injury.

- Wiring and inspections must be performed only by qualified engineers. There is a risk of electric shock or product failure.
- Check all wiring and power supplies carefully. Incorrect wiring or incorrect voltage application to the output circuits may cause short-circuit failures. If a short-circuit failure occurs as a result of any of these causes, the holding brake will not work. This could damage the machine or cause an accident that may result in death or injury.
- Connect the AC and DC power supplies to the specified SERVOPACK terminals.
 - Connect an AC power supply to the L1, L2, and L3 terminals and the L1C and L2C terminals on the SERVOPACK.
 - Connect a DC power supply to the B1/ \oplus and \ominus 2 terminals and the L1C and L2C terminals on the SERVOPACK.

There is a risk of failure or fire.

- Wait for six minutes after turning OFF the power supply and then make sure that the CHARGE indicator is not lit before starting wiring or inspection work. Do not touch the power supply terminals while the CHARGE lamp is lit after turning OFF the power supply because high voltage may still remain in the SERVOPACK. There is a risk of electric shock.
- Observe the precautions and instructions for wiring and trial operation precisely as described in this document.

Failures caused by incorrect wiring or incorrect voltage application in the brake circuit may cause the SERVOPACK to fail, damage the equipment, or cause an accident resulting in death or injury.

- Check the wiring to be sure it has been performed correctly. Connectors and pin layouts are sometimes different for different models. Always confirm the pin layouts in technical documents for your model before operation. There is a risk of failure or malfunction.
- Connect wires to power supply terminals and motor connection terminals securely with the specified methods and tightening torque.
 Insufficient tightening may cause wires and terminal blocks to generate heat due to faulty contact, possibly resulting in fire.
- Use shielded twisted-pair cables or screened unshielded multi-twisted-pair cables for I/O Signal Cables and Encoder Cables.
- Observe the following precautions when wiring the SERVOPACK's main circuit terminals.
 - Turn ON the power supply to the SERVOPACK only after all wiring, including the main circuit terminals, has been completed.
 - If a connector is used for the main circuit terminals, remove the main circuit connector from the SER-VOPACK before you wire it.
 - Insert only one wire per insertion hole in the main circuit terminals.
 - When you insert a wire, make sure that the conductor wire (e.g., whiskers) does not come into contact with adjacent wires.
- Install molded-case circuit breakers and other safety measures to provide protection against short circuits in external wiring. There is a risk of fire or failure.

NOTICE

- Whenever possible, use the Cables specified by Yaskawa. If you use any other cables, confirm the rated current and application environment of your model and use the wiring materials specified by Yaskawa or equivalent materials.
- Securely tighten cable connector screws and lock mechanisms. Insufficient tightening may result in cable connectors falling off during operation.
- Do not bundle power lines (e.g., the Main Circuit Cable) and low-current lines (e.g., the I/O Signal Cables or Encoder Cables) together or run them through the same duct. If you do not place power lines and low-current lines in separate ducts, separate them by at least 30 cm. If the cables are too close to each other, malfunctions may occur due to noise affecting the low-current lines.
- Install a battery at either the host controller or on the Encoder Cable. If you install batteries both at the host controller and on the Encoder Cable at the same time, you will create a loop circuit between the batteries, resulting in a risk of damage or burning.
- When connecting a battery, connect the polarity correctly. There is a risk of battery rupture or encoder failure.

Operation Precautions

WARNING • Before starting operation with a machine connected, change the settings of the switches and parameters to match the machine. Unexpected machine operation, failure, or personal injury may occur if operation is started before appropriate settings are made. • Do not radically change the settings of the parameters. There is a risk of unstable operation, machine damage, or injury. Install limit switches or stoppers at the ends of the moving parts of the machine to prevent unexpected accidents. There is a risk of machine damage or injury. For trial operation, securely mount the Servomotor and disconnect it from the machine. There is a risk of injury. • Forcing the motor to stop for overtravel is disabled when the Jog (Fn002), Origin Search (Fn003), or Easy FFT (Fn206) utility function is executed. Take necessary precautions. There is a risk of machine damage or injury. When an alarm occurs, the motor will coast to a stop or stop with the dynamic brake according to a setting in the SERVOPACK. The coasting distance will change with the moment of inertia of the load. Check the coasting distance during trial operation and implement suitable safety measures on the machine. • Do not enter the machine's range of motion during operation. There is a risk of injury. • Do not touch the moving parts of the Servomotor or machine during operation. There is a risk of injury. CAUTION • Design the system to ensure safety even when problems, such as broken signal lines, occur. For example, the P-OT and N-OT signals are set in the default settings to operate on the safe side if a signal line breaks. Do not change the polarity of this type of signal. • When overtravel occurs, the power supply to the motor is turned OFF and the brake is released. If you use the Servomotor to drive a vertical load, set the Servomotor to enter a zero-clamped state after the Servomotor stops. Also, install safety devices (such as an external brake or counterweight) to prevent the moving parts of the machine from falling. • Always turn OFF the servo before you turn OFF the power supply. If you turn OFF the main circuit power supply or control power supply during operation before you turn OFF the servo, the Servomotor will stop as follows: If you turn OFF the main circuit power supply during operation without turning OFF the servo, the Servomotor will stop abruptly with the dynamic brake.

- If you turn OFF the control power supply without turning OFF the servo, the stopping method that is used by the Servomotor depends on the model of the SERVOPACK. For details, refer to the manual for the SERVOPACK.
- Do not use the dynamic brake for any application other than an emergency stop. There is a risk of failure due to rapid deterioration of elements in the SERVOPACK and the risk of unexpected operation, machine damage, burning, or injury.

NOTICE When you adjust the gain during system commissioning, use a measuring instrument to monitor the torque waveform and speed waveform and confirm that there is no vibration. If a high gain causes vibration, the Servomotor will be damaged guickly. • Do not frequently turn the power supply ON and OFF. After you have started actual operation, allow at least one hour between turning the power supply ON and OFF (as a guideline). Do not use the product in applications that require the power supply to be turned ON and OFF frequently. The elements in the SERVOPACK will deteriorate quickly. An alarm or warning may occur if communications are performed with the host controller while the SigmaWin+ or Digital Operator is operating. If an alarm or warning occurs, it may interrupt the current process and stop the system. • After you complete trial operation of the machine and facilities, use the SigmaWin+ to back up the settings of the SERVOPACK parameters. You can use them to reset the parameters after SERVOPACK replacement. If you do not copy backed up parameter settings, normal operation may not be possible after a faulty SERVOPACK is replaced, possibly resulting in machine or equipment damage. Maintenance and Inspection Precautions DANGER

• Do not change any wiring while power is being supplied. There is a risk of electric shock or injury.

• Wiring and inspections must be performed only by qualified engineers. There is a risk of electric shock or product failure.

- Wait for six minutes after turning OFF the power supply and then make sure that the CHARGE indicator is not lit before starting wiring or inspection work. Do not touch the power supply terminals while the CHARGE lamp is lit after turning OFF the power supply because high voltage may still remain in the SERVOPACK. There is a risk of electric shock.
- Before you replace a SERVOPACK, back up the settings of the SERVOPACK parameters. Copy the backed up parameter settings to the new SERVOPACK and confirm that they were copied correctly.

If you do not copy backed up parameter settings or if the copy operation is not completed normally, normal operation may not be possible, possibly resulting in machine or equipment damage.

NOTICE

 Discharge all static electricity from your body before you operate any of the buttons or switches inside the front cover of the SERVOPACK. There is a risk of equipment damage.

Troubleshooting Precautions

 If the safety device (molded-case circuit breaker or fuse) installed in the power supply line operates, remove the cause before you supply power to the SERVOPACK again. If necessary, repair or replace the SERVOPACK, check the wiring, and remove the factor that caused the safety device to operate.

There is a risk of fire, electric shock, or injury.

• The product may suddenly start to operate when the power supply is recovered after a momentary power interruption. Design the machine to ensure human safety when operation restarts. There is a risk of injury.

- When an alarm occurs, remove the cause of the alarm and ensure safety. Then reset the alarm or turn the power supply OFF and ON again to restart operation. There is a risk of injury or machine damage.
- If the Servo ON signal is input to the SERVOPACK and an alarm is reset, the Servomotor may suddenly restart operation. Confirm that the servo is OFF and ensure safety before you reset an alarm.

There is a risk of injury or machine damage.

- Always insert a magnetic contactor in the line between the main circuit power supply and the main circuit power supply terminals on the SERVOPACK so that the power supply can be shut OFF at the main circuit power supply.
 If a magnetic contactor is not connected when the SERVOPACK fails, a large current may flow, possibly resulting in fire.
- If an alarm occurs, shut OFF the main circuit power supply. There is a risk of fire due to a regenerative resistor overheating as the result of regenerative transistor failure.
- Install a ground fault detector against overloads and short-circuiting or install a molded-case circuit breaker combined with a ground fault detector.
 There is a risk of SERVOPACK failure or fire if a ground fault occurs.
- The holding brake on a Servomotor will not ensure safety if there is the possibility that an external force (including gravity) may move the current position and create a hazardous situation when power is interrupted or an error occurs. If an external force may cause movement, install an external braking mechanism that ensures safety.

Disposal Precautions

• When disposing of the product, treat it as ordinary industrial waste. However, local ordinances and national laws must be observed. Implement all labeling and warnings as a final product as required.

General Precautions

- Figures provided in this document are typical examples or conceptual representations. There may be differences between them and actual wiring, circuits, and products.
- The products shown in illustrations in this document are sometimes shown without covers or protective guards. Always replace all covers and protective guards before you use the product.
- If you need a new copy of this document because it has been lost or damaged, contact your nearest Yaskawa representative or one of the offices listed on the back of this document.
- This document is subject to change without notice for product improvements, specifications changes, and improvements to the manual itself.
 We will update the document number of the document and issue revisions when changes are made.
- Any and all quality guarantees provided by Yaskawa are null and void if the customer modifies the product in any way. Yaskawa disavows any responsibility for damages or losses that are caused by modified products.

Warranty

Details of Warranty

Warranty Period

The warranty period for a product that was purchased (hereinafter called the "delivered product") is one year from the time of delivery to the location specified by the customer or 18 months from the time of shipment from the Yaskawa factory, whichever is sooner.

Warranty Scope

Yaskawa shall replace or repair a defective product free of charge if a defect attributable to Yaskawa occurs during the above warranty period.

This warranty does not cover defects caused by the delivered product reaching the end of its service life and replacement of parts that require replacement or that have a limited service life.

This warranty does not cover failures that result from any of the following causes.

- Improper handling, abuse, or use in unsuitable conditions or in environments not described in product catalogs or manuals, or in any separately agreed-upon specifications
- · Causes not attributable to the delivered product itself
- Modifications or repairs not performed by Yaskawa
- Use of the delivered product in a manner in which it was not originally intended
- Causes that were not foreseeable with the scientific and technological understanding at the time
 of shipment from Yaskawa
- Events for which Yaskawa is not responsible, such as natural or human-made disasters

Limitations of Liability

- Yaskawa shall in no event be responsible for any damage or loss of opportunity to the customer that arises due to failure of the delivered product.
- Yaskawa shall not be responsible for any programs (including parameter settings) or the results of program execution of the programs provided by the user or by a third party for use with programmable Yaskawa products.
- The information described in product catalogs or manuals is provided for the purpose of the customer purchasing the appropriate product for the intended application. The use thereof does not guarantee that there are no infringements of intellectual property rights or other proprietary rights of Yaskawa or third parties, nor does it construe a license.
- Yaskawa shall not be responsible for any damage arising from infringements of intellectual property rights or other proprietary rights of third parties as a result of using the information described in catalogs or manuals.

♦ Suitability for Use

- It is the customer's responsibility to confirm conformity with any standards, codes, or regulations that apply if the Yaskawa product is used in combination with any other products.
- The customer must confirm that the Yaskawa product is suitable for the systems, machines, and equipment used by the customer.
- Consult with Yaskawa to determine whether use in the following applications is acceptable. If use in the application is acceptable, use the product with extra allowance in ratings and specifications, and provide safety measures to minimize hazards in the event of failure.
 - Outdoor use, use involving potential chemical contamination or electrical interference, or use in conditions or environments not described in product catalogs or manuals
 - Nuclear energy control systems, combustion systems, railroad systems, aviation systems, vehicle systems, medical equipment, amusement machines, and installations subject to separate industry or government regulations
 - Systems, machines, and equipment that may present a risk to life or property
 - Systems that require a high degree of reliability, such as systems that supply gas, water, or electricity, or systems that operate continuously 24 hours a day
 - Other systems that require a similar high degree of safety
- Never use the product for an application involving serious risk to life or property without first ensuring that the system is designed to secure the required level of safety with risk warnings and redundancy, and that the Yaskawa product is properly rated and installed.
- The circuit examples and other application examples described in product catalogs and manuals are for reference. Check the functionality and safety of the actual devices and equipment to be used before using the product.
- Read and understand all use prohibitions and precautions, and operate the Yaskawa product correctly to prevent accidental harm to third parties.

Specifications Change

The names, specifications, appearance, and accessories of products in product catalogs and manuals may be changed at any time based on improvements and other reasons. The next editions of the revised catalogs or manuals will be published with updated code numbers. Consult with your Yaskawa representative to confirm the actual specifications before purchasing a product.

Compliance with UL Standards, EU Directives, and Other Safety Standards

Certification marks for the standards for which the product has been certified by certification bodies are shown on nameplate. Products that do not have the marks are not certified for the standards.

North American Safety Standards (UL)

Product Model		North American Safety Standards (UL File No.)
SERVOPACKs	SGD7S	UL 61800-5-1, CSA C22.2 No.274
Rotary Servomotors	• SGM7A • SGM7J • SGM7P • SGM7G	UL 1004-1 UL 1004-6
Direct Drive Servomotors ^{*1}	SGMCV	
Linear Servomotors	• SGLGW • SGLFW • SGLFW2 ^{*2} • SGLTW	UL 1004 (E165827)

*1. Certification is scheduled for 2015.

*2. Certification is scheduled for April 2015.

European Directives

Product	Model	European Directive	Harmonized Standards
		Machinery Directive 2006/42/EC	EN ISO13849-1: 2008/AC: 2009
SERVOPACKs	SGD7S	EMC Directive 2004/108/EC	EN 55011 group 1, class A EN 61000-6-2 EN 61000-6-4 EN 61800-3
		Low Voltage Directive 2006/95/EC	EN 50178 EN 61800-5-1
Rotary Servomotors	• SGM7J • SGM7A • SGM7P	EMC Directive 2004/108/EC	EN 55011 group 1, class A EN 61000-6-2 EN 61000-6-4 EN 61800-3
	• SGM7G	Low Voltage Directive 2006/95/EC	EN 60034-1 EN 60034-5
Direct Drive		EMC Directive 2004/108/EC	EN 55011 group 1, class A EN 61000-6-2 EN 61800-3 ^{*1}
Servomotors	(Small-Capacity, Coreless Servomotors) • SGMCV	Low Voltage Directive 2006/95/EC	EN 60034-1 EN 60034-5
Linear	• SGLG • SGLF • SGLFW2 ^{*2}	EMC Directive 2004/108/EC	EN 55011 group 1, class A EN 61000-6-2 EN 61000-6-4
Servomotors	• SGLT • SGLC	Low Voltage Directive 2006/95/EC	EN 60034-1

*1. Only the SGMCV is certified.

*2. Certification is scheduled for April 2015.

Note: We declared the CE Marking based on the harmonized standards in the above table.

Safety Standards

Product	Model	Safety Standards	Standards
		Safety of Machinery	EN ISO13849-1: 2008/AC: 2009 IEC 60204-1
SERVOPACKs	SGD7S	Functional Safety	IEC 61508 series IEC 62061 IEC 61800-5-2
		EMC	IEC 61326-3-1

Safety Parameters

Item	Standards	Performance Level
Safety Integrity Level	IEC 61508	SIL3
Salety Integrity Level	IEC 62061	SILCL3
Probability of Dangerous Failure per Hour	IEC 61508 IEC 62061	PFH = 4.04×10 ⁻⁹ [1/h] (4.04% of SIL3)
Performance Level	EN ISO 13849-1	PLe (Category 3)
Mean Time to Dangerous Failure of Each Channel	EN ISO 13849-1	MTTFd: High
Average Diagnostic Coverage	EN ISO 13849-1	DCavg: Medium
Stop Category	IEC 60204-1	Stop category 0
Safety Function	IEC 61800-5-2	STO
Mission Time	IEC 61508	10 years
Hardware Fault Tolerance	IEC 61508	HFT = 1
Subsystem	IEC 61508	В

Contents

About this Manual				 	. i	ii
Outline of Manual				 	. i	ii
Related Documents				 	. i	v
Using This Manual				 	. v	ii
Safety Precautions				 		х
Warranty				 	. X	х
Compliance with UL Standards, EU Directives, and Other Safety Star	٦d	ar	ds	 	хх	ii

 \rangle

Basic Information on SERVOPACKs

1.1	The Σ	-7 Series
1.2	Interp	preting the Nameplate 1-3
1.3	Part N	Names
1.4	Mode	l Designations
	1.4.1 1.4.2	Interpreting SERVOPACK Model Numbers
1.5	Comb	pinations of SERVOPACKs and Servomotors
	1.5.1 1.5.2	Combinations of Rotary Servomotors and SERVOPACKs
	1.5.3	Combinations of Linear Servomotors and SERVOPACKs
1.6	Funct	ions

9

Selecting a SERVOPACK

2.1	Ratings and Specifications				
	2.1.1 2.1.2 2.1.3	Ratings			
2.2	Block	Diagrams 2-10			
	2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7 2.2.8	SGD7S-R70A, -R90A, and -1R6A. 2-10 SGD7S-2R8A 2-10 SGD7S-3R8A, -5R5A, and -7R6A. 2-11 SGD7S-120A 2-12 SGD7S-180A and -200A. 2-14 SGD7S-330A 2-15 SGD7S-470A and -550A. 2-16 SGD7S-590A and -780A. 2-17			
2.3	Exter	nal Dimensions 2-18			
	2.3.1 2.3.2	Front Cover Dimensions and Connector Specifications			
2.4	Example	es of Standard Connections between SERVOPACKs and Peripheral Devices. 2-25			

3	SERVOPACK Installation
3.1	Installation Precautions 3-2
3.2	Mounting Types and Orientation 3-3
3.3	Mounting Hole Dimensions 3-4
3.4	Mounting Interval3-53.4.1Installing One SERVOPACK in a Control Panel3-53.4.2Installing More Than One SERVOPACK in a Control Panel3-5
3.5	Monitoring the Installation Environment
3.6	Derating Specifications 3-7
3.7	EMC Installation Conditions 3-8
4 ^v	Viring and Connecting SERVOPACKs
4.1	Wiring and Connecting SERVOPACKs 4-3
	4.1.1General Precautions4-34.1.2Countermeasures against Noise4-54.1.3Grounding4-8
4.2	Basic Wiring Diagrams
4.3	Wiring the Power Supply to the SERVOPACK 4-11
	4.3.1Terminal Symbols and Terminal Names4-114.3.2Wiring Procedure for Main Circuit Connector4-134.3.3Power ON Sequence4-144.3.4Power Supply Wiring Diagrams4-154.3.5Wiring Regenerative Resistors4-194.3.6Wiring DC Reactors4-21
4.4	Wiring Servomotors 4-22
	4.4.1Terminal Symbols and Terminal Names4-224.4.2Pin Arrangement of Encoder Connector (CN2)4-224.4.3Wiring the SERVOPACK to the Encoder4-234.4.4Wiring the SERVOPACK to the Holding Brake4-28
4.5	I/O Signal Connections 4-30
	4.5.1I/O Signal Connector (CN1) Names and Functions4-304.5.2I/O Signal Connector (CN1) Pin Arrangement4-334.5.3I/O Signal Wiring Examples4-344.5.4I/O Circuits4-40
4.6	Connecting Safety Function Signals 4-44
	4.6.1Pin Arrangement of Safety Function Signals (CN8)

7	Conn	ecting the Other Connectors 4-40	6
	4.7.1	Serial Communications Connector (CN3)	6
	4.7.2	Computer Connector (CN7)4-4	6
	4.7.3	Analog Monitor Connector (CN5)4-4	6

Basic Functions That Require Setting before Operation

5.1	Manip	ulating Parameters (Pn□□□)	5-3
	5.1.2 5.1.3 5.1.4	Parameter Classification. Notation for Parameters Parameter Setting Methods Write Prohibition Setting for Parameters Initializing Parameter Settings	5-4 5-5 5-6
5.2	Contro	ol Method Selection	5-12
5.3	Power	Supply Type Settings for the Main Circuit and Control Circuit	5-13
	5.3.2	AC Power Supply Input/DC Power Supply Input Setting Single-phase AC Power Supply Input/ Three-phase AC Power Supply Input Setting	
5.4	Autom	natic Detection of Connected Motor	5-15
5.5	Functi	ons and Settings for the /S-ON (Servo ON) Signal &	5-16
	5.5.2	Function of the /S-ON (Servo ON) Signal	
5.6	Motor	Direction Setting	5-17
5.7	Setting	g the Linear Encoder Pitch	5-18
5.8	Writing	g Linear Servomotor Parameters	5-19
5.9	Select	ing the Phase Sequence for a Linear Servomotor §	5-23
5.10	Polarit	ty Sensor Setting	5-25
5.11	Polarit	ty Detection	5-26
	5.11.2 5.11.3	Restrictions	.5-27 5-27
5.12	Overtr	avel and Related Settings	5-30
	5.12.2 5.12.3	Overtravel Signals	.5-31 .5-32

5.13	Holdi	ng Brake	-35
		Brake Operating Sequence	5-36 5-37
5.14	Moto	r Stopping Methods for Servo OFF and Alarms 5	-40
		Stopping Method for Servo OFF	
5.15	Moto	r Overload Detection Level 5	-43
		Detection Timing for Overload Warnings (A.910)	
5.16	Electi	ronic Gear Settings 5	-45
5.16	5.16.1	ronic Gear Settings 5 Electronic Gear Ratio Settings 5 Electronic Gear Ratio Setting Examples 5	5-46
5.16	5.16.1 5.16.2	Electronic Gear Ratio Settings	5-46 5-49
	5.16.1 5.16.2 Reset 5.17.1 5.17.2	Electronic Gear Ratio Settings	5-46 5-49 -50 5-50 5-50
	5.16.1 5.16.2 Reset 5.17.1 5.17.2 5.17.3	Electronic Gear Ratio Settings. Electronic Gear Ratio Setting Examples Electronic Gear Ratio Setting Examples Electronic Gear Ratio Setting Examples tting the Absolute Encoder 5 Precautions on Resetting. Electronic Gear Ratio Setting Applicable Tools Electronic Gear Ratio Setting	5-46 5-49 -50 5-50 5-50 5-51
5.17	5.16.1 5.16.2 Reset 5.17.1 5.17.2 5.17.3 Settin	Electronic Gear Ratio Settings. Electronic Gear Ratio Setting Examples Electronic Gear Ratio Setting Examples Electronic Gear Ratio Setting Examples tting the Absolute Encoder 5 Precautions on Resetting. 5 Applicable Tools 5 Operating Procedure 6	5-46 5-49 - 50 5-50 5-50 5-51 -53

Application Functions

6.1	I/O Si	ignal Allocations	6-4
	$\begin{array}{c} 6.1.1 \\ 6.1.2 \\ 6.1.3 \\ 6.1.4 \\ 6.1.5 \\ 6.1.6 \\ 6.1.7 \end{array}$	Input Signal Allocations Output Signal Allocations ALM (Servo Alarm) Signal ALO1 to ALO3 (Alarm Code) Signals /WARN (Warning) Signal /TGON (Rotation Detection) Signal /S-RDY (Servo Ready) Signal	. 6-6 . 6-8 . 6-8 . 6-9 6-10
6.2	Opera	ation for Momentary Power Interruptions6	6-12
6.3	SEMI	F47 Function6	6-13
6.4	Settin	ng the Motor Maximum Speed 6	6-15
6.5	Spee	d Control	6-16
	6.5.1 6.5.2 6.5.3 6.5.4 6.5.5 6.5.6	Basic Settings for Speed Control Soft Start Settings Speed Reference Filter Zero Clamping /V-CMP (Speed Coincidence Detection) Signal Operation Examples for Changing the Motor Direction	6-23 6-24 6-24 6-26

6.6	Positi	ion Control	0
	$\begin{array}{c} 6.6.1 \\ 6.6.2 \\ 6.6.3 \\ 6.6.4 \\ 6.6.5 \\ 6.6.6 \\ 6.6.7 \end{array}$	Basic Settings for Position Control .6-3 CLR (Position Deviation Clear) Signal Function and Settings .6-3 Reference Pulse Input Multiplication Switching .6-3 Smoothing Settings .6-3 /COIN (Positioning Completion) Signal .6-3 /NEAR (Near) Signal .6-3 Reference Pulse Inhibition Function .6-3	33 34 35 36 38
6.7	Torqu	e Control	0
	6.7.1 6.7.2 6.7.3 6.7.4	Basic Settings for Torque Control .6-4 Adjusting the Torque Reference Offset .6-4 Torque Reference Filter Settings .6-4 Speed Limit during Torque Control .6-4	1 5
6.8	Enco	der Divided Pulse Output6-4	7
	6.8.1 6.8.2	Encoder Divided Pulse Output Signals	
6.9	Interr	nal Set Speed Control6-5	4
	6.9.1 6.9.2 6.9.3 6.9.4	Input Signals for Internal Set Speed Control. .6-5 Setting the Control Method to Internal Set Speed Control .6-5 Settings for Internal Set Speed Control .6-5 Changing Internal Set Speeds with Input Signals .6-5	55 55
6.10	Selec	ting Combined Control Methods	8
		Setting Pn000 = $n.\Box\Box X\Box$ (Control Method Selection) to 4, 5, or 66-5 Setting Pn000 = $n.\Box\Box X\Box$ (Control Method Selection) to 7, 8, or 96-6 Setting Pn000 = $n.\Box\Box X\Box$ (Control Method Selection) to A or B	61
6.11	Selec	ting Torque Limits 6-6	3
	6.11.3 6.11.4	Internal Torque Limits	64 67 69
6.12	Abso	lute Encoders	3
	6.12.3 6.12.4 6.12.5 6.12.6 6.12.7 6.12.8	Connecting an Absolute Encoder.6-7Structure of the Position Data of the Absolute Encoder.6-7Output Ports for the Position Data from the Absolute Encoder.6-7Reading the Position Data from the Absolute Encoder.6-7Transmission Specifications.6-7Calculating the Current Position in Machine Coordinates.6-8Alarm Output from Output Ports for the Position Data.6-8Multiturn Limit Setting.6-8	74 76 79 80 81 82
0.10		Multiturn Limit Disagreement Alarm (A.CC0)6-8	_
6.13	ADSO	Iute Linear Encoders 6-8 Connecting an Absolute Linear Encoder. 6-8	
	6.13.2 6.13.3 6.13.4 6.13.5 6.13.6		86 87 88 91 92

6.14	Softw	vare Reset
		Preparations
		Operating Procedure
6.15	Initial	izing the Vibration Detection Level
		Preparations
	6.15.3	Operating Procedure
	6.15.4	Related Parameters
6.16	-	ting the Motor Current Detection Signal Offset 6-100
		Automatic Adjustment 6-100 Manual Adjustment 6-101
6.17	Forci	ng the Motor to Stop 6-104
		FSTP (Forced Stop Input) Signal
	6.17.2 6.17.3	Stopping Method Selection for Forced Stops6-105Resetting Method for Forced Stops6-106
Tr	ial Op	peration and Actual Operation
7.1	Flow	of Trial Operation
	7.1.1	Flow of Trial Operation for Rotary Servomotors
	7.1.2	Flow of Trial Operation for Linear Servomotors
7.2	Inspe	ections and Confirmations before Trial Operation
7.3	Trial C	Operation for the Servomotor without a Load
	7.3.1	Preparations
	7.3.2 7.3.3	Applicable Tools 7-8 Operating Procedure 7-8
7.4	Trial Or	peration from the Host Controller for the Servomotor without a Load 7-10
	7.4.1	Preparing the Servomotor for Trial Operation
	7.4.2 7.4.3	Trial Operation for Speed Control
	7.4.3	with the SERVOPACK Used for Speed Control
	7.4.4	Trial Operation for Position Control
7.5	Trial (Operation with the Servomotor Connected to the Machine7-17
	7.5.1 7.5.2	Precautions
	7.5.3	Operating Procedure
7.6	Conv	enient Function to Use during Trial Operation
	7.6.1	Program Jogging
	7.6.2 7.6.3	Origin Search. 7-25 Test without a Motor 7-26

8 –	Tuning		
8.1	Over	view and Flow of Tuning	8-4
	8.1.1 8.1.2	Tuning Functions Diagnostic Tool	
8.2	Mon	itoring Methods	8-7
8.3	Prec	autions to Ensure Safe Tuning	8-8
	8.3.1 8.3.2 8.3.3 8.3.4 8.3.5	Overtravel Settings Torque Limit Settings Setting the Position Deviation Overflow Alarm Level Vibration Detection Level Setting Setting the Position Deviation Overflow Alarm Level at Servo ON	8-8 8-8 8-10
8.4	Tunir	ng-less Function	. 8-11
	8.4.1 8.4.2 8.4.3 8.4.4 8.4.5 8.4.6	Application RestrictionsOperating ProcedureTroubleshooting AlarmsParameters Disabled by Tuning-less FunctionAutomatically Adjusted Function SettingRelated Parameters	8-12 8-13 8-14 8-14
8.5	Estin	nating the Moment of Inertia	. 8-15
	8.5.1 8.5.2 8.5.3 8.5.4	Outline Restrictions Applicable Tools Operating Procedure	8-15 8-16
8.6	Auto	tuning without Host Reference	. 8-23
	8.6.1 8.6.2 8.6.3 8.6.4 8.6.5 8.6.6 8.6.7	Outline Restrictions Applicable Tools Operating Procedure Troubleshooting Problems in Autotuning without a Host Reference Automatically Adjusted Function Settings Related Parameters	8-24 8-25 8-25 8-29 8-31
8.7	Auto	tuning with a Host Reference	
	8.7.1 8.7.2 8.7.3 8.7.4 8.7.5 8.7.6 8.7.7	OutlineRestrictionsApplicable ToolsOperating ProcedureTroubleshooting Problems in Autotuning with a Host ReferenceAutomatically Adjusted Function SettingsRelated Parameters	8-35 8-36 8-36 8-40 8-40
8.8	Cust	om Tuning	. 8-42
	8.8.1 8.8.2 8.8.3 8.8.4 8.8.5 8.8.6 8.8.7	OutlinePreparationsApplicable ToolsOperating ProcedureAutomatically Adjusted Function SettingsTuning Example for Tuning Mode 2 or 3Related Parameters	8-42 8-43 8-43 8-43 8-48 8-49

8.9	Anti-F	Resonance Control Adjustment 8	3-51
	8.9.1 8.9.2 8.9.3 8.9.4 8.9.5 8.9.6	Outline. Preparations Applicable Tools Operating Procedure Related Parameters Suppressing Different Vibration Frequencies with Anti-resonance Control	8-51 8-52 8-52 8-54
0 1 0	Vibrat		
8.10	8.10.1 8.10.2 8.10.3 8.10.4 8.10.5	Operating Procedure	8-56 8-57 8-57 8-57 8-59
8.11	Speed	d Ripple Compensation	8-60
	8.11.2	Outline. Setting Up Speed Ripple Compensation Setting Parameters Setting Parameters	8-60
8.12	Addit	ional Adjustment Functions	8-66
	8.12.1 8.12.2 8.12.3 8.12.4 8.12.5 8.12.6 8.12.7	Friction Compensation Current Control Mode Selection Current Gain Level Setting Speed Detection Method Selection	8-69 8-71 8-71 8-72 8-72
8.13	Manu	al Tuning	3-74
		Tuning the Servo Gains Compatible Adjustment Functions	
8.14	Diagn	nostic Tools	8-90
		Mechanical Analysis	

ſ

Monitoring

9.1	Monit	coring Product Information
	9.1.1 9.1.2	Items That You Can Monitor 9-2 Operating Procedures 9-2
9.2	Monit	coring SERVOPACK Status 9-3
	9.2.1 9.2.2 9.2.3	System Monitor9-3Monitoring Status and Operations9-3I/O Signal Monitor9-5
9.3	Monit	coring Machine Operation Status and Signal Waveforms . 9-6
	9.3.1 9.3.2 9.3.3	Items That You Can Monitor9-6Using the SigmaWin+9-7Using a Measuring Instrument9-8

9.4	Monitoring Product Life
	9.4.1Items That You Can Monitor9-149.4.2Operating Procedure9-149.4.3Preventative Maintenance9-15
10 ^{-Fi}	ully-Closed Loop Control
10.1	Fully-Closed System 10-2
10.2	SERVOPACK Commissioning Procedure
10.3	Parameter Settings for Fully-Closed Loop Control 10-5
	10.3.1Control Block Diagram for Fully-Closed Loop Control10-510.3.2Setting the Motor Direction and the Machine Movement Direction10-610.3.3Setting the Number of External Encoder Scale Pitches10-710.3.4Setting the PAO, PBO, and PCO (Encoder Divided Pulse Output) Signals10-710.3.5External Absolute Encoder Data Reception Sequence10-810.3.6Electronic Gear Setting10-810.3.7Alarm Detection Settings10-810.3.8Analog Monitor Signal Settings10-910.3.9Setting to Use an External Encoder for Speed Feedback10-9
W-	afety Functions
11.1	Introduction to the Safety Functions 11-3
	11.1.1Safety Functions.11-311.1.2Precautions for Safety Functions11-3
11.2	
	11.2.1Risk Assessment11-411.2.2Hard Wire Base Block (HWBB) State11-511.2.3Resetting the HWBB State11-511.2.4Detecting Errors in HWBB Signal11-611.2.5HWBB Input Signal Specifications11-611.2.6Operation without a Host Controller11-611.2.7/S-RDY (Servo Ready Output) Signal11-711.2.8/BK (Brake Output) Signal11-711.2.9Stopping Methods11-811.2.10Settings to Clear the Position Deviation11-811.2.11ALM (Servo Alarm) Signal and ALO1, ALO2, and ALO3 (Alarm Code Output) Signals11-8
11.3	EDM1 (External Device Monitor)11-911.3.1 EDM1 Output Signal Specifications
11.4	Applications Examples for Safety Functions 11-10
	11.4.1 Connection Example .11-10 11.4.2 Failure Detection Method .11-10 11.4.3 Procedure .11-11
11.5	Validating Safety Functions 11-12

11.6	Connecting a Safety Function Device 11-13
12 ^M	aintenance
12.1	Inspections and Part Replacement 12-2
12.1	12.1.1Inspections12-212.1.2Guidelines for Part Replacement12-212.1.3Replacing the Battery12-3
12.2	Alarm Displays 12-5
	12.2.1List of Alarms12-512.2.2Troubleshooting Alarms12-1112.2.3Resetting Alarms12-3912.2.4Displaying the Alarm History12-4012.2.5Clearing the Alarm History12-4112.2.6Resetting Alarms Detected in Option Modules12-4212.2.7Resetting Motor Type Alarms12-43
12.3	Warning Displays 12-45
	12.3.1 List of Warnings. 12-45 12.3.2 Troubleshooting Warnings. 12-46
12.4	Troubleshooting Based on the Operation and Conditions of the Servomotor 12-51
13 ^{Pa}	anel Displays and Panel Operator Procedures
13.1	Panel Operator
	13.1.1Panel Operator Key Names and Functions13-313.1.2Changing Modes13-313.1.3Status Displays13-4
13.2	Parameter (PnDDD) Operations on the Panel Operator 13-6
	13.2.1Setting Parameters That Require Numeric Settings13-613.2.2Setting Parameters That Require Selection of Functions13-7
13.3	Monitor Display (UnDDD) Operations on the Panel Operator 13-8
	13.3.1Basic Monitor Display Operations13-813.3.2Input Signal Monitor (Un005)13-813.3.3Output Signal Monitor (Un006)13-913.3.4Safety Input Signal Monitor (Un015)13-1013.3.5Upper Limit Setting Monitor for Maximum Motor Speed/ Upper Limit Setting for Encoder Output Resolution (Un010)13-1113.3.6Polarity Sensor Signal Monitor (Un011)13-11
13.4	Utility Function (Fn
	13.4.1 Display Alarm History (Fn000) 13-12 13.4.2 Jog (Fn002) 13-13 13.4.3 Origin Search (Fn003) 13-13 13.4.4 Jog Program (Fn004) 13-14 13.4.5 Initialize Parameters (Fn005) 13-15 13.4.6 Clear Alarm History (Fn006) 13-15 13.4.7 Reset Absolute Encoder (Fn008) 13-16 13.4.8 Autotune Analog (Speed/Torque) Reference Offset (Fn009) 13-17

xxxiii

13.4.10 Manually Adjust Torque Reference Offset (Fn00B) 13-18 13.4.11 Adjust Analog Monitor Output Offset (Fn00C) 13-18 13.4.12 Adjust Analog Monitor Output Gain (Fn00D) 13-19 13.4.13 Autotune Motor Current Detection Signal Offset (Fn00E) 13-20 13.4.14 Manually Adjust Motor Current Detection Signal Offset (Fn00F) 13-20 13.4.15 Write Prohibition Setting (Fn010) 13-21 13.4.16 Display Servomotor Model (Fn011) 13-22 13.4.17 Display Software Version (Fn012) 13-23 13.4.18 Multiturn Limit Setting after Multiturn Limit Disagreement Alarm (Fn013) 13-24 13.4.19 Reset Option Module Configuration Error (Fn014) 13-25 13.4.21 Display SERVOPACK and Servomotor IDs (Fn01E) 13-26 13.4.22 Display Servomotor ID from Feedback Option Module (Fn01F) 13-26 13.4.23 Set Absolute Linear Encoder Origin (Fn020) 13-26 13.4.24 Resetting Motor Type Alarms (Fn021) 13-27 13.4.25 Software Reset (Fn030) 13-27 13.4.26 Polarity Detection (Fn080) 13-27 13.4.29 Advanced Autotuning without Reference (Fn201) 13-28 13.4.29 Advanced Autotuning without Reference (Fn201) 13-29 13.4.30 One-Parameter Tuning (Fn203) 13-29	13.4.9 Manually Adjust Speed Reference Offset (Fn00A)
13.4.11 Adjust Analog Monitor Output Offset (Fn00C).13-1813.4.12 Adjust Analog Monitor Output Gain (Fn00D)13-1913.4.13 Autotune Motor Current Detection Signal Offset (Fn00E)13-2013.4.14 Manually Adjust Motor Current Detection Signal Offset (Fn00F)13-2013.4.15 Write Prohibition Setting (Fn010)13-2113.4.16 Display Servomotor Model (Fn011)13-2213.4.17 Display Software Version (Fn012)13-2313.4.18 Multiturn Limit Setting after Multiturn Limit Disagreement Alarm (Fn013)13-2413.4.20 Initialize Vibration Detection Level (Fn01B)13-2413.4.21 Display SERVOPACK and Servomotor IDs (Fn01E)13-2613.4.22 Display Servomotor ID from Feedback Option Module (Fn01F)13-2613.4.23 Set Absolute Linear Encoder Origin (Fn020)13-2713.4.24 Resetting Motor Type Alarms (Fn021)13-2713.4.25 Software Reset (Fn030)13-2713.4.26 Polarity Detection (Fn080)13-2713.4.27 Tuning-less Level Setting (Fn200)13-2813.4.28 Advanced Autotuning without Reference (Fn201)13-2913.4.30 One-Parameter Tuning (Fn203)13-2913.4.31 Adjust Anti-resonance Control (Fn204)13-3013.4.32 Vibration Suppression (Fn205)13-30	
13.4.12 Adjust Analog Monitor Output Gain (Fn00D) 13-19 13.4.13 Autotune Motor Current Detection Signal Offset (Fn00E) 13-20 13.4.14 Manually Adjust Motor Current Detection Signal Offset (Fn00F) 13-20 13.4.15 Write Prohibition Setting (Fn010) 13-21 13.4.16 Display Servomotor Model (Fn011) 13-22 13.4.17 Display Software Version (Fn012) 13-23 13.4.18 Multiturn Limit Setting after Multiturn Limit Disagreement Alarm (Fn013) 13-24 13.4.19 Reset Option Module Configuration Error (Fn014) 13-24 13.4.20 Initialize Vibration Detection Level (Fn01B) 13-26 13.4.21 Display SERVOPACK and Servomotor IDs (Fn01E) 13-26 13.4.23 Set Absolute Linear Encoder Origin (Fn020) 13-26 13.4.24 Resetting Motor Type Alarms (Fn021) 13-27 13.4.25 Software Reset (Fn030) 13-27 13.4.26 Polarity Detection (Fn080) 13-27 13.4.28 Advanced Autotuning without Reference (Fn201) 13-29 13.4.29 Advanced Autotuning with Reference (Fn201) 13-29 13.4.31 Adjust Anti-resonance Control (Fn204) 13-30 13.4.32 Vibration Suppression (Fn205) 13-30	
13.4.13 Autotune Motor Current Detection Signal Offset (Fn00E) 13-20 13.4.14 Manually Adjust Motor Current Detection Signal Offset (Fn00F) 13-20 13.4.15 Write Prohibition Setting (Fn010) 13-21 13.4.15 Write Prohibition Setting (Fn010) 13-21 13.4.16 Display Servomotor Model (Fn011) 13-22 13.4.17 Display Software Version (Fn012) 13-23 13.4.18 Multiturn Limit Setting after Multiturn Limit Disagreement Alarm (Fn013) 13-24 13.4.19 Reset Option Module Configuration Error (Fn014) 13-24 13.4.20 Initialize Vibration Detection Level (Fn01B) 13-26 13.4.21 Display SERVOPACK and Servomotor IDs (Fn01E) 13-26 13.4.23 Set Absolute Linear Encoder Origin (Fn020) 13-26 13.4.24 Resetting Motor Type Alarms (Fn021) 13-27 13.4.25 Software Reset (Fn030) 13-27 13.4.26 Polarity Detection (Fn080) 13-27 13.4.27 Tuning-less Level Setting (Fn200) 13-28 13.4.29 Advanced Autotuning without Reference (Fn201) 13-29 13.4.30 One-Parameter Tuning (Fn203) 13-29 13.4.31 Adjust Anti-resonance Control (Fn204) 13-30 13.4.32 Vibration Suppression (Fn205) 13-30	
13.4.14 Manually Adjust Motor Current Detection Signal Offset (Fn00F) 13-20 13.4.15 Write Prohibition Setting (Fn010) 13-21 13.4.15 Urite Prohibition Setting (Fn010) 13-21 13.4.16 Display Servomotor Model (Fn011) 13-22 13.4.17 Display Software Version (Fn012) 13-23 13.4.18 Multiturn Limit Setting after Multiturn Limit Disagreement Alarm (Fn013) 13-24 13.4.19 Reset Option Module Configuration Error (Fn014) 13-24 13.4.20 Initialize Vibration Detection Level (Fn01B) 13-26 13.4.21 Display SERVOPACK and Servomotor IDs (Fn01E) 13-26 13.4.23 Set Absolute Linear Encoder Origin (Fn020) 13-26 13.4.24 Resetting Motor Type Alarms (Fn021) 13-27 13.4.25 Software Reset (Fn030) 13-27 13.4.26 Polarity Detection (Fn080) 13-27 13.4.29 Advanced Autotuning without Reference (Fn201) 13-29 13.4.29 Advanced Autotuning with Reference (Fn201) 13-29 13.4.30 One-Parameter Tuning (Fn203) 13-29 13.4.31 Adjust Anti-resonance Control (Fn204) 13-30 13.4.32 Vibration Suppression (Fn205) 13-30	
13.4.15 Write Prohibition Setting (Fn010) 13-21 13.4.16 Display Servomotor Model (Fn011) 13-22 13.4.16 Display Software Version (Fn012) 13-23 13.4.17 Display Software Version (Fn012) 13-23 13.4.18 Multiturn Limit Setting after Multiturn Limit Disagreement Alarm (Fn013) 13-24 13.4.19 Reset Option Module Configuration Error (Fn014) 13-24 13.4.20 Initialize Vibration Detection Level (Fn01B) 13-25 13.4.21 Display SERVOPACK and Servomotor IDs (Fn01E) 13-26 13.4.23 Set Absolute Linear Encoder Origin (Fn020) 13-26 13.4.25 Software Reset (Fn030) 13-27 13.4.26 Polarity Detection (Fn080) 13-27 13.4.27 Tuning-less Level Setting (Fn200) 13-28 13.4.28 Advanced Autotuning without Reference (Fn201) 13-29 13.4.30 One-Parameter Tuning (Fn203) 13-29 13.4.31 Adjust Anti-resonance Control (Fn204) 13-30 13.4.32 Vibration Suppression (Fn205) 13-30	13.4.13 Autotune Motor Current Detection Signal Offset (Fn00E)
13.4.16 Display Servomotor Model (Fn011). 13-22 13.4.17 Display Software Version (Fn012) 13-23 13.4.18 Multiturn Limit Setting after Multiturn Limit Disagreement Alarm (Fn013) 13-23 13.4.19 Reset Option Module Configuration Error (Fn014) 13-24 13.4.20 Initialize Vibration Detection Level (Fn01B) 13-25 13.4.21 Display SERVOPACK and Servomotor IDs (Fn01E) 13-26 13.4.22 Display Servomotor ID from Feedback Option Module (Fn01F) 13-26 13.4.23 Set Absolute Linear Encoder Origin (Fn020) 13-26 13.4.25 Software Reset (Fn030) 13-27 13.4.26 Polarity Detection (Fn080) 13-27 13.4.28 Advanced Autotuning without Reference (Fn201) 13-29 13.4.29 Advanced Autotuning with Reference (Fn202) 13-29 13.4.30 One-Parameter Tuning (Fn203) 13-29 13.4.31 Adjust Anti-resonance Control (Fn204) 13-30 13.4.32 Vibration Suppression (Fn205) 13-30	13.4.14 Manually Adjust Motor Current Detection Signal Offset (Fn00F) 13-20
13.4.17 Display Software Version (Fn012) 13-23 13.4.18 Multiturn Limit Setting after Multiturn Limit Disagreement Alarm (Fn013) 13-24 13.4.19 Reset Option Module Configuration Error (Fn014) 13-24 13.4.20 Initialize Vibration Detection Level (Fn01B) 13-25 13.4.21 Display SERVOPACK and Servomotor IDs (Fn01E) 13-26 13.4.22 Display Servomotor ID from Feedback Option Module (Fn01F) 13-26 13.4.23 Set Absolute Linear Encoder Origin (Fn020) 13-26 13.4.25 Software Reset (Fn030) 13-27 13.4.26 Polarity Detection (Fn080) 13-27 13.4.27 Tuning-less Level Setting (Fn200) 13-28 13.4.29 Advanced Autotuning without Reference (Fn201) 13-29 13.4.30 One-Parameter Tuning (Fn203) 13-29 13.4.31 Adjust Anti-resonance Control (Fn204) 13-30 13.4.32 Vibration Suppression (Fn205) 13-30	13.4.15 Write Prohibition Setting (Fn010)
13.4.17 Display Software Version (Fn012) 13-23 13.4.18 Multiturn Limit Setting after Multiturn Limit Disagreement Alarm (Fn013) 13-24 13.4.19 Reset Option Module Configuration Error (Fn014) 13-24 13.4.20 Initialize Vibration Detection Level (Fn01B) 13-25 13.4.21 Display SERVOPACK and Servomotor IDs (Fn01E) 13-26 13.4.22 Display Servomotor ID from Feedback Option Module (Fn01F) 13-26 13.4.23 Set Absolute Linear Encoder Origin (Fn020) 13-26 13.4.25 Software Reset (Fn030) 13-27 13.4.26 Polarity Detection (Fn080) 13-27 13.4.27 Tuning-less Level Setting (Fn200) 13-28 13.4.29 Advanced Autotuning without Reference (Fn201) 13-29 13.4.30 One-Parameter Tuning (Fn203) 13-29 13.4.31 Adjust Anti-resonance Control (Fn204) 13-30 13.4.32 Vibration Suppression (Fn205) 13-30	13.4.16 Display Servomotor Model (Fn011)
13.4.18 Multiturn Limit Setting after Multiturn Limit Disagreement Alarm (Fn013)13-2413.4.19 Reset Option Module Configuration Error (Fn014)13.4.20 Initialize Vibration Detection Level (Fn01B)13.4.21 Display SERVOPACK and Servomotor IDs (Fn01E)13.4.22 Display Servomotor ID from Feedback Option Module (Fn01F)13.4.23 Set Absolute Linear Encoder Origin (Fn020)13.4.24 Resetting Motor Type Alarms (Fn021)13.4.25 Software Reset (Fn030)13.4.26 Polarity Detection (Fn080)13.4.27 Tuning-less Level Setting (Fn200)13.4.29 Advanced Autotuning without Reference (Fn201)13.4.20 Advanced Autotuning with Reference (Fn202)13.4.30 One-Parameter Tuning (Fn203)13.4.32 Vibration Suppression (Fn205)13.4.32 Vibration Suppression (Fn205)	
13.4.19 Reset Option Module Configuration Error (Fn014)13-2413.4.20 Initialize Vibration Detection Level (Fn01B)13-2513.4.21 Display SERVOPACK and Servomotor IDs (Fn01E)13-2613.4.22 Display Servomotor ID from Feedback Option Module (Fn01F)13-2613.4.23 Set Absolute Linear Encoder Origin (Fn020)13-2613.4.24 Resetting Motor Type Alarms (Fn021)13-2713.4.25 Software Reset (Fn030)13-2713.4.26 Polarity Detection (Fn080)13-2713.4.27 Tuning-less Level Setting (Fn200)13-2813.4.29 Advanced Autotuning without Reference (Fn201)13-2913.4.30 One-Parameter Tuning (Fn203)13-2913.4.31 Adjust Anti-resonance Control (Fn204)13-3013.4.32 Vibration Suppression (Fn205)13-30	
13.4.20 Initialize Vibration Detection Level (Fn01B) 13-25 13.4.21 Display SERVOPACK and Servomotor IDs (Fn01E) 13-26 13.4.22 Display Servomotor ID from Feedback Option Module (Fn01F) 13-26 13.4.23 Set Absolute Linear Encoder Origin (Fn020) 13-26 13.4.24 Resetting Motor Type Alarms (Fn021) 13-27 13.4.25 Software Reset (Fn030) 13-27 13.4.26 Polarity Detection (Fn080) 13-27 13.4.27 Tuning-less Level Setting (Fn200) 13-28 13.4.29 Advanced Autotuning without Reference (Fn201) 13-29 13.4.30 One-Parameter Tuning (Fn203) 13-29 13.4.31 Adjust Anti-resonance Control (Fn204) 13-30 13.4.32 Vibration Suppression (Fn205) 13-30	
13.4.21 Display SERVOPACK and Servomotor IDs (Fn01E) 13-26 13.4.22 Display Servomotor ID from Feedback Option Module (Fn01F) 13-26 13.4.23 Set Absolute Linear Encoder Origin (Fn020) 13-26 13.4.24 Resetting Motor Type Alarms (Fn021) 13-27 13.4.25 Software Reset (Fn030) 13-27 13.4.26 Polarity Detection (Fn080) 13-27 13.4.27 Tuning-less Level Setting (Fn200) 13-28 13.4.29 Advanced Autotuning without Reference (Fn201) 13-29 13.4.30 One-Parameter Tuning (Fn203) 13-29 13.4.31 Adjust Anti-resonance Control (Fn204) 13-30 13.4.32 Vibration Suppression (Fn205) 13-30	
13.4.22 Display Servomotor ID from Feedback Option Module (Fn01F) 13-26 13.4.23 Set Absolute Linear Encoder Origin (Fn020) 13-26 13.4.24 Resetting Motor Type Alarms (Fn021) 13-27 13.4.25 Software Reset (Fn030) 13-27 13.4.26 Polarity Detection (Fn080) 13-27 13.4.27 Tuning-less Level Setting (Fn200) 13-28 13.4.29 Advanced Autotuning without Reference (Fn201) 13-29 13.4.30 One-Parameter Tuning (Fn203) 13-29 13.4.31 Adjust Anti-resonance Control (Fn204) 13-30 13.4.32 Vibration Suppression (Fn205) 13-30	
13.4.23 Set Absolute Linear Encoder Origin (Fn020) 13-26 13.4.24 Resetting Motor Type Alarms (Fn021) 13-27 13.4.25 Software Reset (Fn030) 13-27 13.4.26 Polarity Detection (Fn080) 13-27 13.4.27 Tuning-less Level Setting (Fn200) 13-28 13.4.28 Advanced Autotuning without Reference (Fn201) 13-29 13.4.29 Advanced Autotuning with Reference (Fn202) 13-29 13.4.30 One-Parameter Tuning (Fn203) 13-29 13.4.31 Adjust Anti-resonance Control (Fn204) 13-30 13.4.32 Vibration Suppression (Fn205) 13-30	
13.4.24 Resetting Motor Type Alarms (Fn021) 13-27 13.4.25 Software Reset (Fn030) 13-27 13.4.26 Polarity Detection (Fn080) 13-27 13.4.27 Tuning-less Level Setting (Fn200) 13-28 13.4.28 Advanced Autotuning without Reference (Fn201) 13-29 13.4.29 Advanced Autotuning with Reference (Fn202) 13-29 13.4.30 One-Parameter Tuning (Fn203) 13-29 13.4.31 Adjust Anti-resonance Control (Fn204) 13-30 13.4.32 Vibration Suppression (Fn205) 13-30	
13.4.25 Software Reset (Fn030) 13-27 13.4.26 Polarity Detection (Fn080) 13-27 13.4.27 Tuning-less Level Setting (Fn200) 13-28 13.4.28 Advanced Autotuning without Reference (Fn201) 13-29 13.4.29 Advanced Autotuning with Reference (Fn202) 13-29 13.4.30 One-Parameter Tuning (Fn203) 13-29 13.4.31 Adjust Anti-resonance Control (Fn204) 13-30 13.4.32 Vibration Suppression (Fn205) 13-30	
13.4.26 Polarity Detection (Fn080) 13-27 13.4.27 Tuning-less Level Setting (Fn200) 13-28 13.4.27 Advanced Autotuning without Reference (Fn201) 13-29 13.4.29 Advanced Autotuning with Reference (Fn202) 13-29 13.4.30 One-Parameter Tuning (Fn203) 13-29 13.4.31 Adjust Anti-resonance Control (Fn204) 13-30 13.4.32 Vibration Suppression (Fn205) 13-30	
13.4.27 Tuning-less Level Setting (Fn200) 13-28 13.4.28 Advanced Autotuning without Reference (Fn201) 13-29 13.4.29 Advanced Autotuning with Reference (Fn202) 13-29 13.4.30 One-Parameter Tuning (Fn203) 13-29 13.4.31 Adjust Anti-resonance Control (Fn204) 13-30 13.4.32 Vibration Suppression (Fn205) 13-30	
13.4.28 Advanced Autotuning without Reference (Fn201) 13-29 13.4.29 Advanced Autotuning with Reference (Fn202) 13-29 13.4.30 One-Parameter Tuning (Fn203) 13-29 13.4.31 Adjust Anti-resonance Control (Fn204) 13-30 13.4.32 Vibration Suppression (Fn205) 13-30	
13.4.29 Advanced Autotuning with Reference (Fn202) 13-29 13.4.30 One-Parameter Tuning (Fn203) 13-29 13.4.31 Adjust Anti-resonance Control (Fn204) 13-30 13.4.32 Vibration Suppression (Fn205) 13-30	
13.4.30 One-Parameter Tuning (Fn203). 13-29 13.4.31 Adjust Anti-resonance Control (Fn204). 13-30 13.4.32 Vibration Suppression (Fn205) 13-30	
13.4.31 Adjust Anti-resonance Control (Fn204) 13-30 13.4.32 Vibration Suppression (Fn205) 13-30	
13.4.32 Vibration Suppression (Fn205)13-30	
	13.4.31 Adjust Anti-resonance Control (Fn204)13-30
13.4.33 Easy FFT (Fn206)	13.4.32 Vibration Suppression (Fn205)13-30
	13.4.33 Easy FFT (Fn206)13-30

15

Parameter Lists

14.1	List of Parameters 1	4-2
	14.1.1 Interpreting the Parameter Lists 14.1.2 List of Parameters	
14.2	Parameter Recording Table 14	1-34

Appendices

15.1	Exan	ples of Connections to Host Controllers
	15.1.1	Example of Connections to MP2000/MP3000-Series SVA-01
	15.1.2	Motion Module
		Positioning Module for Position Control
	15.1.3	Example of Connections to Yokogawa Electric's F3NC3D-0N Positioning Module for Position Control
	15.1.4	Example of Connections to an OMRON Position Control Unit
	15.1.5	Example of Connection to Mitsubishi's QD75DD Positioning Module for Position Control
_		•
15.2	Corre	sponding SERVOPACK and SigmaWin+ Function Names 15-8
		Corresponding SERVOPACK Utility Function Names

Index

Revision History

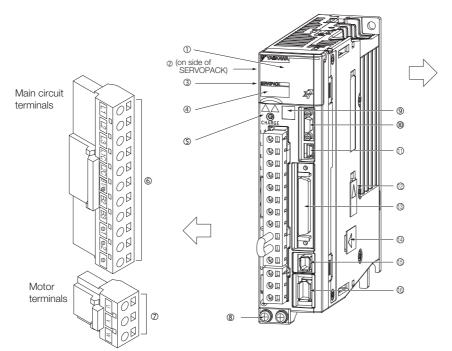
Basic Information on SERVOPACKs

This chapter provides information required to select SERVOPACKs, such as SERVOPACK models and combinations with Servomotors.

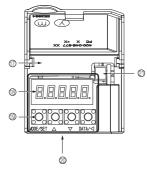
1.1	The D	C-7 Series1-2
1.2	Interp	preting the Nameplate1-3
1.3	Part I	Names1-4
1.4	Mode	el Designations1-6
	1.4.1 1.4.2	Interpreting SERVOPACK Model Numbers 1-6 Interpreting Servomotor Model Numbers 1-7
1.5	Comb	inations of SERVOPACKs and Servomotors . 1-9
	1.5.1 1.5.2 1.5.3	Combinations of Rotary Servomotors and SERVOPACKs
		SERVOPACKs 1-10
1.6	Func	tions

1.1 The Σ -7 Series

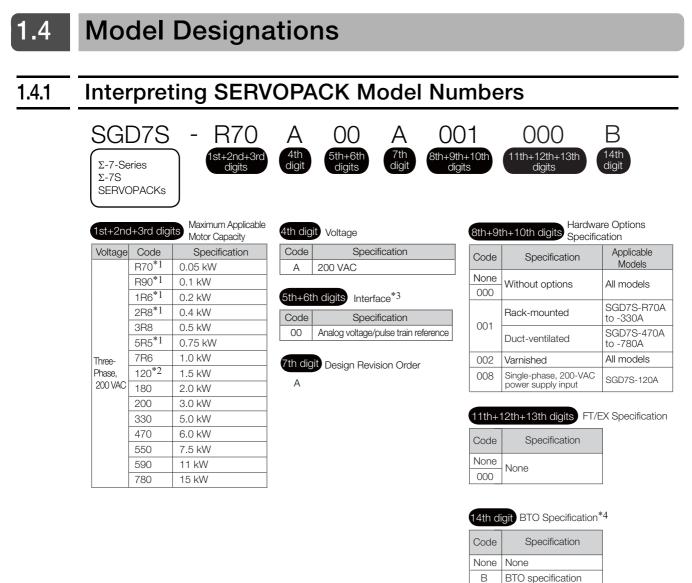
The Σ -7-series SERVOPACKs are designed for applications that require frequent high-speed and high-precision positioning. The SERVOPACK will make the most of machine performance in the shortest time possible, thus contributing to improving productivity.


The Σ -7-series SERVOPACKs include Σ -7S SERVOPACKs for single-axis control and Σ -7W SERVOPACKs for two-axis control.

1.2 Interpreting the Nameplate


The following basic information is provided on the nameplate.

1.3 Part Names



No.	Name	Description	Reference
1	Front Cover	-	-
2	Nameplate	Indicates the SERVOPACK model and ratings.	page 1-3
3	Input Voltage	-	-
4	Model	The model of the SERVOPACK.	page 1-6
5	CHARGE	Lit while the main circuit power is being supplied. Note: Even if you turn OFF the main circuit power supply, this indicator will be lit as long as the internal capacitor remains charged. Do not touch the main circuit or motor terminals while this indicator is lit. Doing so may result in electric shock.	_
6	Main Circuit Terminals	The terminals depend on the main circuit power supply input specifications of the SERVOPACK.	page 4-11
Ø	Servomotor Terminals (U, V, and W)	The connection terminals for the Servomotor Main Circuit Cable (power line).	page 4-22
8	Ground Terminal (🔔)	The ground terminals to prevent electric shock. Always connect this terminal.	_
9	QR Code	The QR code that is used by the MechatroCloud service.	_
0	Serial Communications Con- nector (CN3)	Connects to the Digital Operator (a peripheral device) or a computer (RS-422).	page 4-46
1	Computer Connector (CN7)	A USB connector to connect a computer.	page 4-46
(12)	Safety Option Module Con- nector	Connects to a Safety Option Module.	_
(13)	I/O Signal Connector (CN1)	Connects to reference input signals and sequence I/O signals.	page 4-30
(14)	Feedback Option Module Connector	Connects to a Feedback Option Module.	_
(15)	Safety Connector (CN8)	Connects to a safety function device.	page 4-44
(6)	Encoder Connector (CN2)	 Rotary Servomotor: Connects to the encoder in the Servomotor. Linear Servomotor: Connects to a Serial Converter Unit or linear encoder. 	page 4-22
17	Serial Number	_	_
	1	1	l

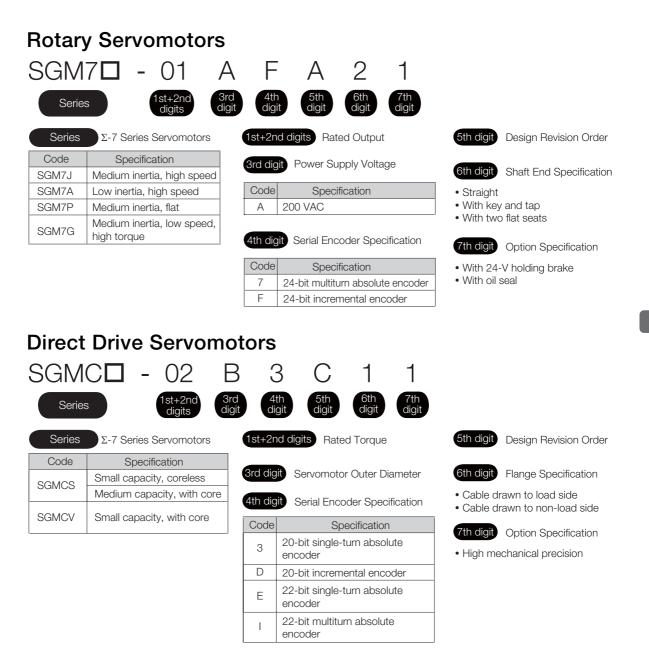
No.	Name	Description	Reference	
18	Panel Display	Used to display SERVOPACK status, alarm numbers, and parameters.		
19	Panel Operator Keys	Used to set parameters.	page 13-3	
20	Panel Operator	_		
21	Analog Monitor Connector (CN5)	You can use a special cable (peripheral device) to monitor the motor speed, torque reference, or other values.	page 4-46	

1.4.1 Interpreting SERVOPACK Model Numbers

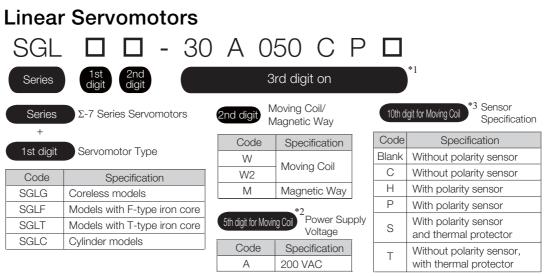
- *1. You can use these models with either a single-phase or three-phase input.
- *2. A model with a single-phase, 200-VAC power supply input is available as a hardware option (model: SGD7S-120A00A008).
- *3. The same SERVOPACKs are used for both Rotary Servomotors and Linear Servomotors.

*4. The BTO specification indicates if the SEVOPACK is customized by using the MechatroCloud BTO service. This service is available on the e-mechatronics website. You need a BTO number to order SERVOPACKs with customized specifications.

Refer to the following catalog for details on the BTO specification.


 \square AC Servo Drives Σ -7 Series (Manual No.: KAEP S800001 23)

1.4.2 Interpreting Servomotor Model Numbers


1.4.2 Interpreting Servomotor Model Numbers

This section outlines the model numbers of Σ -7-series Servomotors. Refer to the relevant manual in the following list for details.

- $\prod \Sigma$ -7-Series Rotary Servomotor Product Manual (Manual No.: SIEP S800001 36)
- $\prod \Sigma$ -7-Series Linear Servomotor Product Manual (Manual No.: SIEP S800001 37)
- \square Σ -7-Series Direct Drive Servomotor Product Manual (Manual No.: SIEP S800001 38)

1.4.2 Interpreting Servomotor Model Numbers

*1. Specifications other than those given above depend on the Servomotor type.

*2. For an SGLC Servomotor, this is the fifth digit in the set model number.

*3. For an SGLC Servomotor, this is the tenth digit in the set model number.

1.5.1 Combinations of Rotary Servomotors and SERVOPACKs

1.5 Combinations of SERVOPACKs and Servomotors

1.5.1 Combinations of Rotary Servomotors and SERVOPACKs

Rotary Servomotor Model		Capacity	SERVOPACK Model
		Capacity	SGD7S-
	SGM7J-A5A	50 W	R70A
	SGM7J-01A	100 W	R90A
SGM7J Models	SGM7J-C2A	150 W	1064
(Medium Inertia, Small Capacity),	SGM7J-02A	200 W	
3,000 min ⁻¹	SGM7J-04A	400 W	2R8A
	SGM7J-06A	600 W	EDE A
	SGM7J-08A	750 W	
	SGM7A-A5A	50 W	R70A
	SGM7A-01A	100 W	R90A
	SGM7A-C2A	150 W	1064
	SGM7A-02A	200 W	
	SGM7A-04A	400 W	2R8A
	SGM7A-06A	600 W	
SGM7A Models	SGM7A-08A	750 W	
(Low Inertia, Small Capacity),	SGM7A-10A	1.0 kW	1004
3,000 min ⁻¹	SGM7A-15A	1.5 kW	120A
	SGM7A-20A	2.0 kW	180A
	SGM7A-25A	2.5 kW	0004
	SGM7A-30A	3.0 kW	200A
	SGM7A-40A	4.0 kW	0004
	SGM7A-50A	5.0 kW	330A
	SGM7A-70A	7.0 kW	550A
	SGM7P-01A	100 W	R90A
SGM7P Models	SGM7P-02A	200 W	0004
(Medium Inertia, Flat),	SGM7P-04A	400 W	2R8A
3,000 min ⁻¹	SGM7P-08A	750 W	5R5A
-,	SGM7P-15A	1.5 kW	120A
	SGM7G-03A	300 W	0004
	SGM7G-05A	450 W	
	SGM7G-09A	850 W	7R6A
	SGM7G-13A	1.3 kW	120A
SGM7G Models	SGM7G-20A	1.8 kW	180A
(Medium Inertia,	001470 0014	2.4 kW	200A
Medium Capacity),	SGM7G-30A*	2.9 kW	
1,500 min ⁻¹	SGM7G-44A	4.4 kW	330A
	SGM7G-55A	5.5 kW	470A
	SGM7G-75A	7.5 kW	550A
	SGM7G-1AA	11 kW	590A
	SGM7G-1EA	15 kW	780A

* The capacity depends on the SERVOPACK that is used with the Servomotor.

1.5.2 Combinations of Direct Drive Servomotors and SERVOPACKs

1.5.2 Combinations of Direct Drive Servomotors and SERVOPACKs

		Rated Torque	Instantaneous	SERVOPACK Model
Direct Drive S	ervomotor Model	[N·m]	Maximum Torque [N·m]	SGD7S-
	SGMCS-02B	2	6	
	SGMCS-05B	5	15	
	SGMCS-07B	7	21	-
	SGMCS-04C	4	12	-
Small Capacity,	SGMCS-10C	10	30	2R8A
Coreless	SGMCS-14C	14	42	-
(SGMCS)	SGMCS-08D	8	24	-
	SGMCS-17D	17	51	-
	SGMCS-25D	25	75	-
	SGMCS-16E	16	48	5R5A
	SGMCS-35E	35	105	SRSA
	SGMCS-45M	45	135	7R6A
	SGMCS-80M	80	240	120A
Medium Capacity, With Core	SGMCS-80N	80	240	120A
(SGMCS)	SGMCS-1AM	110	330	180A
(2 2 2 2)	SGMCS-1EN	150	450	200A
	SGMCS-2ZN	200	600	200A
	SGMCV-04B	4	12	2R8A
	SGMCV-10B	10	30	2004
Small Capacity, With Core	SGMCV-14B	14	42	5R5A
(SGMCV)	SGMCV-08C	8	24	2R8A
()	SGMCV-17C	17	51	5R5A
	SGMCV-25C	25	75	7R6A

1.5.3 Combinations of Linear Servomotors and SERVOPACKs

		Rated Torque	Instantaneous	SERVOPACK Model
Linear Servomotor Model		[N]	Maximum Torque [N]	SGD7S-
	SGLGW-30A050C	12.5	40	R70A
	SGLGW-30A080C	25	80	R90A
	SGLGW-40A140C	47	140	
SGLG	SGLGW-40A253C	93	280	1R6A
(Coreless Models),	SGLGW-40A365C	140	420	2R8A
Used with Stan-	SGLGW-60A140C	70	220	1R6A
dard-Force Mag- netic Way	SGLGW-60A253C	140	440	2R8A
Helic Way	SGLGW-60A365C	210	660	5R5A
	SGLGW-90A200C	325	1300	120A
	SGLGW-90A370C	550	2200	180A
	SGLGW-90A535C	750	3000	200A

1.5.3 Combinations of Linear Servomotors and SERVOPACKs

		Rated Torque	Instantaneous	SERVOPACK Model
Linear Serv	romotor Model	[N]	Maximum Torque [N]	SGD7S-
	SGLGW-40A140C	57	230	1R6A
SGLG	SGLGW-40A253C	114	460	2R8A
(Coreless Models) Used with High-	SGLGW-40A365C	171	690	3R8A
Force Magnetic	SGLGW-60A140C	85	360	1R6A
Way	SGLGW-60A253C	170	720	3R8A
	SGLGW-60A365C	255	1080	7R6A
	SGLFW-20A090A	25	86	_
	SGLFW-20A120A	40	125	1R6A
	SGLFW-35A120A	80	220	
	SGLFW-35A230A	160	440	3R8A
	SGLFW-50A200B	280	600	5R5A
	SGLFW-50A380B	560	1200	120A
	SGLFW-1ZA200B	500	1200	120A
	SGLFW-1ZA380B	1120	2400	200A
SGLF (Models with E type)	SGLFW2-30A070A	45	135	1064
(Models with F-type Iron Cores)	SGLFW2-30A120A	90	270	- 1R6A
		180	540	3R8A
	SGLFW2-30A230A*	170	500	2R8A
	SGLFW2-45A200A	280	840	5R5A
		500	1680	180A
	SGLFW2-45A380A*	560	1500	
	SGLFW2-90A200A	560	1680	120A
	SGLFW2-90A380A	1120	3360	
	SGLFW2-1DA380A	1680	5040	200A
	SGLTW-20A170A	130	380	3R8A
	SGLTW-20A320A	250	760	7R6A
	SGLTW-20A460A	380	1140	120A
	SGLTW-35A170A	220	660	
	SGLTW-35A170H	300	600	- 5R5A
	SGLTW-35A320A	440	1320	
SGLT	SGLTW-35A320H	600	1200	120A
(Models with T-type	SGLTW-35A460A	670	2000	
Iron Cores)	SGLTW-40A400B	670	2600	- 180A
	SGLTW-40A600B	1000	4000	330A
	SGLTW-50A170H	450	900	5R5A
	SGLTW-50A320H	900	1800	120A
	SGLTW-80A400B	1300	5000	330A
	SGLTW-80A600B	2000	7500	550A
	SGLC-D16A085A	17	60	
	SGLC-D16A115A	25	90	- R70A
	SGLC-D16A145A	34	120	R90A
	SGLC-D10A143A SGLC-D20A100A	30	150	I IOUA
	SGLC-D20A100A SGLC-D20A135A	45	225	1R6A
	SGLC-D20A135A SGLC-D20A170A	60	300	2R8A
SGLC (Cylinder Models)	SGLC-D25A125A	70	280	1R6A
		-		
	SGLC-D25A170A	105	420	2R8A
	SGLC-D25A215A	140	560	5R5A
	SGLC-D32A165A	90	420	2R8A
	SGLC-D32A225A	135	630	5R5A
	SGLC-D32A285A	180	840	

Basic Information on SERVOPACKs

1

 \ast The force depends on the SERVOPACK that is used with the Servomotor.

1.6 Functions

This section lists the functions provided by SERVOPACKs. Refer to the reference pages for details on the functions.

· Functions Related to the Machine

Function	Reference
Power Supply Type Settings for the Main Circuit and Control Circuit	page 5-13
Automatic Detection of Connected Motor	page 5-15
Motor Direction Setting	page 5-17
Linear Encoder Pitch Setting	page 5-18
Writing Linear Servomotor Parameters	page 5-19
Selecting the Phase Sequence for a Linear Servomotor	page 5-23
Polarity Sensor Setting	page 5-25
Polarity Detection	page 5-26
Overtravel Function and Settings	page 5-30
Holding Brake	page 5-35
Motor Stopping Methods for Servo OFF and Alarms	page 5-40
Resetting the Absolute Encoder	page 5-50
Setting the Origin of the Absolute Encoder	page 5-53
Setting the Regenerative Resistor Capacity	page 5-56
Operation for Momentary Power Interruptions	page 6-12
SEMI F47 Function	page 6-13
Setting the Motor Maximum Speed	page 6-15
Multiturn Limit Setting	page 6-82
Adjustment of Motor Current Detection Signal Offset	page 6-100
Forcing the Motor to Stop	page 6-104
Speed Ripple Compensation	page 8-60
Current Control Mode Selection	page 8-71
Current Gain Level Setting	page 8-71
Speed Detection Method Selection	page 8-72
Fully-Closed Loop Control	page 10-1
Safety Functions	page 11-1

· Functions Related to the Host Controller

Function	Reference
Electronic Gear Settings	page 5-45
I/O Signal Allocations	page 6-4
Servo Alarm (ALM) Signal	page 6-8
Alarm Code (ALO1 to ALO3) Signals	page 6-8
Warning Output (/WARN) Signal	page 6-9
Rotation Detection (/TGON) Signal	page 6-10
/S-RDY (Servo Ready) Signal	page 6-10
Speed Control	page 6-16
Basic Settings for Speed Control	page 6-16
Speed Reference Filter	page 6-24
Zero Clamping	page 6-24
Speed Coincidence Detection (/V-CMP) Signal	page 6-26
Position Control	page 6-30

Function	Reference
Reference Pulse Form	page 6-31
Position Deviation Clear Input (CLR) Signal Func- tion and Settings	page 6-33
Reference Pulse Input Multiplication Switching	page 6-34
Positioning Completion (/COIN) Signal	page 6-36
Near (/NEAR) Signal	page 6-38
Reference Pulse Inhibition and Settings	page 6-39
Torque Control	page 6-40
Basic Settings for Torque Control	page 6-40
Torque Reference Filter Settings	page 6-45
Speed Limit during Torque Control	page 6-45
Speed Limit Detection (/VLT) Signal	page 6-45
Encoder Divided Pulse Output	page 6-47
Selecting Torque Limits	page 6-63
Vibration Detection Level Initialization	page 6-96
Alarm Reset	page 12-39
Replacing the Battery	page 12-3
Setting the Position Deviation Overflow Alarm Level	page 8-8

• Functions to Achieve Optimum Motions

Function	Reference
Speed Control	page 6-16
Soft Start Settings	page 6-23
Position Control	page 6-30
Smoothing Settings	page 6-35
Torque Control	page 6-40
Tuning-less Function	page 8-11
Automatic Adjustment without a Host Reference	page 8-23
Automatic Adjustment with a Host Reference	page 8-35
Custom Adjustment	page 8-42
Anti-Resonance Control Adjustment	page 8-51
Vibration Suppression	page 8-56
Gain Selection	page 8-66
Friction Compensation	page 8-69
Model Following Control	page 8-81
Compatible Adjustment Functions	page 8-84
Mechanical Analysis	page 8-90
Easy FFT	page 8-92

Functions for Trial Operation during Setup

Function	Reference
Software Reset	page 6-94
Trial Operation of Servomotor without a Load	page 7-7
Program Jogging	page 7-20
Origin Search	page 7-25
Test without a Motor	page 7-26
Monitoring Machine Operation Status and Signal Waveforms	page 9-6

Functions for Inspection and Maintenance

Function	Reference
Write Prohibition Setting for Parameters	page 5-6
Initializing Parameter Settings	page 5-9
Automatic Detection of Connected Motor	page 5-15
Monitoring Product Information	page 9-2
Monitoring Product Life	page 9-2
Alarm History Display	page 12-40

Selecting a SERVOPACK

This chapter provides information required to select SERVOPACKs, such as specifications, block diagrams, dimensional drawings, and connection examples.

2.1	Rating	gs and Specifications
	2.1.1 2.1.2	Ratings
	2.1.3	Characteristics
2.2	Block	Diagrams 2-10
	2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7 2.2.8	SGD7S-R70A, -R90A, and -1R6A 2-10 SGD7S-2R8A 2-10 SGD7S-3R8A, -5R5A, and -7R6A 2-11 SGD7S-120A 2-12 SGD7S-180A and -200A 2-14 SGD7S-330A 2-15 SGD7S-470A and -550A 2-16 SGD7S-590A and -780A 2-17
2.3	Extern	nal Dimensions2-18
	2.3.1 2.3.2	Front Cover Dimensions and Connector Specifications
2.4	Examples (of Standard Connections between SERVOPACKs and Peripheral Devices

2.1.1 Ratings

2.1 Ratings and Specifications

This section gives the ratings and specifications of SERVOPACKs.

2.1.1 Ratings

Three-Phase, 200 VAC

Model SGD7S-			R70A	R90A	1R6A	2R8A	3R8A	5R5A	7R6A	120A	180A	200A	330A
Maximum Applicable Motor Capacity [kW]			0.05	0.1	0.2	0.4	0.5	0.75	1.0	1.5	2.0	3.0	5.0
Continue	ous Output Cu	urrent [Arms]	0.66	0.91	1.6	2.8	3.8	5.5	7.6	11.6	18.5	19.6	32.9
Instanta Current	ineous Maxin [Arms]	num Output	2.1	3.2	5.9	9.3	11	16.9	17	28	42	56	84
Main	Power Sup	ply			200 VA	C to 24	0 VAC,	-15% t	0 +10%	, 50 Hz	z/60 Hz		
Circuit	Input Curre	nt [Arms]*	0.4	0.8	1.3	2.5	3.0	4.1	5.7	7.3	10	15	25
Control	Power Suppl	y		1	200 VA	C to 24	0 VAC,	-15% t	0 +10%	, 50 Hz	z/60 Hz	1	
Power S	Power Supply Capacity [kVA]*		0.2	0.3	0.5	1.0	1.3	1.6	2.3	3.2	4.0	5.9	7.5
	Main Circuit [W]	Power Loss	5.0	7.0	11.9	22.5	28.5	38.9	49.2	72.6	104.2	114.2	226.6
Power	Control Cir Loss [W]	cuit Power	12	12	12	12	14	14	14	15	16	16	19
Loss*	Built-in Reg Resistor Po	generative ower Loss [W]	_	_	_	_	8	8	8	10	16	16	36
	Total Powe	r Loss [W]	17.0	19.0	23.9	34.5	50.5	60.9	71.2	97.6	136.2	146.2	281.6
Regen-	Built-In Regener-	Resistance $[\Omega]$	-	-	-	-	40	40	40	20	12	12	8
erative Resis-	ative Resistor	Capacity [W]	-	-	-	-	40	40	40	60	60	60	180
tor	Minimum Allowable External Resistance [Ω]		40	40	40	40	40	40	40	20	12	12	8
Overvol	tage Categor	у											·

* This is the net value at the rated load.

	Model SGD7S-		470A	550A	590A	780A	
Maximum Applicat	le Motor Capacity [kW]		6.0	7.5	11	15	
Continuous Output	Current [Arms]		46.9	54.7	58.6	78.0	
Instantaneous Max	imum Output Current [A	vrms]	110	130	140	170	
Main Circuit	Power Supply		200 VAC to	240 VAC, -15	% to +10%, 5	0 Hz/60 Hz	
Main Circuit	Input Current [Arms]	*1	29	37	54	73	
Control Power Sup	ply		200 VAC to 240 VAC, -15% to +10%, 50 Hz/60				
Power Supply Cap	acity [kVA] ^{*1}	10.7	14.6	21.7	29.6		
	Main Circuit Power L	loss [W]	271.7	326.9	365.3	501.4	
D + *1	Control Circuit Powe	er Loss [W]	21	21	28	28	
Power Loss ^{*1}	External Regenerative F	Resistor Power Loss [W]	180 ^{*2}	350 ^{*3}	350 ^{*3}	350 ^{*3}	
	Total Power Loss [W]	292.7	347.9	393.3	529.4	
-	External Regenera-	6.25 ^{*2}	3.13 ^{*3}	3.13 ^{*3}	3.13 ^{*3}		
Regenerative Resistor	tive Resistor	Capacity [W]	880*2	1760 ^{*3}	1760 ^{*3}	1760 ^{*3}	
Minimum Allowable External Resistance [Ω]			5.8	2.9	2.9	2.9	
Overvoltage Categ	ory			I			

 $\ast 1.$ This is the net value at the rated load.

*2. This value is for the optional JUSP-RA04-E Regenerative Resistor Unit.

*3. This value is for the optional JUSP-RA05-E Regenerative Resistor Unit.

2.1.1 Ratings

Single-Phase, 200 VAC

	Model SGD7S	-	R70A	R90A	1R6A	2R8A	5R5A	120A
Maximum Applic	able Motor Capacity [kW	0.05	0.1	0.2	0.4	0.75	1.5	
Continuous Out	out Current [Arms]		0.66	0.91	1.6	2.8	5.5	11.6
Instantaneous N	laximum Output Current	[Arms]	2.1	3.2	5.9	9.3	16.9	28
Main Circuit	Power Supply		200 V/	AC to 240	VAC, -15	5% to +10	%, 50 Hz/	/60 Hz
Main Circuit	Input Current [Arms]*		0.8	1.6	2.4	5.0	8.7	16
Control Power S	upply		200 V/	AC to 240	VAC, -15	5% to +10	%, 50 Hz/	/60 Hz
Power Supply C	apacity [kVA]*		0.2	0.3	0.6	1.2	1.9	4.0
	Main Circuit Power Lo	5.0	7.1	12.1	23.7	39.2	71.8	
	Control Circuit Power	12	12	12	12	14	16	
Power Loss*	Built-in Regenerative [W]	Resistor Power Loss	-	-	-	-	8	16
	Total Power Loss [W]		17.0	19.1	24.1	35.7	61.2	103.8
	Built-In Regenera-	Resistance [Ω]	-	-	-	-	40	12
Regenerative Resistor	tive Resistor	Capacity [W]	-	-	-	-	40	60
110010101	Minimum Allowable E	40	40	40	40	40	12	
Overvoltage Cat	Overvoltage Category				l			

* This is the net value at the rated load.

270 VDC

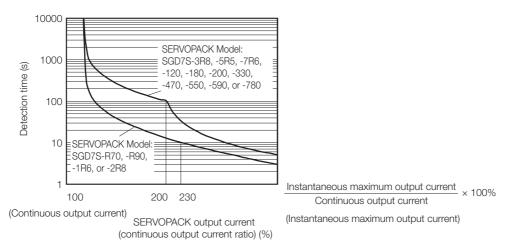
Mode	R70A	R90A	1R6A	2R8A	3R8A	5R5A	7R6A	120A		
Maximum Applicable Motor Capacity [kW]			0.1	0.2	0.4	0.5	0.75	1.0	1.5	
Continuous Output Curre	nt [Arms]	0.66	0.91	1.6	2.8	3.8	5.5	7.6	11.6	
Instantaneous Maximum	Output Current [Arms]	2.1	3.2	5.9	9.3	11.0	16.9	17.0	28.0	
Main Circuit	Power Supply		270	D VDC to	o 324 VI	DC, -15	% to +1	0%		
Main Circuit Input Current [Arms]*		0.5	1.0	1.5	3.0	3.8	4.9	6.9	11	
Control Power Supply		270 VDC to 324 VDC, -15% to +10%								
Power Supply Capacity [<va]*< td=""><td>0.2</td><td>0.3</td><td>0.6</td><td>1</td><td>1.4</td><td>1.6</td><td>2.3</td><td>3.2</td></va]*<>	0.2	0.3	0.6	1	1.4	1.6	2.3	3.2	
	Main Circuit Power Loss [W]	4.4	5.9	9.8	17.5	23.0	30.7	38.7	55.8	
Power Loss [*] Control Circuit Power Loss [W]		12	12	12	12	14	14	14	15	
	Total Power Loss [W]	16.4	17.9	21.8	29.5	37.0	44.7	52.7	70.8	
Overvoltage Category					I					

* This is the net value at the rated load.

Mode	el SGD7S-	180A	200A	330A	470A	550A	590A	780A
Maximum Applicable Mo	tor Capacity [kW]	2.0	3.0	5.0	6.0	7.5	11.0	15.0
Continuous Output Curre	ent [Arms]	18.5	19.6	32.9	46.9	54.7	58.6	78.0
Instantaneous Maximum	Output Current [Arms]	42.0	56.0	84.0	110	130	140	170
Main Circuit	Power Supply		270 \	/DC to 32	24 VDC,	-15% to -	+10%	
Main Circuit	Input Current [Arms]*	14	20	34	36	48	68	92
Control Power Supply			270 \	/DC to 32	24 VDC,	-15% to -	+10%	
Power Supply Capacity [kVA]*	4.0	5.9	7.5	10.7	14.6	21.7	29.6
	Main Circuit Power Loss [W]	82.7	83.5	146.2	211.6	255.3	243.6	343.4
Power Loss [*] Control Circuit Power Loss [W]		16	16	19	21	21	28	28
	98.7	99.5	165.2	232.6	276.3	271.6	371.4	
Overvoltage Category								

* This is the net value at the rated load.

2.1.2 SERVOPACK Overload Protection Characteristics


2.1.2 SERVOPACK Overload Protection Characteristics

The overload detection level is set for hot start conditions with a SERVOPACK surrounding air temperature of 55°C.

An overload alarm (A.710 or A.720) will occur if overload operation that exceeds the overload protection characteristics shown in the following diagram (i.e., operation on the right side of the applicable line) is performed.

The actual overload detection level will be the detection level of the connected SERVOPACK or Servomotor that has the lower overload protection characteristics.

In most cases, that will be the overload protection characteristics of the Servomotor.

Note: The above overload protection characteristics do not mean that you can perform continuous duty operation with an output of 100% or higher.

For a Yaskawa-specified combination of SERVOPACK and Servomotor, maintain the effective torque within the continuous duty zone of the torque-motor speed characteristic of the Servomotor.

2.1.3 Specifications

	Item	Specification
Control Met	hod	IGBT-based PWM control, sine wave current drive
	With Rotary Servomotor	Serial encoder: 20 bits or 24 bits (incremental encoder/absolute encoder) 22 bits (absolute encoder)
Feedback	With Linear Servomotor	 Absolute linear encoder (The signal resolution depends on the absolute linear encoder.) Incremental linear encoder (The signal resolution depends on the incremental linear encoder or Serial Converter Unit.)

2.1.3 Specifications

Continued from previous page.

	Item		Specification				
	Surrounding Air Temperature ^{*1}	Refer to the following sec	-5°C to 55°C (With derating, usage is possible between 55°C and 60°C.) Refer to the following section for derating specifications. (3) 3.6 Derating Specifications on page 3-7				
	Storage Temperature	-20°C to 85°C					
	Surrounding Air Humidity	95% relative humidity max	95% relative humidity max. (with no freezing or condensation)				
	Storage Humidity	95% relative humidity max. (with no freezing or condensation)					
	Vibration Resistance	4.9 m/s ²					
	Shock Resistance	19.6 m/s ²					
Environ- mental Conditions	Degree of Protection	IP20 R70A, R90A, 1	IP20 R70A, R90A, 1R6A, 2R8A, 3R8A, 5R5A, 7R6A, 120A				
	Pollution Degree	 2 Must be no corrosive or flammable gases. Must be no exposure to water, oil, or chemicals. Must be no dust, salts, or iron dust. 					
	Altitude ^{*1}	 1,000 m max. (With derating, usage is possible between 1,000 m and 2,000 m.) Refer to the following section for derating specifications. 3.6 Derating Specifications on page 3-7 					
	Others	Do not use the SERVOPACK in the following locations: Locations sub- ject to static electricity noise, strong electromagnetic/magnetic fields, or radioactivity					
Applicable S	Standards	Refer to the following sec <i>Car Compliance with UL St</i> <i>dards</i> on page xxii	tion for details. andards, EU Directives, and Other Safety Stan-				
		Mounting	SERVOPACK Model: SGD7S-				
		Base-mounted	All Models				
Mounting		Rack-mounted	R70A, R90A, 1R6A, 2R8A, 3R8A, 5R5A, 7R6A, 120A, 180A, 200A, 330A				
		Duct-ventilated	470A, 550A, 590A, 780A				
	Speed Control Range	1:5000 (At the rated torqu must not cause the Servo	e, the lower limit of the speed control range motor to stop.)				
		±0.01% of rated speed ma	ax. (for a load fluctuation of 0% to 100%)				
	Coefficient of Speed		or a load fluctuation of ±10%)				
Perfor- mance	Fluctuation ^{*2}	±0.1% of rated speed max ±25°C)	±0.1% of rated speed max. (for a temperature fluctuation of 25°C				
	Torque Control Preci- sion (Repeatability)	±1%					
	Soft Start Time Set- ting	0 s to 10 s (Can be set separately for acceleration and deceleration.)					

2

2-5

2.1 Ratings and Specifications

2.1.3 Specifications

Continued from previous page.

	Item		Specification
	Encoder Div Pulse Outp	ut	Phase A, phase B, phase C: Line-driver output Number of divided output pulses: Any setting is allowed.
	Linear Serv Overheat P Signal Inpu	rotection	Number of input points: 1 Input voltage range: 0 V to +5 V
		Fixed Input	Allowable voltage range: 5 VDC ±5% Number of input points: 1 SEN (Absolute Data Request) signal
			Allowable voltage range: 24 VDC ±20% Number of input points: 7
I/O Signals	Sequence Input Signals	Input Signals That Can Be Allo- cated	 Input method: Sink inputs or source inputs Input Signals /S-ON (Servo ON) signal /P-CON (Proportional Control) Signal P-OT (Forward Drive Prohibit) and N-OT (Reverse Drive Prohibit) signals /ALM-RST (Alarm Reset) signal /P-CL (Forward External Torque Limit) and /N-CL (Reverse External Torque Limit) signals /SPD-D (Motor Direction) signal /SPD-A and /SPD-B (Internal Set Speed Selection) signals /C-SEL (Control Selection) signal /ZCLAMP (Zero Clamping) signal /INHIBIT (Reference Pulse Inhibit) signal /P-DET (Polarity Detection) signal /PSEL (Gain Selection) signal /PSEL (Reference Pulse Input Multiplication Switch) Signal SEN (Absolute Data Request) signal A signal can be allocated and the positive and negative logic can be changed.
		Fixed Output	Allowable voltage range: 5 VDC to 30 VDC Number of output points: 1 Output signal: ALM (Servo Alarm) signal
	Sequence Output Signals	Output Signals That Can Be Allocated	 Allowable voltage range: 5 VDC to 30 VDC Number of output points: 6 (A photocoupler output (isolated) is used for three of the outputs.) (An open-collector output (non-isolated) is used for the other three outputs.) Output Signals /COIN (Positioning Completion) Signal /V-CMP (Speed Coincidence Detection) Signal /TGON (Rotation Detection) Signal /S-RDY (Servo Ready) signal /CLT (Torque Limit Detection) Signal /VLT (Speed Limit Detection) Signal /WARN (Warning) Signal /NEAR (Near) signal /PSELA (Reference Pulse Input Multiplication Switching Output) signal ALO1, ALO2, and ALO3 (Alarm Code) signals A signal can be allocated and the positive and negative logic can be changed.

2.1.3 Specifications

Continued from previous page.

	Item		Specification			
		Inter- faces	Digital Operator (JUSP-OP05A-1-E) and personal computer (with Sig- maWin+)			
	RS-422A Communi- cations	1:N Commu- nications	Up to N = 15 stations possible for RS-422A port			
Communi- cations	(CN3)	Axis Address Setting	Set with parameters.			
	USB	Interface	Personal computer (with SigmaWin+)			
	Communi- cations (CN7)	Commu- nica- tions Standard	Conforms to USB2.0 standard (12 Mbps).			
Displays/Inc	licators		CHARGE indicator and five-digit seven-segment display			
Panel Opera	ator		Four push switches			
Analog Mor	Analog Monitor (CN5)		Number of points: 2 Output voltage range: ±10 VDC (effective linearity range: ±8 V) Resolution: 16 bits Accuracy: ±20 mV (Typ) Maximum output current: ±10 mA Settling time (±1%): 1.2 ms (Typ)			
Dynamic Br	ake (DB)		Activated when a servo alarm or overtravel (OT) occurs, or when the power supply to the main circuit or servo is OFF.			
Regenerativ	e Processing		Built-in (An external resistor must be connected to the SGD7S-470A to -780A.) Refer to the following catalog for details. \square AC Servo Drives Σ -7 Series (Manual No.: KAEP S800001 23)			
Overtravel (OT) Preventio	n	Stopping with dynamic brake, deceleration to a stop, or coasting to a stop for the P-OT (Forward Drive Prohibit) or N-OT (Reverse Drive Prohibit) signal			
Protective F	unctions		Overcurrent, overvoltage, low voltage, overload, regeneration error, etc.			
Utility Functions			Gain adjustment, alarm history, jogging, origin search, etc.			
	Inputs		/HWBB1 and /HWBB2: Base block signals for Power Modules			
Safety	Output		EDM1: Monitors the status of built-in safety circuit (fixed output).			
Functions	Applicable dards ^{*3}	Stan-	ISO13849-1 PLe (Category 3) and IEC61508 SIL3			
Applicable (Option Module	es	Fully-closed Modules and Safety Modules Note: You cannot use a Fully-closed Module and a Safety Module together.			

2.1 Ratings and Specifications

2.1.3 Specifications

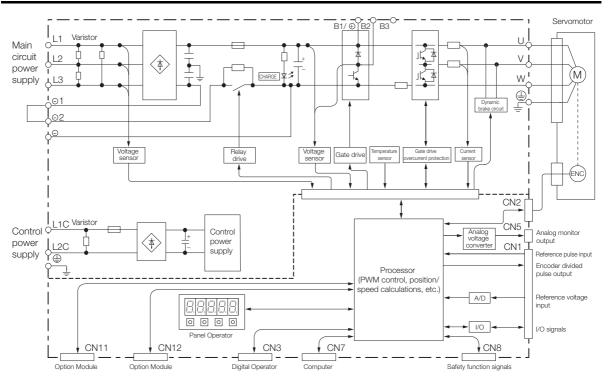
Continued from previous page.

		Iten	n		Specification				
		Soft S ting	Start T	ïme Set-	0 s to 10 s (Can be set separately for acceleration and deceleration.)				
				Refer- ence Voltage	 Maximum input voltage: ±12 V (forward motor rotation for positive reference). 6 VDC at rated speed (default setting). Input gain setting can be changed. 				
		on-		Input Imped- ance	Approx. 14 kΩ				
	Speed Con- trol			Circuit Time Con- stant	30 μs				
				Rota- tion Direc- tion Selec- tion	With Proportional Control signal				
				Speed Selec- tion	With Forward/Reverse External Torque Limit signals (speed 1 to 3 selection). Servomotor stops or another control method is used when both signals are OFF.				
		Feedforward Compensation Output Signal Posi- tioning Completed Width Setting		÷.	0% to 100%				
Controls				npleted	0 to 1,073,741,824 reference units				
Con				Refer- ence Pulse Form	One of the following is selected: Sign + pulse train, CW + CCW pulse trains, and two-phase pulse trains with 90° phase differential				
	Posi-		Ref-	Input Form	Line driver or open collector				
	tion Con- trol	In- put Sig- nals	put Sig-	put Sig-	put Sig-	put Sig-	eren ce puls es	Maxi- mum Input Fre- quency	 Line Driver Sign + pulse train or CW + CCW pulse trains: 4 Mpps Two-phase pulse trains with 90° phase differential: 1 Mpps Open Collector Sign + pulse train or CW + CCW pulse trains: 200 kpps Two-phase pulse trains with 90° phase differential: 200 kpps
				Input Multiplica- tion Switching	1 to 100 times				
			Clear	Signal	Position deviation clear Line driver or open collector				
	Torque	on- rol Signal Circuit Time		ence	 Maximum input voltage: ±12 V (forward torque output for positive reference). 3 VDC at rated torque (default setting). Input gain setting can be changed. 				
	Con- trol			Imped-	Approx. 14 kΩ				
					16 μs				

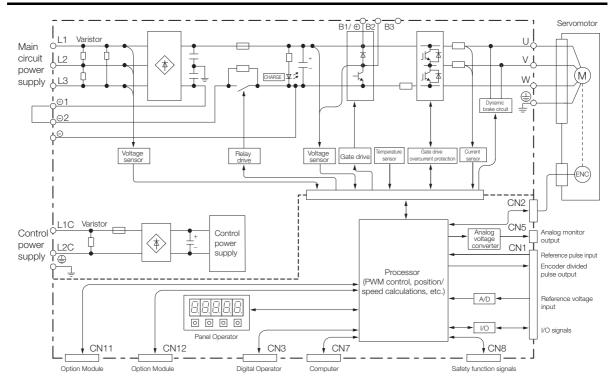
*1. If you combine a Σ-7-Series SERVOPACK with a Σ-V-Series Option Module, the following Σ-V-Series SERVO-PACKs specifications must be used: a surrounding air temperature of 0°C to 55°C and an altitude of 1,000 m max. Also, the applicable surrounding range cannot be increased by derating.

2.1.3 Specifications

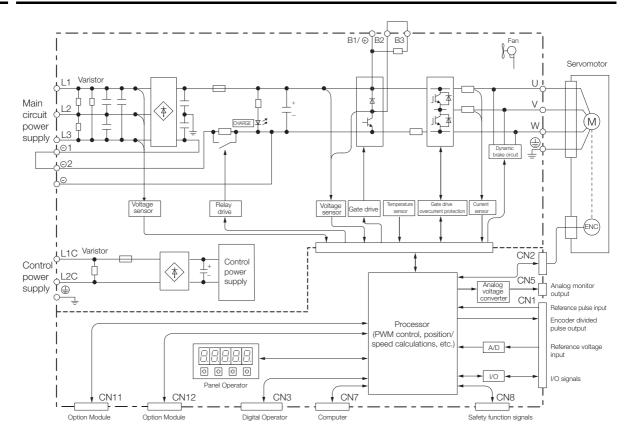
*2. The coefficient of speed fluctuation for load fluctuation is defined as follows:


Coefficient of speed fluctuation = $\frac{\text{No-load motor speed} - \text{Total-load motor speed}}{\text{Rated motor speed}} \times 100\%$

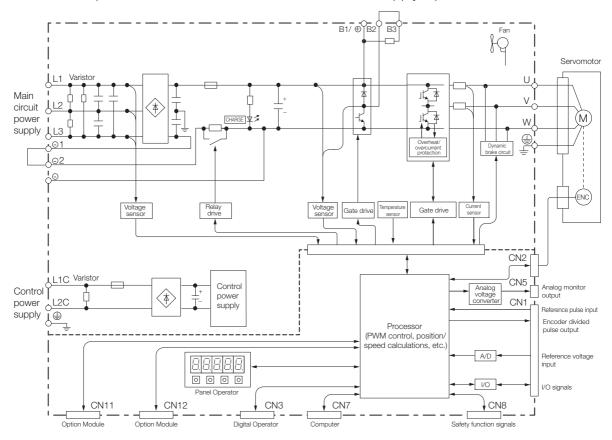
*3. Always perform risk assessment for the system and confirm that the safety requirements are met.

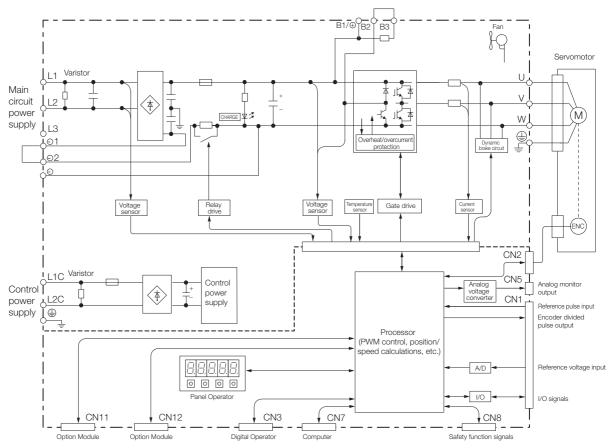

2.2.1 SGD7S-R70A, -R90A, and -1R6A

2.2 Block Diagrams


2.2.1 SGD7S-R70A, -R90A, and -1R6A

2.2.2 SGD7S-2R8A

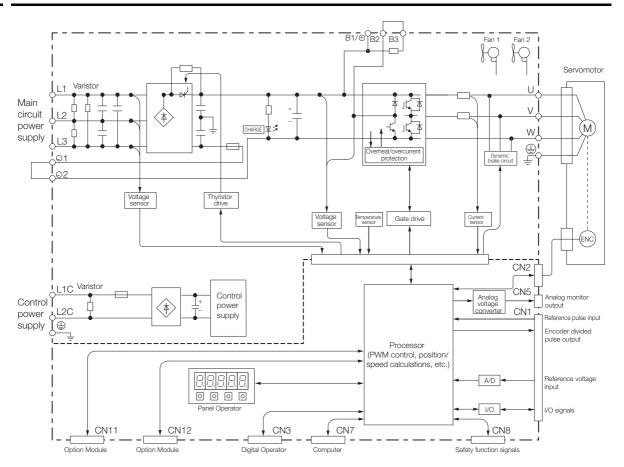

2.2.3 SGD7S-3R8A, -5R5A, and -7R6A



2.2.4 SGD7S-120A

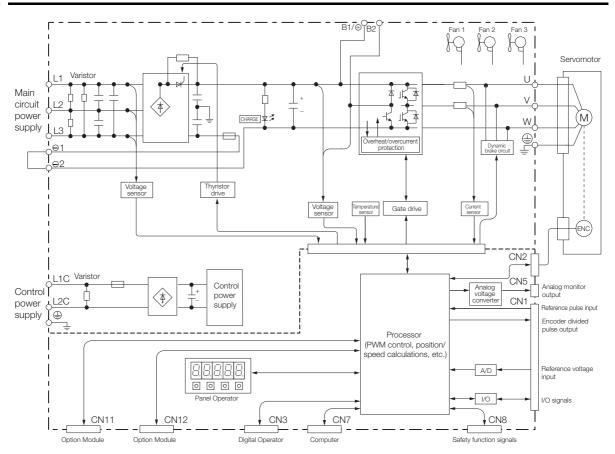
2.2.4 SGD7S-120A

• Standard Specifications: Three-Phase, 200-VAC Power Supply Input

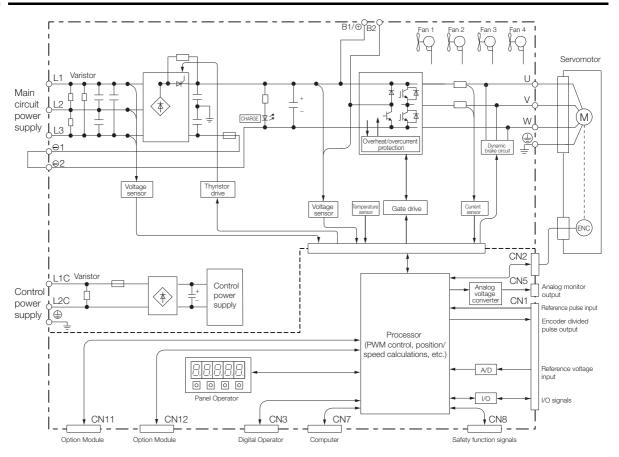

Optional Specifications: Single-Phase, 200-VAC Power Supply Input (SERVOPACK Model: SGD7S-120A00A008)

2.2.5 SGD7S-180A and -200A

2.2.5 SGD7S-180A and -200A



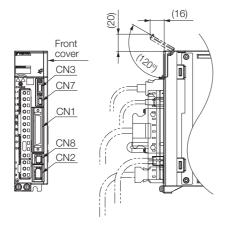
2.2.6 SGD7S-330A


2.2.7 SGD7S-470A and -550A

2.2.7 SGD7S-470A and -550A

2.2.8 SGD7S-590A and -780A

2.2.8 SGD7S-590A and -780A


2.3.1 Front Cover Dimensions and Connector Specifications

2.3 External Dimensions

2.3.1 Front Cover Dimensions and Connector Specifications

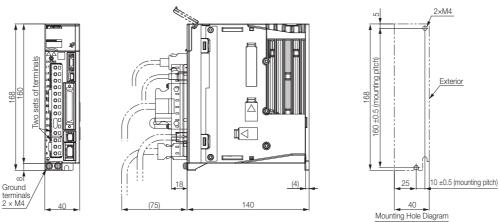
The front cover dimensions and panel connector section are the same for all models. Refer to the following figures and table.

• Front Cover Dimensions

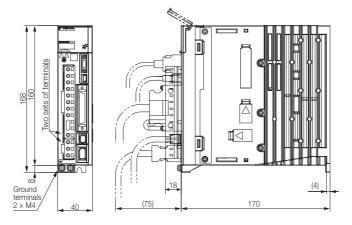
· Connector Specifications

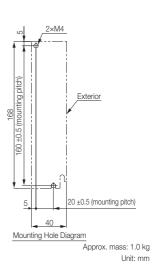
Connec- tor No.	Model	Number of Pins	Manufacturer
CN1	10250-59A3MB	50	3M Japan Limited
CN2	3E106-0220KV	6	3M Japan Limited
CN3	HDR-EC14LFDTN- SLD-PLUS	14	Honda Tsushin Kogyo Co., Ltd.
CN7	2172034-1	5	Tyco Electronics Japan G.K.
CN8	1981080-1	8	Tyco Electronics Japan G.K.

Note: The above connectors or their equivalents are used for the SERVOPACKs.

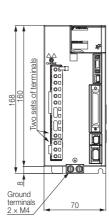

Approx. mass: 0.8 kg

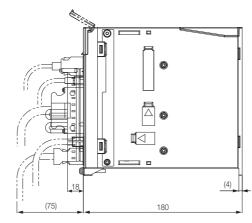
Unit: mm

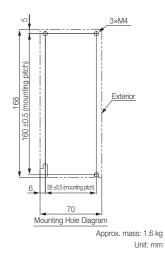

2.3.2 SERVOPACK External Dimensions

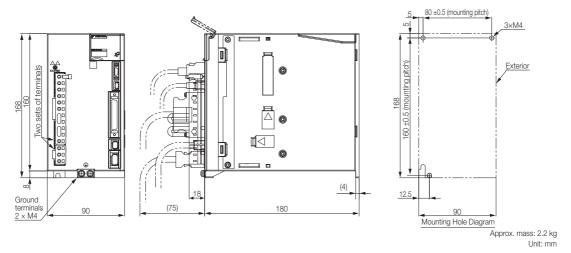

Base-mounted SERVOPACKs

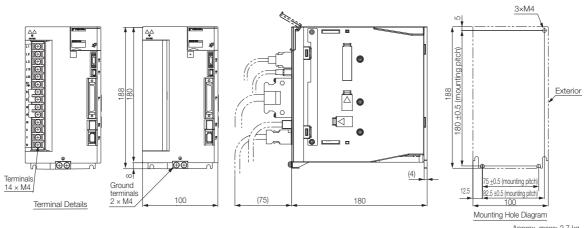
• Three-phase, 200 VAC: SGD7S-R70A, -R90A, and -1R6A

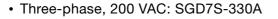


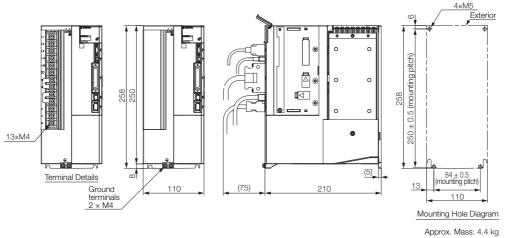

Three-phase, 200 VAC: SGD7S-2R8A



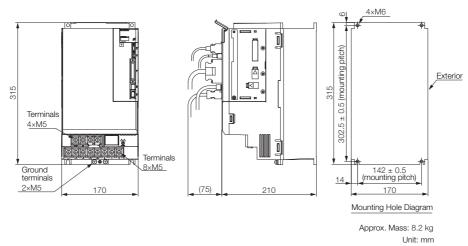

• Three-phase, 200 VAC: SGD7S-3R8A, -5R5A, and -7R6A

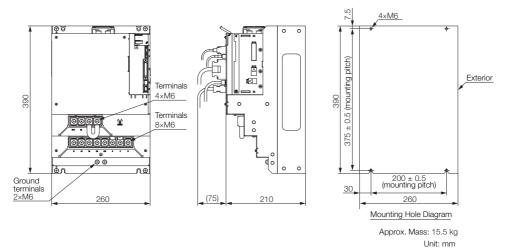



Three-phase, 200 VAC: SGD7S-120A



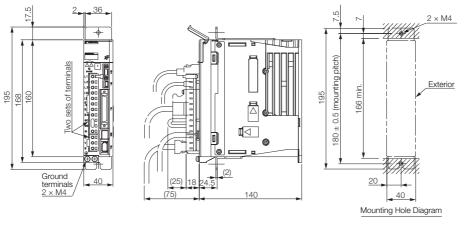
• Three-phase, 200 VAC: SGD7S-180A and -200A; Single-phase, 200 VAC: SGD7S-120A00A008


Approx. mass: 2.7 kg Unit: mm

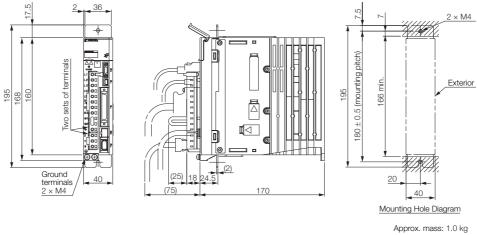


Unit: mm

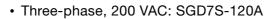
• Three-phase, 200 VAC: SGD7S-470A and -550A

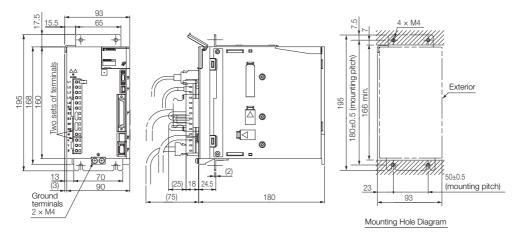

Three-phase, 200 VAC: SGD7S-590A and -780A

Rack-mounted SERVOPACKs

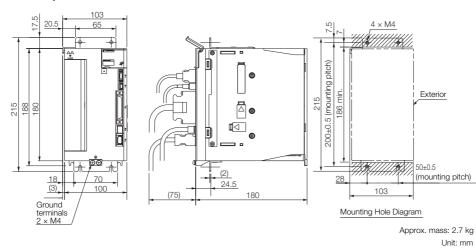

Hardware Option Code: 001

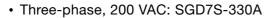
Approx. mass: 0.8 kg Unit: mm

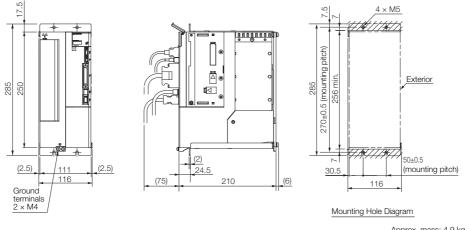

Three-phase, 200 VAC: SGD7S-2R8A



Approx. mass: 1.0 kg Unit: mm

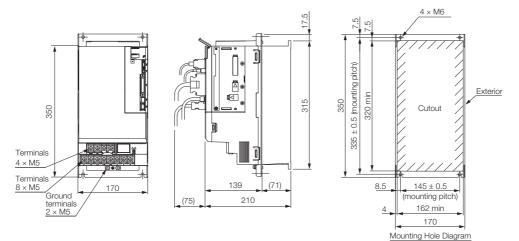

• Three-phase, 200 VAC: SGD7S-3R8A, -5R5A, and -7R6A





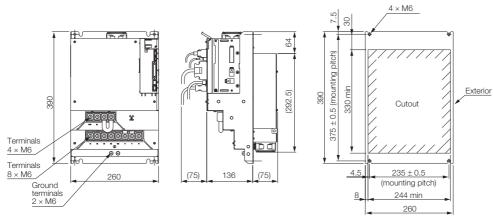
Approx. mass: 2.2 kg Unit: mm

• Three-phase, 200 VAC: SGD7S-180A and -200A



Approx. mass: 4.9 kg Unit: mm

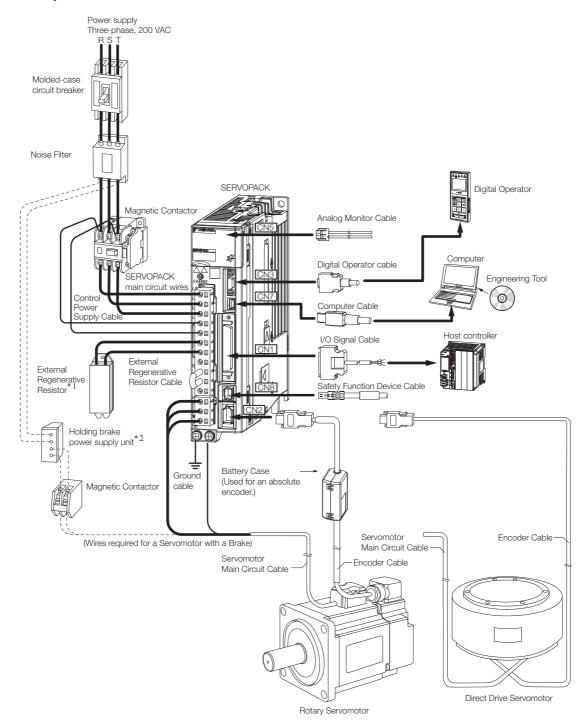
Duct-ventilated SERVOPACKs


Hardware Option Code: 001

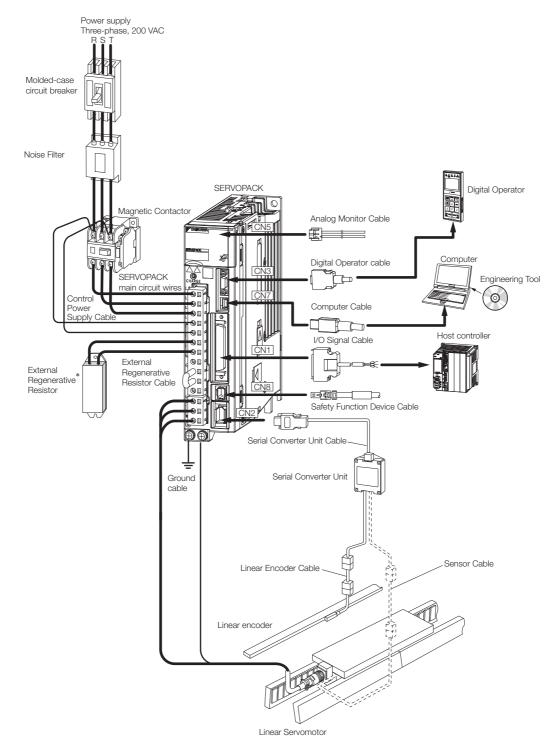
• Three-phase, 200 VAC: SGD7S-470A and -550A

Approx. mass: 8.4 kg Unit: mm

• Three-phase, 200 VAC: SGD7S-590A and -780A



Mounting Hole Diagram


Approx. mass: 13.8 kg Unit: mm

Examples of Standard Connections between SERVOPACKs and Peripheral Devices 2.4

· Rotary Servomotors

- *1. External Regenerative Resistors are not provided by Yaskawa.
- *2. The power supply for the holding brake is not provided by Yaskawa. Select a power supply based on the holding brake specifications.
 - If you use a 24-V brake, install a separate power supply for the 24-VDC power supply from other power supplies, such as the one for the I/O signals of the CN1 connector. If the power supply is shared, the I/O signals may malfunction.

Linear Servomotor

* External Regenerative Resistors are not provided by Yaskawa.

SERVOPACK Installation

This chapter provides information on installing SERVO-PACKs in the required locations.

3.1	Installation Precautions							
3.2	Mour	Mounting Types and Orientation3-3						
3.3	Mounting Hole Dimensions3-4							
3.4	Mour	nting Interval						
	3.4.1 3.4.2	Installing One SERVOPACK in a Control Panel3-5 Installing More Than One SERVOPACK in a Control Panel						
3.5	Moni	toring the Installation Environment 3-6						
3.6	Derat	ting Specifications						
3.7	EMC	Installation Conditions						

3.1 Installation Precautions

Refer to the following section for the ambient installation conditions. (2) 2.1.3 Specifications on page 2-4

Installation Near Sources of Heat

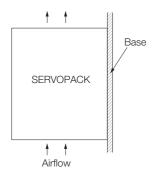
Implement measures to prevent temperature increases caused by radiant or convection heat from heat sources so that the ambient temperature of the SERVOPACK meets the ambient conditions.

Installation Near Sources of Vibration

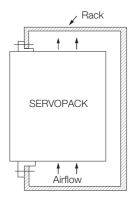
Install a vibration absorber on the installation surface of the SERVOPACK so that the SERVO-PACK will not be subjected to vibration.

Other Precautions

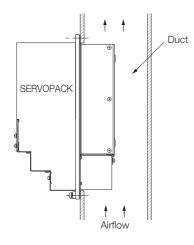
Do not install the SERVOPACK in a location subject to high temperatures, high humidity, water drops, cutting oil, excessive dust, excessive dirt, excessive iron powder, corrosive gasses, or radioactivity.


3.2 Mounting Types and Orientation

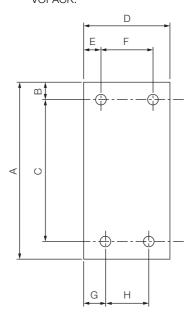
The SERVOPACKs come in the following mounting types: base-mounted, rack-mounted, and duct-ventilated types. Regardless of the mounting type, mount the SERVOPACK vertically, as shown in the following figures.


Also, mount the SERVOPACK so that the front panel is facing toward the operator.

Note: Prepare two to four mounting holes for the SERVOPACK and mount it securely in the mounting holes. (The number of mounting holes depends on the capacity of the SERVOPACK.)


Base-mounted SERVOPACK

Rack-mounted SERVOPACK



Duct-ventilated SERVOPACK

3.3 Mounting Hole Dimensions

Use mounting holes to securely mount the SERVOPACK to the mounting surface. Note: To mount the SERVOPACK, you will need to prepare a screwdriver that is longer than the depth of the SER-VOPACK.

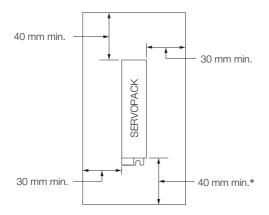
Σ-7-series Mounting Hole Dimensions

SERVOPACK Model		Dimensions (mm)								Screw	Number
		А	В	С	D	Е	F	G	н	Size	of Screws
	R70A, R90A, 1R6A	168	5	160 ±0.5	40	35	-	25	-	M4	2
	2R8A	168	5	160 ±0.5	40	5	-	25	-	M4	2
	3R8A, 5R5A, 7R6A	168	5	160 ±0.5	70	6	58 ±0.5	64	-	M4	3
SGD7S-	120A	168	5	160 ±0.5	90	5	80 ±0.5	12.5	_	M4	3
	180A, 200A, 120A□□□008	188	5	180 ±0.5	100	95	-	12.5	75±0.5	M4	3
	330A	258	6	250±0.5	110	5	100±0.5	13	84±0.5	M5	4
	470A, 550A	315	6	302.5±0.5	170	14	142±0.5	14	142±0.5	M6	4
	590A, 780A	390	7.5	375±0.5	260	30	200±0.5	30	200±0.5	M6	4

Σ-V-series-Compatible Mounting Hole Dimensions

If you are replacing a Σ -V-Series SERVOPACK with a Σ -7-Series SERVOPACK, you can also use the mounting holes that were used for the Σ -V-Series SERVOPACK. Refer to the following table.

SERVOPACK Model		Dimensions (mm)								Screw	Number
		А	В	с	D	Е	F	G	н	Size	of Screws
	R70A, R90A, 1R6A	168	5	150 ±0.5	40	35	-	35	-	M4	2
	2R8A	168	5	150 ±0.5	40	5	-	35	-	M4	2
	3R8A, 5R5A, 7R6A	168	5	150 ±0.5	70	6	58 ±0.5	6	-	M4	3
SGD7S-	120A	168	5	150 ±0.5	90	5	80 ±0.5	5	_	M4	3
	180A, 200A, 120A□□□008	188	5	170 ±0.5	100	95	-	5	90 ±0.5	M4	3
	330A	250	6	238.5±0.5	110	5	100±0.5	5	100±0.5	M5	4
	470A, 550A, 590A, 780A		A special attachment is required. Contact your Yaskawa repres details.							sentative	for

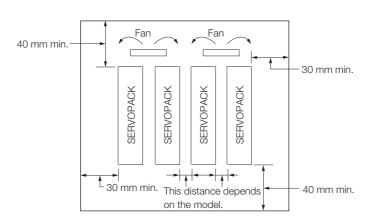

3.4.1 Installing One SERVOPACK in a Control Panel

Mounting Interval

 Θ

Installing One SERVOPACK in a Control Panel 3.4.1

Provide the following spaces around the SERVOPACK.



* For this dimension, ignore items protruding from the main body of the SERVOPACK.

Installing More Than One SERVOPACK in a Control 3.4.2 Panel

Provide the following intervals between the SERVOPACKs and spaces around the SERVO-PACKs.

Install cooling fans above the SERVOPACKs so that hot spots do not occur around the SERVO-PACKs. Provide sufficient intervals and spaces as shown in the following figure to enable cooling by the fans and natural convection. Important

The space required on the right side of a SERVOPACK (when looking at the SERVOPACK from the front) depends on the SERVOPACK models. Refer to the following table.

SERVOPACK Model		Space on Right Side	Cooling Fan Installation Conditions 10 mm above SERVOPACK's Top Surface
	R70A, R90A, 1R6A, 2R8A, 3R8A, 5R5A, 7R6A		Air speed: 0.5 m/s min.
SGD7S-	120A, 180A, 200A, 330A, 470A, 550A, 590A, 780A	10 mm min.	Air speed: 0.5 m/s min.

3.5 Monitoring the Installation Environment

You can use the SERVOPACK Installation Environment Monitor parameter to check the operating conditions of the SERVOPACK in the installation environment.

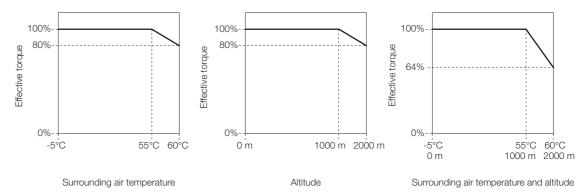
You can check the SERVOPACK installation environment monitor with either of the following methods.

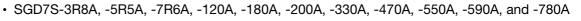
- Using the SigmaWin+: Life Monitor Installation Environment Monitor SERVOPACK
- Panel Operator or Digital Operator: Un025 (Installation Environment Monitor [%])

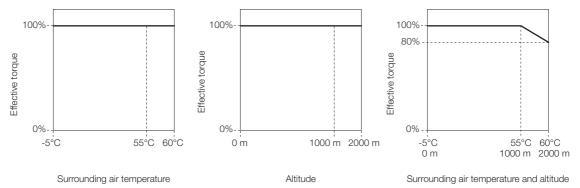
Implement one or more of the following actions if the monitor value exceeds 100%.

- Lower the surrounding temperature.
- Decrease the load.

Information The value of the SERVOPACK Installation Environment Monitor parameter will increase by about 10% for each 10°C increase in the ambient temperature.

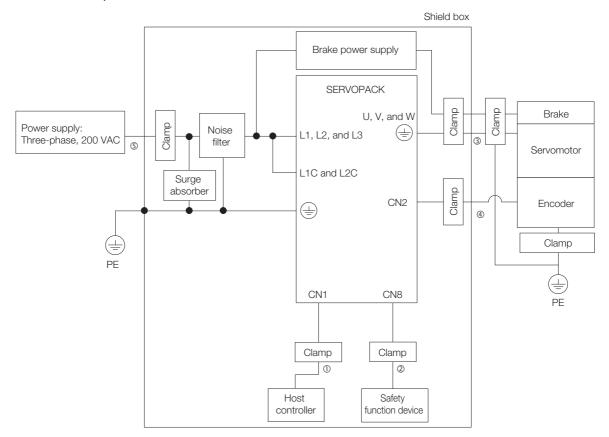



Always observe the surrounding air temperature given in the SERVOPACK environment conditions. Even if the monitor value is 100% or lower, you cannot use a SERVOPACK in a location that exceeds the specified surrounding air temperature.


3.6 Derating Specifications

If you use the SERVOPACK at a surrounding air temperature of 55° C to 60° C or at an altitude of 1,000 m to 2,000 m, you must apply the derating rates given in the following graphs.

• SGD7S-R70A, -R90A, -1R6A, and -2R8A



3.7 EMC Installation Conditions

This section gives the installation conditions that were used for EMC certification testing.

The EMC installation conditions that are given here are the conditions that were used to pass testing criteria at Yaskawa. The EMC level may change under other conditions, such as the actual installation structure and wiring conditions. These Yaskawa products are designed to be built into equipment. Therefore, you must implement EMC measures and confirm compliance for the final equipment.

The applicable standards are EN 55011 group 1 class A, EN 61000-6-2, EN 61000-6-4, and EN 61800-3 (category C2, second environment).

• Three-Phase, 200 VAC

Symbol	Cable Name	Specification
0	I/O Signal Cable	Shielded cable
2	Safety Signal Cable	Shielded cable
3	Servomotor Main Circuit Cable	Shielded cable
4	Encoder Cable	Shielded cable
5	Main Circuit Power Cable	Shielded cable

Wiring and Connecting SERVOPACKs

This chapter provides information on wiring and connecting SERVOPACKs to power supplies and peripheral devices.

4.1	Wiring	g and Connecting SERVOPACKs 4-3
	4.1.1 4.1.2 4.1.3	General Precautions4-3Countermeasures against Noise4-5Grounding4-8
4.2	Basic	Wiring Diagrams4-9
4.3	Wiring	the Power Supply to the SERVOPACK .4-11
	4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6	Terminal Symbols and Terminal Names4-11Wiring Procedure for Main Circuit Connector4-13Power ON Sequence4-14Power Supply Wiring Diagrams4-15Wiring Regenerative Resistors4-19Wiring DC Reactors4-21
4.4	Wiring	g Servomotors 4-22
	4.4.1 4.4.2 4.4.3 4.4.4	Terminal Symbols and Terminal Names 4-22 Pin Arrangement of Encoder Connector (CN2) . 4-22 Wiring the SERVOPACK to the Encoder 4-23 Wiring the SERVOPACK to the Holding Brake 4-28
4.5	I/O Si	gnal Connections4-30
	4.5.1 4.5.2 4.5.3 4.5.4	I/O Signal Connector (CN1) Names and Functions4-30I/O Signal Connector (CN1) Pin Arrangement. 4-33I/O Signal Wiring Examples4-34I/O Circuits4-40

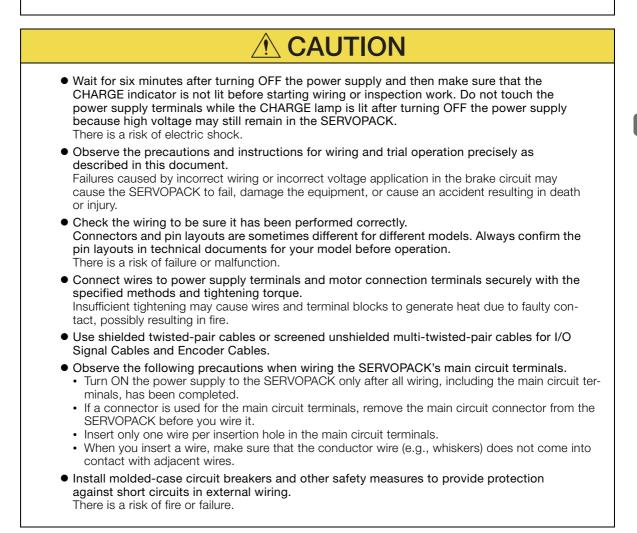
4.	ĺ

Connecting Safety Function Signals4-44 6 Pin Arrangement of Safety Function Signals (CN8) . . 4-44 4.6.1 4.6.2

4.7.1	Serial Communications Connector (CN3)4-46						
4.7.2	Computer Connector (CN7)4-46						
4.7.3	Analog Monitor Connector (CN5)4-46						

4.1.1 General Precautions

4.1 Wiring and Connecting SERVOPACKs


4.1.1 General Precautions

🚹 DANGER

• Do not change any wiring while power is being supplied. There is a risk of electric shock or injury.

- Wiring and inspections must be performed only by qualified engineers. There is a risk of electric shock or product failure.
- Check all wiring and power supplies carefully. Incorrect wiring or incorrect voltage application to the output circuits may cause short-circuit failures. If a short-circuit failure occurs as a result of any of these causes, the holding brake will not work. This could damage the machine or cause an accident that may result in death or injury.
- Connect the AC and DC power supplies to the specified SERVOPACK terminals.
 - Connect an AC power supply to the L1, L2, and L3 terminals and the L1C and L2C terminals on the SERVOPACK.
 - Connect a DC power supply to the B1/⊕ and ⊖2 terminals and the L1C and L2C terminals on the SERVOPACK.
 - There is a risk of failure or fire.

4.1.1 General Precautions

	NOTICE
•	 Whenever possible, use the Cables specified by Yaskawa. If you use any other cables, confirm the rated current and application environment of your model and use the wiring materials specified by Yaskawa or equivalent materials. Securely tighten cable connector screws and lock mechanisms. Insufficient tightening may result in cable connectors falling off during operation. Do not bundle power lines (e.g., the Main Circuit Cable) and low-current lines (e.g., the I/O Signal Cables or Encoder Cables) together or run them through the same duct. If you do not place power lines and low-current lines in separate ducts, separate them by at least 30 cm. If the cables are too close to each other, malfunctions may occur due to noise affecting the low-current lines. Install a battery at either the host controller or on the Encoder Cable. If you install batteries both at the host controller and on the Encoder Cable at the same time, you will create a loop circuit between the batteries, resulting in a risk of damage or burning. When connecting a battery, connect the polarity correctly. There is a risk of battery rupture or encoder failure.
Important	 Use a molded-case circuit breaker (1QF) or fuse to protect the main circuit. The SERVOPACK connects directly to a commercial power supply; it is not isolated through a transformer or other device. Always use a molded-case circuit breaker (1QF) or fuse to protect the servo system from accidents involving different power system voltages or other accidents. Install an earth leakage breaker. The SERVOPACK does not have a built-in ground fault protective circuit. To configure a safer system, install a ground fault detector against overloads and short-circuiting, or install a ground fault detector combined with a molded-case circuit breaker. Do not turn the power supply ON and OFF more than necessary. Do not use the SERVOPACK for applications that require the power supply to turn ON and OFF frequently. Such applications will cause elements in the SERVOPACK to deteriorate. After you have started actual operation, allow at least one hour between turning the power supply ON and OFF (as a guideline).

To ensure safe, stable application of the servo system, observe the following precautions when wiring.

• Use the cables specified by Yaskawa. Design and arrange the system so that each cable is as short as possible.

Refer to the following manual for information on the specified cables.

 \square Σ -7-Series Peripheral Device Selection Manual (Manual No.: SIEP S800001 32)

• The signal cable conductors are as thin as 0.2 mm² or 0.3 mm². Do not subject them to excessive bending stress or tension.

4.1.2 Countermeasures against Noise

4.1.2 Countermeasures against Noise

The SERVOPACK is designed as an industrial device. It therefore provides no measures to prevent radio interference. The SERVOPACK uses high-speed switching elements in the main circuit. Therefore peripheral devices may be affected by switching noise.

If the equipment is to be used near private houses or if radio interference is a problem, take countermeasures against noise.

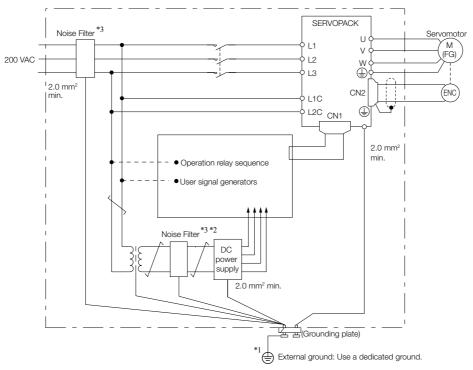
The SERVOPACK uses microprocessors. Therefore, it may be affected by switching noise from peripheral devices.

To prevent the noise from the SERVOPACK or the peripheral devices from causing malfunctions of any devices, take the following countermeasures against noise as required.

- Install the input reference device and Noise Filter as close to the SERVOPACK as possible.
- Always install a Surge Absorber for relays, solenoids, and Magnetic Contactor coils.
- Do not place the following cables in the same duct or bundle them together. Also, separate the cables from each other by at least 30 cm.

•Main Circuit Cables and I/O Signal Cables

- •Main Circuit Cables and Encoder Cables
- Do not share the power supply with an electric welder or electrical discharge machine. If the SERVOPACK is placed near a high-frequency generator, install Noise Filters on the input side on the Main Circuit Power Supply Cable and Control Power Supply Cable even if the same power supply is not shared with the high-frequency generator. Refer to the following section for information on connecting Noise Filters.
 - Noise Filters on page 4-6
- Implement suitable grounding measures. Refer to the following section for information on grounding measures.

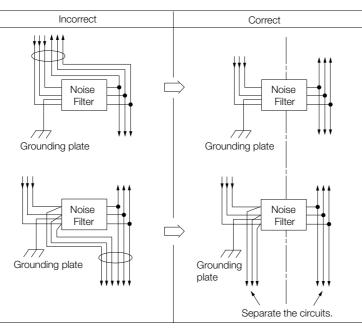

4.1.3 Grounding on page 4-8

Δ

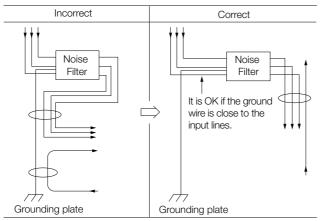
4.1.2 Countermeasures against Noise

Noise Filters

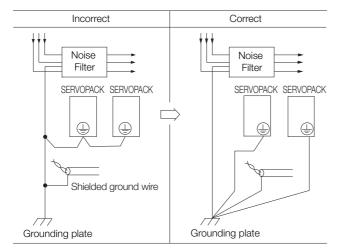
You must attach Noise Filters in appropriate places to protect the SERVOPACK from the adverse effects of noise. The following is an example of wiring for countermeasures against noise.


- *1. For the ground wire, use a wire with a thickness of at least 2.0 mm² (preferably, flat braided copper wire).
- *2. Whenever possible, use twisted-pair wires to wire all connections marked with $\underline{\frown}$.
- *3. Refer to the following section for precautions when using Noise Filters. *Noise Filter Wiring and Connection Precautions* on page 4-7

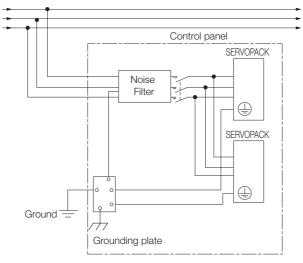
4.1.2 Countermeasures against Noise


Noise Filter Wiring and Connection Precautions

Always observe the following precautions when wiring or connecting Noise Filters.


• Separate input lines from output lines. Do not place input lines and output lines in the same duct or bundle them together.

• Separate the Noise Filter ground wire from the output lines. Do not place the Noise Filter ground wire, output lines, and other signal lines in the same duct or bundle them together.


• Connect the Noise Filter ground wire directly to the grounding plate. Do not connect the Noise Filter ground wire to other ground wires.

Λ

4.1.3 Grounding

• If a Noise Filter is located inside a control panel, first connect the Noise Filter ground wire and the ground wires from other devices inside the control panel to the grounding plate for the control panel, then ground the plate.

4.1.3 Grounding

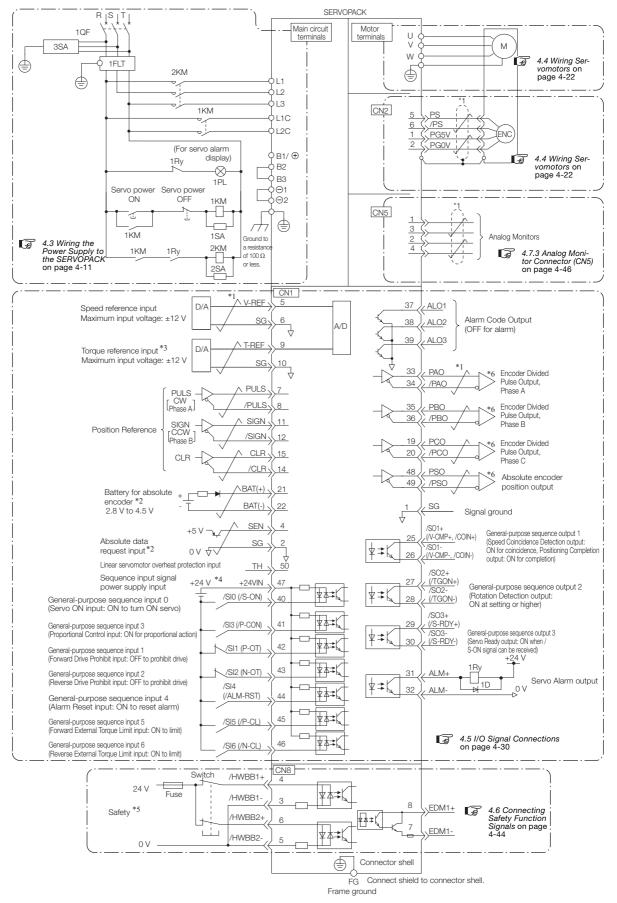
Implement grounding measures as described in this section. Implementing suitable grounding measures will also help prevent malfunctions, which can be caused by noise.

Observe the following precautions when wiring the ground cable.

- Ground the SERVOPACK to a resistance of 100 Ω or less.
- Be sure to ground at one point only.
- Ground the Servomotor directly if the Servomotor is insulated from the machine.

Motor Frame Ground or Motor Ground

If you ground the Servomotor through the machine, switching noise current can flow from the main circuit of the SERVOPACK through the stray capacitance of the Servomotor. To prevent this, always connect the motor frame terminal (FG) or ground terminal (FG) of the Servomotor to the ground terminal) on the SERVOPACK. Also be sure to ground the ground terminal).


Ground both the Moving Coil and Magnetic Way of a Linear Servomotor.

Noise on I/O Signal Cables

If noise enters the I/O Signal Cable, connect the shield of the I/O Signal Cable to the connector shell to ground it. If the Servomotor Main Circuit Cable is placed in a metal conduit, ground the conduit and its junction box. For all grounding, ground at one point only.

4.2 Basic Wiring Diagrams

This section provide the basic wiring diagrams. Refer to the reference sections given in the diagrams for details.

- *1. represents twisted-pair wires.
 *2. Connect these when using an absolute encoder. If the Encoder Cable with a Battery Case is connected, do not connect a backup battery.
- *3. You can enable this function with a parameter setting.
- *4. The 24-VDC power supply is not provided by Yaskawa. Use a 24-VDC power supply with double insulation or reinforced insulation.
- *5. Refer to the following chapter if you use a safety function device.
 - G Chapter 11 Safety Functions

If you do not use the safety function, insert the Safety Jumper Connector (provided as an accessory) into CN8 when you use the SERVOPACK.

- *6. Always use line receivers to receive the output signals.
- Note: 1. If you use a 24-V brake, install a separate power supply for the 24-VDC power supply from other power supplies, such as the one for the I/O signals of the CN1 connector. If the power supply is shared, the I/O signals may malfunction.
 - 2. Default settings are given in parentheses.

4.3.1 Terminal Symbols and Terminal Names

4.3 Wiring the Power Supply to the SERVOPACK

4.3.1 Terminal Symbols and Terminal Names

Use the main circuit connector on the SERVOPACK to wire the main circuit power supply and control circuit power supply to the SERVOPACK.

• Wire all connections correctly according to the following table and specified reference information. There is a risk of SERVOPACK failure or fire if incorrect wiring is performed.

The SERVOPACKs have the following three types of main circuit power supply input specifications.

• Three-Phase, 200-VAC Power Supply Input

Terminal Symbols	Terminal Name	Specifications and Reference
L1, L2, L3	Main circuit power supply input terminals for AC power supply input	Three-phase, 200 VAC to 240 VAC, -15% to +10%, 50 Hz/60 Hz
L1C, L2C	Control power supply termi- nals	Single-phase, 200 VAC to 240 VAC, -15% to +10%, 50 Hz/60 Hz
B1/⊕, B2, B3	Regenerative Resistor termi- nals	 <i>4.3.5 Wiring Regenerative Resistors</i> on page 4-19 For SGD7S-R70A, -R90A, -1R6A, and -2R8A If the regenerative capacity is insufficient, connect an External Regenerative Resistor between B1/⊕ and B2. The External Regenerative Resistor is not included. Obtain it separately. For SGD7S-3R8A,- 5R5A, -7R6A, -120A, -180A, -200A, and -330A If the internal regenerative resistor is insufficient, remove the lead or short bar between B2 and B3 and connect an External Regenerative Resistor between B1/⊕ and B2. The External Regenerative Resistor is not included. Obtain it separately. For SGD7S-470A, -550A, -590A, and -780A Connect a Regenerative Resistor Unit between B1/⊕ and B2.
⊖1, ⊖2	DC Reactor terminals for power supply harmonic suppression	<i>4.3.6 Wiring DC Reactors</i> on page 4-21 These terminals are used to connect a DC Reactor for power supply harmonic suppression or power factor improvement.
Θ	-	None. (Do not connect anything to this terminal.)

• Single-Phase, 200-VAC Power Supply Input

Terminal Symbols	Terminal Name	Specifications and Reference
L1, L2	Main circuit power supply input terminals for AC power supply input	Single-phase, 200 VAC to 240 VAC, -15% to +10%, 50 Hz/60 Hz
L1C, L2C	Control power supply termi- nals	Single-phase, 200 VAC to 240 VAC, -15% to +10%, 50 Hz/60 Hz

4.3.1 Terminal Symbols and Terminal Names

Continued from previous page.

Terminal Symbols	Terminal Name	Specifications and Reference
		4.3.5 Wiring Regenerative Resistors on page 4-19
B1/⊕, B2, B3	Regenerative Resistor termi-	■ For SGD7S-R70A, -R90A, -1R6A, and -2R8A If the regenerative capacity is insufficient, connect an Exter- nal Regenerative Resistor between B1/⊕ and B2. The External Regenerative Resistor is not included. Obtain it separately.
D II (), D2, D0	nals	■ For SGD7S-5R5A and 120A□0A008 If the internal regenerative resistor is insufficient, remove the lead or short bar between B2 and B3 and connect an Exter- nal Regenerative Resistor between B1/⊕ and B2. The External Regenerative Resistor is not included. Obtain it separately.
01.00	DC Reactor terminals for	<i>G</i> 4.3.6 Wiring DC Reactors on page 4-21
⊖1, ⊝2	power supply harmonic suppression	These terminals are used to connect a DC Reactor for power supply harmonic suppression or power factor improvement.
L3, ⊖	_	None. (Do not connect anything to these terminals.)

You can use a single-phase, 200-VAC power supply input with the following models. • SGD7S-R70A, -R90A, -1R6A, -2R8A, -5R5A

If you use a single-phase, 200-VAC power supply input for the SERVOPACK's main circuit power supply, set parameter Pn00B to $n.\Box 1 \Box \Box$ (Use a three-phase power supply input as a single-phase power supply input). Refer to the following section for details.

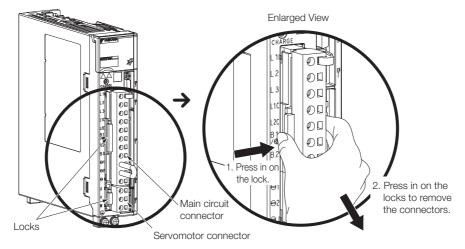
Information You do not need to change the setting of Pn00B to n. $\Box 1 \Box \Box$ (Use a three-phase power supply input as a single-phase power supply input) for a SERVOPACK with a single-phase 200-VAC power supply input (model numbers: SGD7S-120A $\Box \Box \Box$ 008).

Terminal Symbols	Terminal Name	Specifications and Reference
L1C, L2C	Control power supply termi- nals	270 VAC to 324 VAC, -15% to +10%
B1/⊕	Main circuit power supply	270 VDC to 324 VDC, -15% to +10%
⊖2	input terminals for DC power supply input	0 VDC
L1, L2, L3, B2, B3, ⊖1, ⊖	_	None. (Do not connect anything to these terminals.)

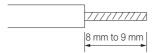
DC Power Supply Input

If you use a DC power supply input to the SERVOPACK, make sure to set parameter Pn00E to n. $\Box\Box\Box$ 1 (DC power supply input supported) before inputting the power supply. Refer to the following section for details.

[3.3.1 AC Power Supply Input/DC Power Supply Input Setting on page 5-13


4.3.2 Wiring Procedure for Main Circuit Connector

4.3.2 Wiring Procedure for Main Circuit Connector


· Required Items

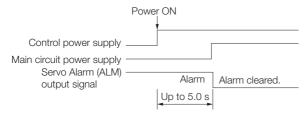
Required Item	Remarks	
Spring Opener or Flat-	 Spring Opener SERVOPACK accessory (You can also use model 1981045-1 from Tyco Electronics Japan G.K.) 	
blade Screwdriver	Flat-blade screwdriver Commercially available screwdriver with tip width of 3.0 mm to 3.5 mm	

1. Remove the main circuit connector and motor connector from the SERVOPACK.

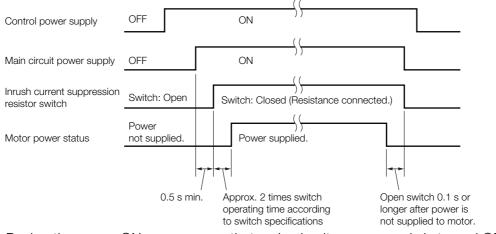
2. Remove the sheath from the wire to connect.

3. Open the wire insertion hole on the terminal connector with the tool. There are the following two ways to open the insertion hole. Use either method.

①Using a Spring Opener	2 Using a Flat-blade Screwdriver
Open the insertion hole with the Spring Opener as shown in the figure.	Firmly insert a flat-blade screwdriver into the screwdriver insertion hole to open the wire insertion hole.
Spring Opener Wire	


- 4. Insert the conductor into the wire insertion hole. Then, remove the Spring Opener or flatblade screwdriver.
- 5. Make all other connections in the same way.
- 6. When you have completed wiring, attach the connectors to the SERVOPACK.

4.3.3 Power ON Sequence


4.3.3 Power ON Sequence

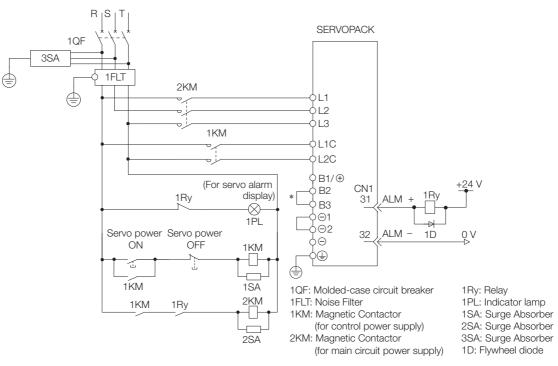
Consider the following points when you design the power ON sequence.

• The ALM (Servo Alarm) signal is output for up to five seconds when the control power supply is turned ON. Take this into consideration when you design the power ON sequence, and turn ON the main circuit power supply to the SERVOPACK when the ALM signal is OFF (alarm cleared).

• If you use a DC power supply input with any of the following SERVOPACKs, use the power ON sequence shown below: SGD7S-330A, -470A, -550A, -590A, or -780A.

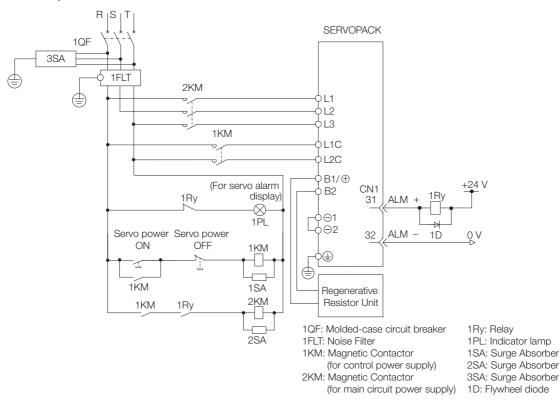
- Design the power ON sequence so that main circuit power supply is turned OFF when an ALM (Servo Alarm) signal is output.
- Make sure that the power supply specifications of all parts are suitable for the input power supply.
- Allow at least 100 ms after the power supply is turned OFF before you turn it ON again.

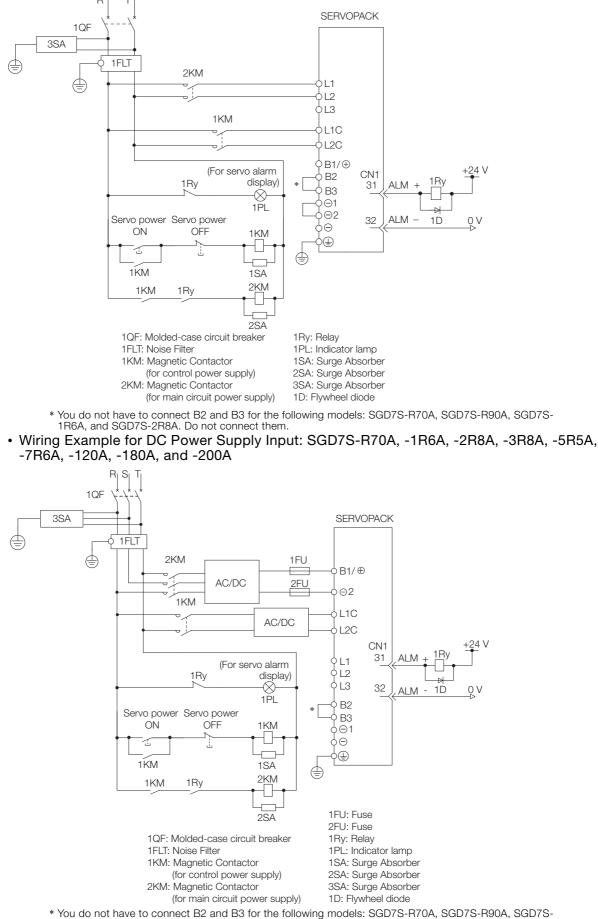
Turn ON the control power supply and the main circuit power supply at the same time or turn ON the control power supply before the main circuit power supply. Turn OFF the main circuit power supply first, and then turn OFF the control power supply.



• Even after you turn OFF the power supply, a high residual voltage may still remain in the SERVOPACK. To prevent electric shock, do not touch the power supply terminals after you turn OFF the power. When the voltage is discharged, the CHARGE indicator will turn OFF. Make sure the CHARGE indicator is OFF before you start wiring or inspection work.

4.3.4 Power Supply Wiring Diagrams


Using Only One SERVOPACK


• Wiring Example for Three-Phase, 200-VAC Power Supply Input: SGD7S-R70A, -1R6A, -2R8A, -3R8A, -5R5A, -7R6A, -120A, -180A,-200A, and -330A

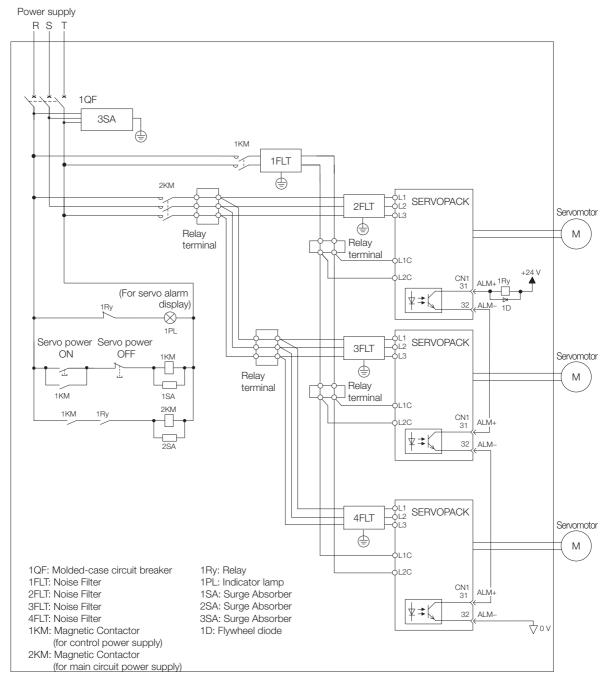
* You do not have to connect B2 and B3 for the following models: SGD7S-R70A, SGD7S-R90A, SGD7S-1R6A, and SGD7S-2R8A. Do not connect them.

• Wiring Example for Three-Phase, 200-VAC Power Supply Input: SGD7S-470A, -550A, -590A, and -780A

• Wiring Example for Single-Phase, 200-VAC Power Supply Input

* You do not have to connect B2 and B3 for the following models: SGD7S-R70A, SGD7S-R90A, SGD7S-1R6A, and SGD7S-2R8A. Do not connect them.

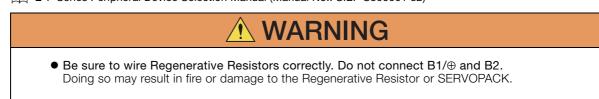
- S Т 1QF 3SA SERVOPACK Ē δ 1FLT ٢ 1FU 2KM B1/⊕ 1R AC/DC 9⊝2 E 2FU 1TRy 2Ry -4SA 1KM JL1C AC/DC L2C <u>+24</u> V CN1 1Ry 31 0 L1 0 L2 0 L3 AI M (For servo alarm display) 1Ry Þ $-\infty$ 32 1D οv ALM _ 1PL Servo power Servo power OFF ON 1KM ¢⊕ -___-1 2 ٢ ------+24 V 1KM 1SA 2Rv 1TRy 0 V 2KM 1KM 1Ry -Ð ⊕ T 2SA 5SA 1QF: Molded-case circuit breaker 1FLT: Noise Filter 1KM: Magnetic Contactor (for control power supply) 2KM: Magnetic Contactor (for main circuit power supply, auxiliary contact) 1SA: Surge Absorber 1FU: Fuse, positive side 2SA: Surge Absorber 2FU: Fuse, negative side 3SA: Surge Absorber 1Ry: Relay 4SA: Surge Absorber 2Ry: Relay (for inrush current 5SA: Surge Absorber suppression resistor switch) 1D: Flywheel diode 1TRy: Timer relay 1R: External inrush current 1PL: Indicator lamp suppression resistor
- Wiring Example for DC Power Supply Input: SGD7S-330A, -470A, -550A, -590A, and -780A


Using More Than One SERVOPACK

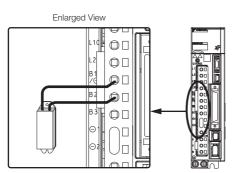
Connect the ALM (Servo Alarm) output for these SERVOPACKs in series to operate the alarm detection relay (1RY).

When a SERVOPACK alarm is activated, the ALM output signal transistor turns OFF.

The following diagram shows the wiring to stop all of the Servomotors when there is an alarm for any one SERVOPACK.

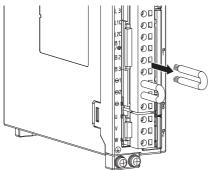

More than one SERVOPACK can share a single Noise Filter. However, always select a Noise Filter that has a large enough capacity to handle the total power supply capacity of all the SERVOPACKs. Be sure to consider the load conditions.

4.3.5 Wiring Regenerative Resistors

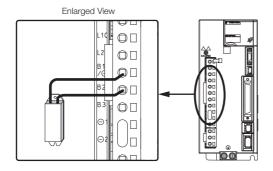

This section describes how to connect External Regenerative Resistors.

Refer to the following manual to select External Regenerative Resistors. $\square \Sigma$ -7-Series Peripheral Device Selection Manual (Manual No.: SIEP S800001 32)

Connecting Regenerative Resistors


- SERVOPACK Models SGD7S-R70A, -R90A, -1R6A, and -2R8A
- 1. Connect the External Regenerative Resistor between the B1/⊕ and B2 terminals on the SERVOPACK.

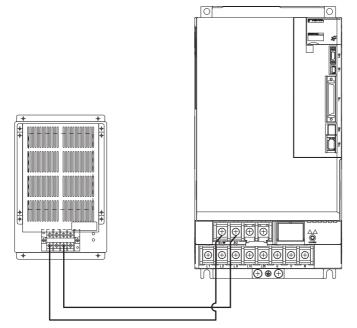
2. Set Pn600 (Regenerative Resistor Capacity) and Pn603 (Regenerative Resistor Resistance).


Refer to the following section for details on the settings. $\boxed{3}$ 5.19 Setting the Regenerative Resistor Capacity on page 5-56

- SERVOPACK Models SGD7S-3R8A, -5R5A, -7R6A, -120A, -180A, -200A, and -330A
- 1. Remove the lead from between the B2 and B3 terminals on the SERVOPACK.

4.3.5 Wiring Regenerative Resistors

2. Connect the External Regenerative Resistor between the B1/⊕ and B2 terminals.

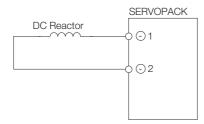


3. Set Pn600 (Regenerative Resistor Capacity) and Pn603 (Regenerative Resistor Resistance).

Refer to the following section for details on the settings. 5.19 Setting the Regenerative Resistor Capacity on page 5-56

SERVOPACK Models SGD7S-470A, -550A, -590A, and -780A

1. Connect the R1 and R2 terminals on the Regenerative Resistor Unit to the B1/⊕ and B2 terminals on the SERVOPACK.



- 2. Set Pn600 (Regenerative Resistor Capacity) and Pn603 (Regenerative Resistor Resistance) as required.
 - When using the Yaskawa-recommended Regenerative Resistor Unit, use the default settings for Pn600 and Pn603.
 - If you use any other external regenerative resistor, set Pn600 and Pn603 according to the specifications of the regenerative resistor.
 - Refer to the following section for details on the settings.

5.19 Setting the Regenerative Resistor Capacity on page 5-56

4.3.6 Wiring DC Reactors

You can connect a DC Reactor to the SERVOPACK when power supply harmonic suppression is required. Connection terminals $\ominus 1$ and $\ominus 2$ for a DC Reactor are connected when the SER-VOPACK is shipped. Remove the lead wire and connect a DC Reactor as shown in the following diagram.

4.4.1 Terminal Symbols and Terminal Names

Wiring Servomotors

Terminal Symbols and Terminal Names 4.4.1

The SERVOPACK terminals or connectors that are required to connect the SERVOPACK to a Servomotor are given below.

Terminal/Connector Symbols	Terminal/Connector Name	Remarks
U, V, and W	Servomotor terminals	 Refer to the following section for the wiring procedure. <i>4.3.2 Wiring Procedure for Main Circuit Connector</i> on page 4-13
	Ground terminal	-
CN2	Encoder connector	-

Pin Arrangement of Encoder Connector (CN2) 4.4.2

······································			
Pin No.	Signal	Function	
1	PG5V	Encoder power supply +5 V	
2	PG0V	Encoder power supply 0 V	
3	BAT (+)*	Battery for absolute encoder (+)	
4	BAT (-)*	Battery for absolute encoder (-)	
5	PS	Serial data (+)	
6	/PS	Serial data (-)	
Shell	Shield	-	

· When Using a Rotary Servomotor

* You do not need to wire these pins for an incremental encoder.

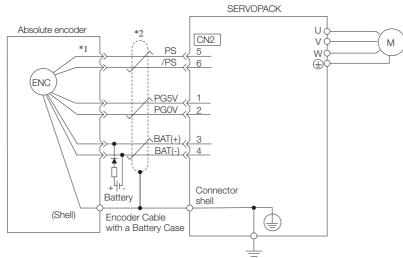
· When Using a Direct Drive Servomotor

Pin No.	Signal	Function	
1	PG5V	Encoder power supply +5 V	
2	PG0V	Encoder power supply 0 V	
3	-	– (Do not use.)	
4	-	– (Do not use.)	
5	PS	Serial data (+)	
6	/PS	Serial data (-)	
Shell	Shield	-	

When Using a Linear Servomotor

Pin No.	Signal	Function	
1	PG5V	Linear encoder power supply +5 V	
2	PG0V	Linear encoder power supply 0 V	
3	-	– (Do not use.)	
4	-	– (Do not use.)	
5	PS	Serial data (+)	
6	/PS	Serial data (-)	
Shell	Shield	-	

4.4.3 Wiring the SERVOPACK to the Encoder


When Using an Absolute Encoder

If you use an absolute encoder, use an Encoder Cable with a JUSP-BA01-E Battery Case or install a battery on the host controller.

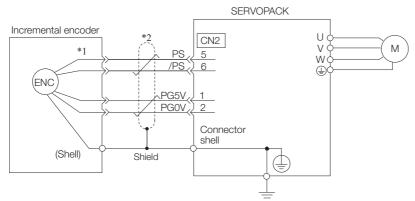
Refer to the following section for the battery replacement procedure. *12.1.3 Replacing the Battery* on page 12-3

A 12.1.5 Replacing the battery on page 12-5

Wiring Example When Using an Encoder Cable with a Battery Case

- *1. The absolute encoder pin numbers for wiring the connector depend on the Servomotor that you use.
- *2. represents a shielded twisted-pair cable.

• Wiring Example When Installing a Battery on the Host Controller

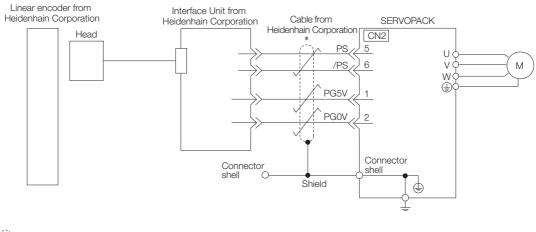

- *1. The absolute encoder pin numbers for wiring the connector depend on the Servomotor that you use.
- *2. represents a shielded twisted-pair cable.

4.4 Wiring Servomotors

4.4.3 Wiring the SERVOPACK to the Encoder

1mportant	 When Installing a Battery on the Encoder Cable Use the Encoder Cable with a Battery Case that is specified by Yaskawa. Refer to the following manual for details. Ω Σ-7-Series Peripheral Device Selection Manual (Manual No.: SIEP S800001 32) 			
	 When Installing a Battery on the Host Controller Insert a diode near the battery to prevent reverse current flow. 			
	Circuit Example • Schottky Diode • Resistor			
Battery	Reverse voltage: $Vr \ge 40 V$ Forward voltage: $Vf \le 0.37 V$ Reverse current: $Ir \le 0.5 \mu A$ Junction temperature: $Tj \ge 125^{\circ}C$	Resistance: 22 Ω Tolerance: $\pm 5\%$ max. Rated power: 0.25 W min.		

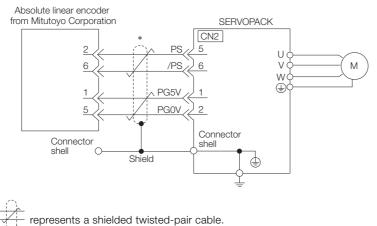
When Using an Incremental Encoder

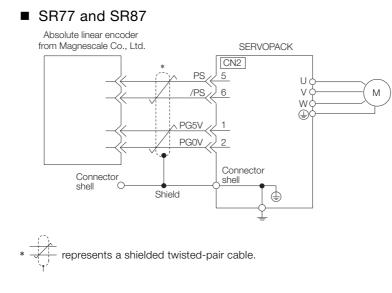


- *1. The incremental encoder pin numbers for wiring the connector depend on the Servomotor that you use.
- *2. represents a shielded twisted-pair cable.

When Using an Absolute Linear Encoder

The wiring depends on the manufacturer of the linear encoder.

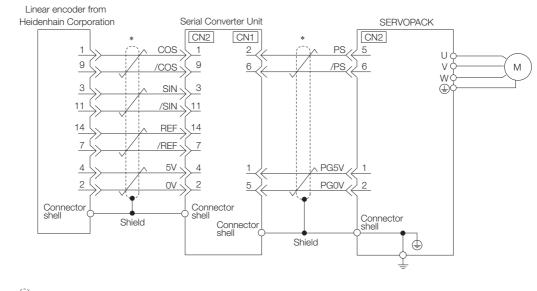

Connections to Linear Encoder from Heidenhain Corporation



4.4.3 Wiring the SERVOPACK to the Encoder

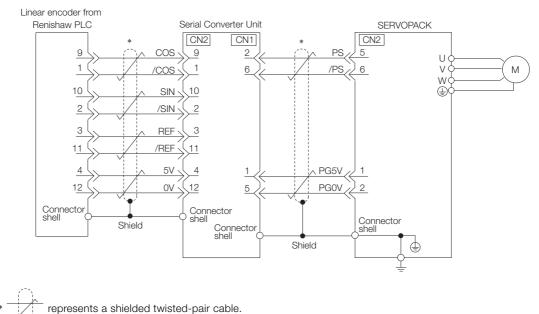
Connections to Linear Encoder from Mitutoyo Corporation

◆ Connections to Absolute Linear Encoder from Magnescale Co., Ltd.



4.4.3 Wiring the SERVOPACK to the Encoder

When Using an Incremental Linear Encoder

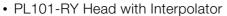

The wiring depends on the manufacturer of the linear encoder.

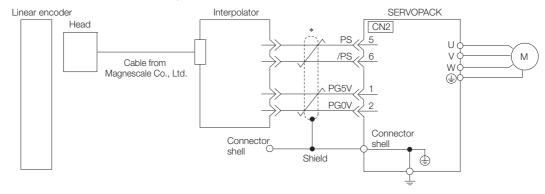
Connections to Linear Encoder from Heidenhain Corporation

represents a shielded twisted-pair cable.

Connections to Linear Encoder from Renishaw PLC

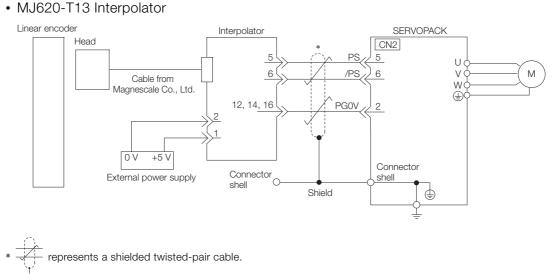
◆ Connections to Linear Encoder from Magnescale Co., Ltd.


If you use a linear encoder from Magnescale Co., Ltd., the wiring will depend on the model of the linear encoder.


SR75 and SR85

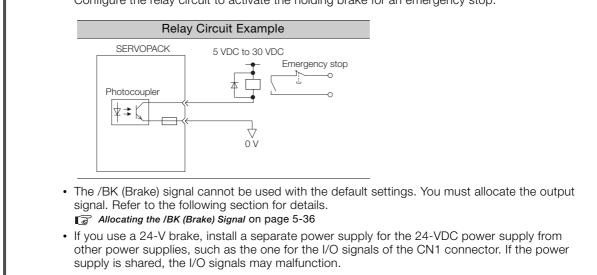
* Trepresents a shielded twisted-pair cable.

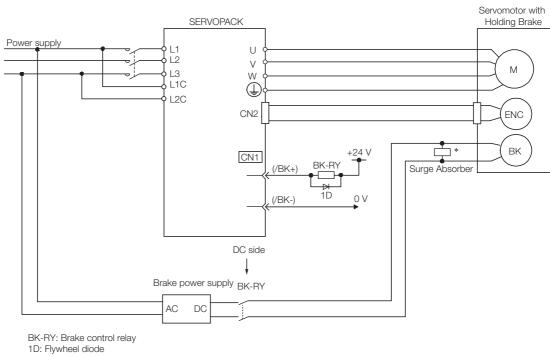
SL700, SL710, SL720, and SL730



* represents a shielded twisted-pair cable.

4.4.4 Wiring the SERVOPACK to the Holding Brake


SL700, SL710, SL720, and SL730


4.4.4 Wiring the SERVOPACK to the Holding Brake

- If you use a Rotary Servomotor, select a Surge Absorber according to the brake current and brake power supply. Refer to the following manual for details.
- \Im Σ -7-Series Peripheral Device Selection Manual (Manual No.: SIEP S800001 32)
- After the Surge Absorber is connected, check the time required to brake in your application. The Surge Absorber may affect the time required to brake. Configure the relay circuit to activate the holding brake for an emergency stop.

4.4.4 Wiring the SERVOPACK to the Holding Brake

* Install the surge absorber near the brake terminals on the Servomotor.

4.5.1 I/O Signal Connector (CN1) Names and Functions

4.5 I/O Signal Connections

4.5.1 I/O Signal Connector (CN1) Names and Functions

The following table gives the pin numbers, names, and functions the I/O signal pins for the default settings.

Input Signals

Default settings are given in parentheses.

Control Method	Signal	Pin No.	Name	Function	Reference Page
	/SI0* (/S-ON)	40	General-purpose Sequence Input 0 (Servo ON Input)	You can allocate the input signal to use with a parameter. (Controls turning the Servomotor ON and OFF (supplying/not supplying power).)	page 5-16
	/SI3* (/P-CON)	41	General-purpose Sequence Input 3 (Proportional Control Input)	You can allocate the input signal to use with a parameter. (Changes the speed control loop from PI (proportional/integral) to P (proportional) control when turned ON.)	page 8-72
	/SI1* (P-OT)	42	General-purpose Sequence Input 1 (Forward Drive Prohibit Input)	You can allocate the input signals to use with parameters. (Stops Servomotor drive (to prevent over-	page 5-30
	/SI2* (N-OT)	43	General-purpose Sequence Input 2 (Reverse Drive Prohibit Input)	travel) when the moving part of the machine exceeds the range of movement.)	page 5-50
	/SI5* (/P-CL)	45	General-purpose Sequence Input 5 (Forward Exter- nal Torque Limit Input)	You can allocate the input signals to use with parameters.	page 6-64
Any Control Method	Control	46	General-purpose Sequence Input 6 (Reverse Exter- nal Torque Limit Input)	ence Input 6 ing.) erse Exter- prque Limit	
	/SI4* (/ALM- RST)	44	General-purpose Sequence Input 4 (Alarm Reset Input)	You can allocate the input signal to use with a parameter. (Clears alarms.)	page 12-39
	+24VIN	47	Sequence Input Signal Power Supply Input	Inputs the sequence input signal power supply. Allowable voltage range: 24 VDC ±20% The 24-VDC power supply is not provided by Yaskawa.	-
	SEN	4 (2)	Absolute Data Request Input (SEN)	Inputs the position data request signal for an absolute encoder.	page 6-73 page 6-86
	BAT+	21	Battery for abso- lute encoder (+)	These are the pins to connect the absolute encoder backup battery.	
	BAT-	22	Battery for abso- lute encoder (-)	Do not connect these pins if you use the Encoder Cable with a Battery Case.	_
	TH	50	Linear Servomo- tor Overheat Pro- tection Input	Inputs the overheat protection signal from a Linear Servomotor.	-
Speed Control	V-REF	5 (6)	Speed Reference	Inputs the speed reference. Maximum input voltage: ±12 V	page 6-12

4.5.1 I/O Signal Connector (CN1) Names and Functions

Control Method	Signal	Pin No.	Name	Function	Reference Page
	PULS /PULS	7 8	Pulse Reference Input	One of the following input pulse forms is set. • Sign + pulse train	page 6-31
Position Control			Sign of Reference Input	 CW + CCW pulse trains 90° phase-differential pulses 	page 0-31
	CLR /CLR	15 14	Position Deviation Clear Input	Clears the position deviation during position control.	page 6-33
Torque Control	T-REF	9 (10)	Torque Refer- ence Input	Inputs the torque reference. Maximum input voltage: ±12 V	page 6-40

* You can change the allocations. Refer to the following section for details.

1 6.1.1 Input Signal Allocations on page 6-4

Note: 1. Pin numbers in parentheses () indicate signal grounds.

If forward drive prohibition or reverse drive prohibition is used, the SERVOPACK is stopped by software controls. If the application does not satisfy the safety requirements, add external safety circuits as required.

4.5.1 I/O Signal Connector (CN1) Names and Functions

Output Signals

Default settings are given in parentheses.

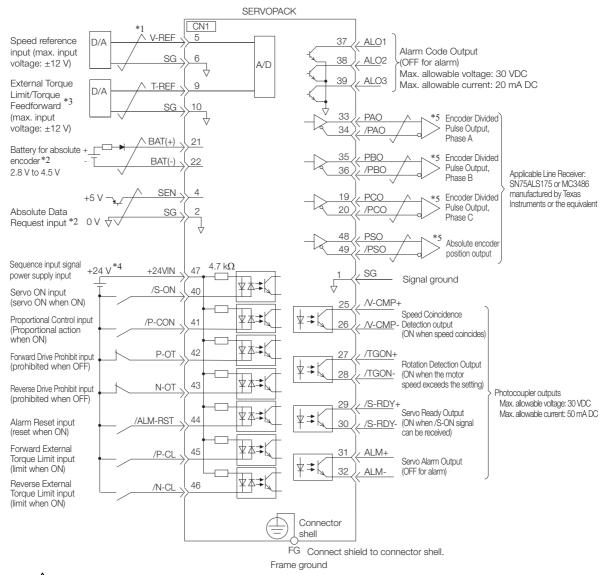
Control Method	Signal	Pin No.	Name	Function	Reference Page
	ALM+	31	Servo Alarm	Turns OFF (opens) when an error is	page 6-8
	ALM-	32	Output	detected.	page 0-0
	/SO2+* (/TGON+)	27	General-pur- pose Sequence Output 2 (Rota-	You can allocate the output signal to use with a parameter.	page 6-10
	/SO2-* (/TGON-)	28	tion Detection Output)	(Turns ON (closes) when the Servomotor speed exceeds a set value.)	page 0-10
	/SO3+* (/S-RDY+)	29	General-pur- pose Sequence	You can allocate the output signal to use with a parameter.	
	/SO3-* (/S-RDY-)	30	Output 3 (Servo Ready Output)	(Turns ON (closes) when the SERVO- PACK is ready to acknowledge the /S- ON (Servo ON) signal.)	page 6-10
	PAO	33	Encoder Divided		
Any	/PAO	34	Pulse Output, Phase A	Output the encoder divided pulse output	
Control Method	PBO	35	Encoder Divided	signals with a 90° phase differential.	page 6-73
Method	/PBO	36	Pulse Output, Phase B		page 6-86
	PCO	19	Encoder Divided	Outputs the origin signal once every	
	/PCO	20	Pulse Output, Phase C	encoder rotation.	
	PSO	48	Absolute	Outputs the position data of the absolute	
	/PSO	49	Encoder Position Output	encoder.	_
	ALO1*	37 (1)		Output a 3-bit alarm code.	
	ALO2*	38 (1)	Alarm Code Out-		page 6-8
	ALO3*	39 (1)	put		
	FG	Shell	Frame ground	Connected to the frame ground if the shield of the I/O Signal Cable is connected to the connector shell.	_
	/SO1+* (/V-CMP+)	25	General-pur- pose Sequence	You can allocate the output signal to use with a parameter.	
Speed Control	/SO1-* (/V-CMP-)	26	Output 1 (Speed Coincidence Detection Out- put)	(Turns ON (closes) if the motor speed is within the set range and matches the ref- erence speed value when speed control is selected.)	page 6-26
	/SO1+* (/COIN+)	25	General-pur- pose Sequence	You can allocate the output signals to use with parameters.	
Position	/SO1-* (/COIN-)	26	Output 1 (Posi- tioning Comple- tion Output)	(Turns ON (closes) if the position devia- tion reaches the set value when position control is selected.)	page 6-36
Control	PL1	3	Open-Collector		
	PL2	13	Power Supply Output for Refer-	Outputs the open-collector power supply for reference pulses.	-
	PL3	18	ence Pulses		
-	_	16 17 23 24 48 49	_	Do not use these terminals.	_

* You can change the allocations. Refer to the following section for details.

(3) 6.1.2 Output Signal Allocations on page 6-6

Note: Pin numbers in parentheses () indicate signal grounds.

4.5.2 I/O Signal Connector (CN1) Pin Arrangement


I/O Signal Connector (CN1) Pin Arrangement 4.5.2

The following figure gives the pin arrangement of the of the I/O signal connector (CN1) for the default settings.

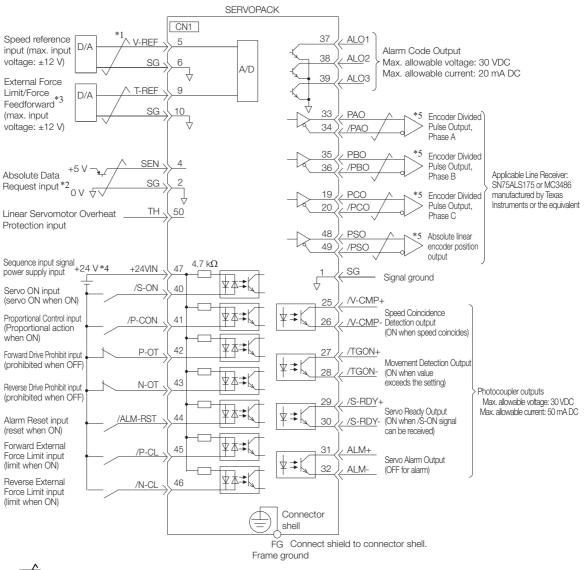
			Signal	1	SG	Signal Ground		/S02+	General-	26	/SO1- (V-CMP-)	General- purpose Sequence
	2	SG	Signal Ground			Open-Collec-	27	/SO2+ (TGON+)	purpose Sequence Output 2		(* 0.000)	Output 1
	4	SEN	Absolute Data Request Input	3	PL1	tor Power Supply Out- put for Refer- ence Pulses	29	/SO3+ (/S-RDY+)	General- purpose Sequence Output 3	28	/SO2- (TGON-)	General- purpose Sequence Output 2
	6	SG	(SEN) Signal Ground	5	V-REF	Speed Refer- ence Input	31	ALM+	Servo Alarm Output	30	/SO3- (/S-RDY-)	General- purpose Sequence Output 3
	8	/PULS	Pulse Ref- erence	7	PULS	Pulse Refer- ence Input	33	PAO	Encoder Divided Pulse	32	ALM-	Servo Alarm Output
			Input	9	T-REF	Torque Refer-			Output, Phase A Encoder	34	/PAO	Encoder Divided Pulse
Pin 1	10	SG	Signal Ground				35	PBO	Divided Pulse Output, Phase B			Output, Phase A Encoder
Pin 2 Pin 2 Pin 24 Pin 24 Pin 24 Pin 24 Pin 24 Pin 25 Pin 49	12	/SIGN	Sign of Refer- ence	11	SIGN	Sign of Refer-	37	ALO1	Alarm Code Output	36	/PBO	Divided Pulse Output, Phase B
Pin 24 Pin 25 Pin 50 The above view	14	/CLR	Input Position Deviation Clear Input	13	PL2	Open-Collec- tor Power Supply Out- put for Refer- ence Pulses	39	ALO3	Alarm Code Output	38	ALO2	Alarm Code Output
is from the direc- tion of the follow- ing arrow without the connector shell attached.	16	_	-	15	CLR	Position Devi- ation Clear Input	41	/SI3 (P-CON)	General- purpose Sequence Input 3	40	/SI0 (/S-ON)	General- purpose Sequence Input 0
	18 PL3	0 0	Collector Power L3 L3 Upply Output for Refer- ence Pulses	17	-	-	43		General- purpose Sequence	42	/SI1 (P-OT)	General- purpose Sequence Input 1
		FLO		19	PCO	Encoder Divided Pulse Output, Phase C	40	(N-OT)		44	/SI4 (/ALM- RST)	General- purpose Sequence Input 4
	20	/PCO	Encoder Divided Pulse Output, Phase C	21	BAT+	Battery for Absolute Encoder (+)	45	/SI5 (/P-CL)	General- purpose Sequence Input 5	46	/SI6 (/N-CL)	General- purpose Sequence Input 6
	22	BAT-	Battery for Abso- lute Encoder (-)	23	-	-	47	+24VIN	Sequence Input Sig- nal Power Supply Input	48	PSO	Absolute Encoder Position Output
	24	_	-	25	/SO1+ (V-CMP+)	General-pur- pose Sequence Output 1	49	/PSO	Absolute Encoder Position Output	50	TH	Linear Servomo- tor Over- heat Protec-
												tion Input

4.5.3 I/O Signal Wiring Examples

Speed Control with a Rotary Servomotor

*1. \checkmark represents twisted-pair wires.

*2. Connect these when using an absolute encoder. If the Encoder Cable with a Battery Case is connected, do not connect a backup battery.


*3. You can enable this function with a parameter setting.

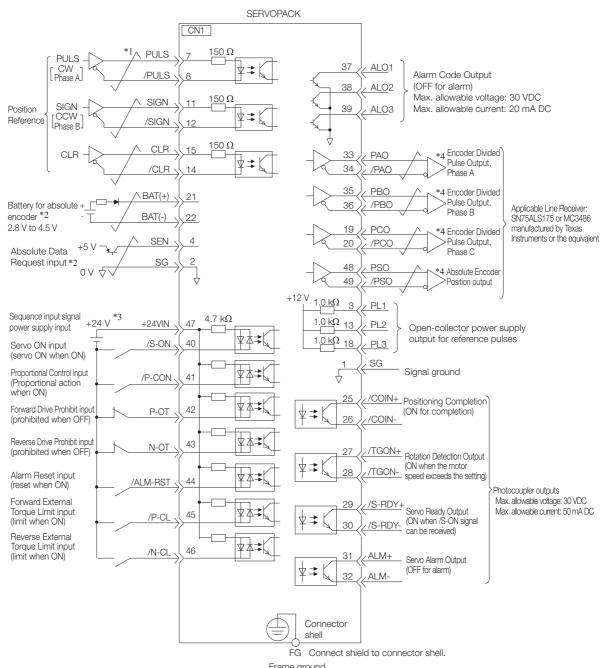
*4. The 24-VDC power supply is not provided by Yaskawa. Use a 24-VDC power supply with double insulation or reinforced insulation.

*5. Always use line receivers to receive the output signals.

Note: If you use a 24-V brake, install a separate power supply for the 24-VDC power supply from other power supply for the I/O signals of the CN1 connector. If the power supply is shared, the I/O signals may malfunction.

Speed Control with a Linear Servomotor

*1. \checkmark represents twisted-pair wires.


- *2. Connect these when using an absolute linear encoder.
- *3. You can enable this function with a parameter setting.

*4. The 24-VDC power supply is not provided by Yaskawa. Use a 24-VDC power supply with double insulation or reinforced insulation.

*5. Always use line receivers to receive the output signals.

Note: If you use a 24-V brake, install a separate power supply for the 24-VDC power supply from other power supplies, such as the one for the I/O signals of the CN1 connector.

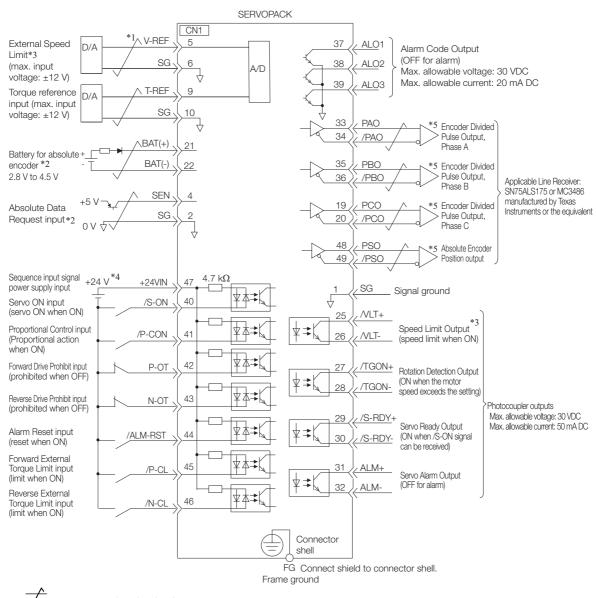
If the power supply is shared, the I/O signals may malfunction.



Position Control with a Rotary Servomotor

Frame ground

- *1 represents twisted-pair wires. 7
- *2. Connect these when using an absolute encoder. If the Encoder Cable with a Battery Case is connected, do not connect a backup battery.
- *3. The 24-VDC power supply is not provided by Yaskawa. Use a 24-VDC power supply with double insulation or reinforced insulation.
- *4. Always use line receivers to receive the output signals.


Note: If you use a 24-V brake, install a separate power supply for the 24-VDC power supply from other power supplies, such as the one for the I/O signals of the CN1 connector. If the power supply is shared, the I/O signals may malfunction.

Position Control with a Linear Servomotor

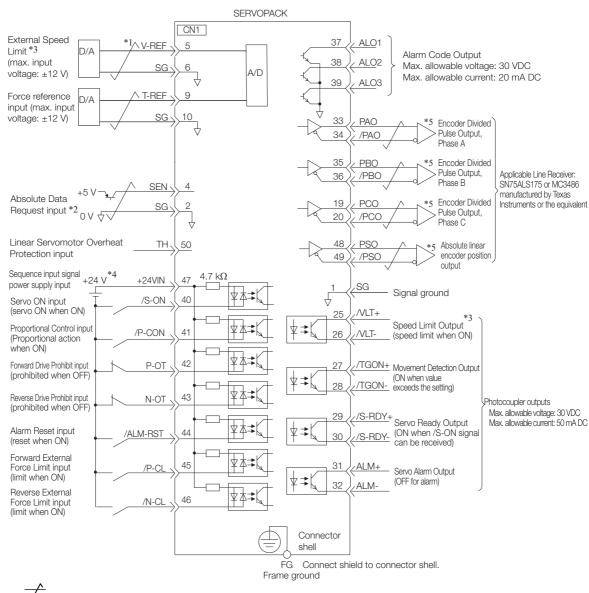
- represents twisted-pair wires. *1.

- *2. Connect when using an absolute linear encoder.
- *3 The 24-VDC power supply is not provided by Yaskawa. Use a 24-VDC power supply with double insulation or reinforced insulation.
- *4. Always use line receivers to receive the output signals.
- Note: If you use a 24-V brake, install a separate power supply for the 24-VDC power supply from other power supplies, such as the one for the I/O signals of the CN1 connector. If the power supply is shared, the I/O signals may malfunction.

Torque Control with a Rotary Servomotor

*1. / represents twisted-pair wires.

*2. Connect these when using an absolute encoder. If the Encoder Cable with a Battery Case is connected, do not connect a backup battery.


*3. You can enable this function with a parameter setting.

*4. The 24-VDC power supply is not provided by Yaskawa. Use a 24-VDC power supply with double insulation or reinforced insulation.

*5. Always use line receivers to receive the output signals.

Note: If you use a 24-V brake, install a separate power supply for the 24-VDC power supply from other power supplies, such as the one for the I/O signals of the CN1 connector.

If the power supply is shared, the I/O signals may malfunction.

Torque Control with a Linear Servomotor

*1 represents twisted-pair wires.

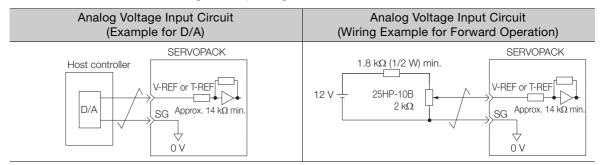
- *2. Connect when using an absolute linear encoder.
- *3. You can enable this function with a parameter setting.
- *4. The 24-VDC power supply is not provided by Yaskawa. Use a 24-VDC power supply with double insulation or reinforced insulation.

*5. Always use line receivers to receive the output signals.

- Note: If you use a 24-V brake, install a separate power supply for the 24-VDC power supply from other power supplies, such as the one for the I/O signals of the CN1 connector. If the power supply is shared, the I/O signals may malfunction.

4.5.4 I/O Circuits

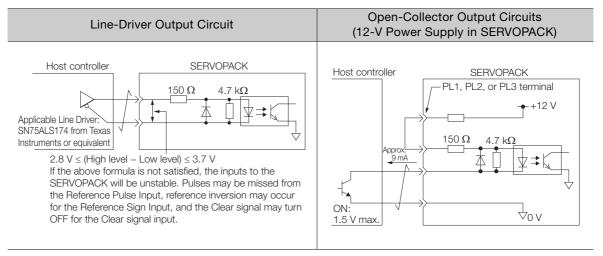
Reference Input Circuits


Analog Input Circuits

This section describes CN1 connector terminals 5-6 (Speed Reference Input) and 9-10 (Torque Reference Input).

The analog signals are used as either speed or torque reference signals. The input impedance is as follows:

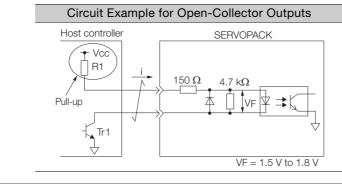
- Speed Reference Input: Approx. 14 $\text{k}\Omega$
- Torque Reference Input: Approx. 14 k Ω


The maximum allowable voltage for input signals is ±12 V.

Position Reference Input Circuits

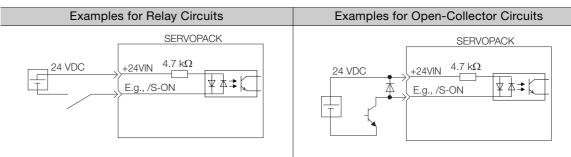
This section describes CN1 connector terminals 7-8 (Reference Pulse Input), 11-12 (Reference Sign Input), and 15-14 (Clear Input).

The output circuits for the reference pulses and Position Deviation Clear signal from the host controller can be either line-driver outputs or open-collector outputs. The following diagrams show these by output type.



Precaution When Host Controller Uses Open-Collector Output with User-Supplied Power Supply

The SERVOPACK may fail depending on the relationship between the pull-up voltage (Vcc) and the pull-up resistance (R1). Before you wire the circuits, confirm that the specifications of the host controller satisfy the values shown in the following table.


Pull-Up Voltage (Vcc)	Pull-Up Resistance (R1)
24 V	1.8 k Ω to 2.7 k Ω
12 V max.	820 Ω to 1.5 k Ω
5 V max.	180 Ω to 470 Ω

Sequence Input Circuits

Photocoupler Input Circuits

This section describes CN1 connector terminals 40 to 47. The circuits are connected through relay or open-collector transistor circuits. If you connect through a relay, use a low-current relay. If you do not use a low-current relay, a faulty contact may result.

Note: The 24-VDC external power supply capacity must be 50 mA minimum.

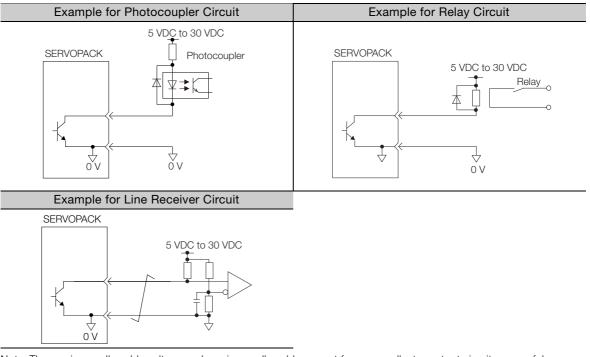
Information Refer to the following section for the interface for the SEN signal input circuit.

The SERVOPACK input circuits use bidirectional photocouplers. Select either a sink circuit or source circuit according to the specifications required by the machine.

Note: The connection examples in 4.5.3 I/O Signal Wiring Examples on page 4-34 are for sink circuit connections.

Sink (Circuits	Source	Circuits	
24 V + - SE Switch	Photocoupler Photocoupler Internal signal level Photocoupler Internal signal level	24 V + - SE Switch	RVOPACK input side Photocoupler Internal signal level Internal signal level	
Input Sig	nal Polarity	Input Signal Polarity		
Photocoupler	Internal Signal Level	Photocoupler	Internal Signal Level	
ON	Low level	ON	Low level	
OFF	High level	OFF	High level	

Sequence Output Circuits

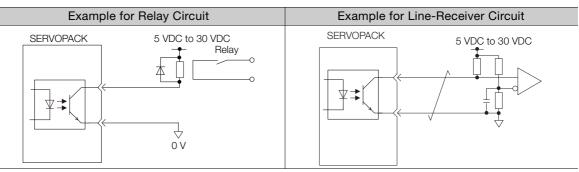

Incorrect wiring or incorrect voltage application to the output circuits may cause short-circuit failures.

If a short-circuit failure occurs as a result of any of these causes, the holding brake will not work. Important This could damage the machine or cause an accident that may result in death or injury.

Open-Collector Output Circuits

This section describes CN1 connector terminals 37 to 39 (Alarm Code Output).

The Alarm Code (ALO1, ALO2, and ALO3) signals are output from open-collector transistor output circuits. Connect an open-collector output circuit to a photocoupler, relay, or line-receiver circuit.

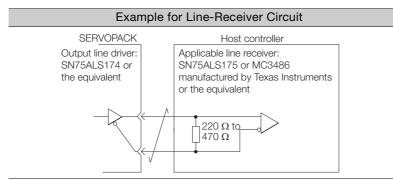

Note: The maximum allowable voltage and maximum allowable current for open-collector output circuits are as follows:

Maximum allowable voltage: 30 VDC

Maximum allowable current: 20 mA DC

Photocoupler Output Circuits

Photocoupler output circuits are used for the ALM (Servo Alarm), /S-RDY (Servo Ready), and other sequence output signals. Connect a photocoupler output circuit to a relay or line-receiver circuit.


Note: The maximum allowable voltage and current range for photocoupler output circuits are as follows:

Maximum allowable voltage: 30 VDC
 Current range: 5 mA to 50 mA DC

◆ Line-Driver Output Circuits

This section describes CN1 connector pins 33-34 (Phase-A Signal), 35-36 (Phase-B Signal), 19-20 (Phase-C Signal) and 48-49 (Phase-S Signal).

The serial data from the encoder is converted to two-phase (phases A and B) pulses. The resulting output signals (PAO, /PAO and PBO, /PBO), origin pulse signal (PCO and /PCO), and the absolute encoder position output signals (PSO and /PSO) are output with line-driver output circuits. Connect the line-driver output circuits to line-receiver circuits at the host controller.

4.6.1 Pin Arrangement of Safety Function Signals (CN8)

4.6 Connecting Safety Function Signals

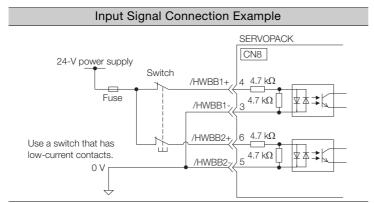
This section describes the wiring required to use a safety function. Refer to the following chapter for details on the safety function. *Chapter 11 Safety Functions*

4.6.1 Pin Arrangement of Safety Function Signals (CN8)

Pin No.	Signal	Name	Function		
1	_	– (Do not use these pins because they a	are connected to internal circuite)		
2	_	- (Do not use these pins because they a	are connected to internal circuits.)		
3	/HWBB1-	Hard Wire Base Block Input 1			
4	/HWBB1+	That whe base block input i	For a hard wire base block input. The base block (motor power turned OFF)		
5	/HWBB2-	Hard Wire Base Block Input 2	is in effect when the signal is OFF.		
6	/HWBB2+	That whe base block input 2			
7	EDM1-	External Device Monitor Output	Turns ON when the /HWBB1 and the / HWBB2 signals are input and the SER-		
8	EDM1+		VOPACK enters a base block state.		

4.6.2 I/O Circuits

For safety function signal connections, the input signal is the 0-V common and the output signal is a source output. This is opposite to other signals described in this manual.


To avoid confusion, the ON and OFF status of signals for the safety function are defined as follows:

ON: The state in which the relay contacts are closed or the transistor is ON and current flows into the signal line.

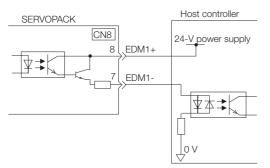
OFF: The state in which the relay contacts are open or the transistor is OFF and no current flows into the signal line.

Safety Input Circuits

Use a 0-V common to connect the safety function signals. You must connect redundant input signals.

4.6.2 I/O Circuits

Туре	Signal	Connector Pin No.	Status	Meaning
		CN8-4	ON (closed)	Does not activate the HWBB (normal operation).
Inputs	/HWBB1	CN8-3	OFF (open)	Activates the HWBB (motor current shut-OFF request).
mputs		CN8-6	ON (closed)	Does not activate the HWBB (normal operation).
	/HWBB2	CN8-5	OFF (open)	Activates the HWBB (motor current shut-OFF request).


◆ Input (HWBB) Signal Specifications

The input (HWBB) signals have the following electrical characteristics.

Item	Characteristics	Remarks
Internal Imped- ance	4.7 kΩ	-
Operating Voltage Range	+24 V ±20%	-
Maximum Delay Time	8 ms	Time from /HWBB1 and /HWBB2 signals turning OFF until HWBB is activated

Diagnostic Output Circuits

The EDM1 output signal uses a source circuit. The following figure shows a connection example.

◆ EDM1 Output Signal Specifications

Туре	Signal	Pin No.	Output Sta- tus	Meaning
Output	EDM1	CN8-8	ON	Both the /HWBB1 and /HWBB2 signals are operat- ing normally.
Output	EDM1 CN	CN8-7	OFF	The /HWBB1 signal, the /HWBB2 signal, or both are not operating.

The electrical characteristics of the EDM1 signal are as follows:

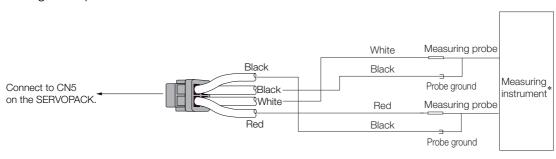
Item	Character- istics	Remarks
Maximum Allow- able Voltage	30 VDC	_
Maximum Allow- able Current	50 mA DC	_
Maximum ON Voltage Drop	1.0 V	Voltage between EDM1+ and EDM1- when current is 50 mA
Maximum Delay Time	8 ms	Time from a change in /HWBB1 or /HWBB2 until a change in EDM1

4.7.1 Serial Communications Connector (CN3)

4.7 Connecting the Other Connectors

4.7.1 Serial Communications Connector (CN3)

To use a Digital Operator or to connect a computer with an RS-422 cable, connect CN3 on the SERVOPACK.


Refer to the following manual for the operating procedures for the Digital Operator. $\square \Sigma$ -7-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33)

4.7.2 Computer Connector (CN7)

To use the SigmaWin+ Engineering Tool, connect the computer on which the SigmaWin+ is installed to CN7 on the SERVOPACK.

4.7.3 Analog Monitor Connector (CN5)

- To use an analog monitor, connect CN5 on the SERVOPACK.
- Wiring Example

* The measuring instrument is not provided by Yaskawa.

Refer to the following section for information on the monitoring methods for an analog monitor. (3) 9.3 Monitoring Machine Operation Status and Signal Waveforms on page 9-6

Basic Functions That Require Setting before Operation

5

This chapter describes the basic functions that must be set before you start servo system operation. It also describes the setting methods.

5.1	Manip	oulating Parameters (PnDDD)5-3
	5.1.1 5.1.2 5.1.3 5.1.4 5.1.5	Parameter Classification5-3Notation for Parameters5-4Parameter Setting Methods5-5Write Prohibition Setting for Parameters5-6Initializing Parameter Settings5-9
5.2	Contr	rol Method Selection5-12
5.3	Power S	Supply Type Settings for the Main Circuit and Control Circuit 5-13
	5.3.1 5.3.2	AC Power Supply Input/DC Power Supply Input Setting
5.4	Autor	matic Detection of Connected Motor 5-15
5.5	Functio	ons and Settings for the /S-ON (Servo ON) Signal 5-16
	5.5.1	Function of the /S-ON (Servo ON) Signal 5-16
	5.5.2	Setting to Keep the Servo ON and Supply Power to the Motor Continuously
5.6		
5.6 5.7	Moto	Power to the Motor Continuously

5.9	Selection	ng the Phase Sequence for a Linear Servomotor . 5-23
5.10	Polari	ty Sensor Setting5-25
5.11	Polari	ty Detection5-26
	5.11.1 5.11.2	Restrictions.5-26Using the /S-ON (Servo ON) Signal to PerformPolarity Detection.5-27
	5.11.3 5.11.4	Using the /P-DET (Polarity Detection) Signal to Perform Polarity Detection
	5.11.4	Detection
5.12	Overt	ravel and Related Settings5-30
	5.12.1 5.12.2 5.12.3 5.12.4	Overtravel Signals.5-31Setting to Enable/Disable Overtravel.5-31Motor Stopping Method for Overtravel.5-32Overtravel Warnings.5-33
5.13	Holdi	ng Brake5-35
	5.13.1 5.13.2 5.13.3	Brake Operating Sequence5-35 /BK (Brake) Signal5-36 Output Timing of /BK (Brake) Signal When
	5.13.4	the Servomotor Is Stopped5-37 Output Timing of /BK (Brake) Signal When the Servomotor Is Operating5-38
5.14	Motor	Stopping Methods for Servo OFF and Alarms 5-40
	5.14.1 5.14.2	Stopping Method for Servo OFF5-41 Servomotor Stopping Method for Alarms5-41
5.15	Motor	Overload Detection Level5-43
	5.15.1 5.15.2	Detection Timing for Overload Warnings (A.910) 5-43 Detection Timing for Overload Alarms (A.720)5-44
5.16	Electr	onic Gear Settings5-45
	5.16.1 5.16.2	Electronic Gear Ratio Settings5-46 Electronic Gear Ratio Setting Examples5-49
5.17	Reset	ting the Absolute Encoder5-50
	5.17.1 5.17.2 5.17.3	Precautions on Resetting5-50 Applicable Tools5-50 Operating Procedure
5.18	Setting	g the Origin of the Absolute Encoder5-53
	5.18.1	Setting the Origin of the Absolute Linear Encoder5-53
5.19	Setting	g the Regenerative Resistor Capacity 5-56

5.1.1 Parameter Classification

5.1 Manipulating Parameters (Pn

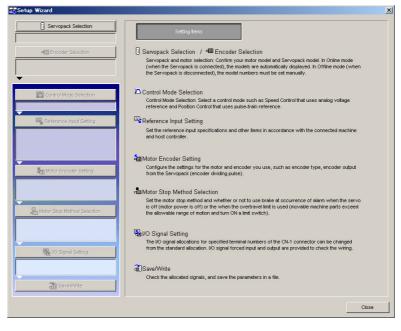
This section describes the classifications, notation, and setting methods for the parameters given in this manual.

5.1.1 Parameter Classification

There are the following two types of SERVOPACK parameters.

Classification	Meaning
Setup Parameters	Parameters for the basic settings that are required for operation.
Tuning Parameters	Parameters that are used to adjust servo performance.

Information The tuning parameters are not displayed by default when you use the Panel Operator or Digital Operator. To display and set the tuning parameters, set Pn00B to n. DDD1 (Display all parameters).


F	Parameter	Meaning	When Enabled	Classification
Pn00B	n.□□□0 (default setting)	Display only setup parameters.	After restart	Setup
	n.□□□1	Display all parameters.		

The setting method for each type of parameter is described below.

Setup Parameters

You can use the Panel Operator, Digital Operator, or SigmaWin+ to set the setup parameters individually.

Information We recommend that you use the Setup Wizard of the SigmaWin+ to easily set the required setup parameters by setting the operating methods, machine specifications, and I/O signals according to on-screen Wizard instructions.

5.1.2 Notation for Parameters

Tuning Parameters

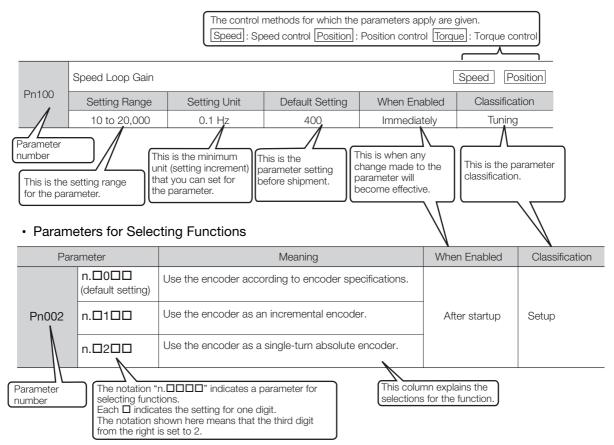
Normally the user does not need to set the tuning parameters individually.

Use the various SigmaWin+ tuning functions to set the related tuning parameters to increase the response even further for the conditions of your machine. Refer to the following sections for details.

3.6 Autotuning without Host Reference on page 8-23

3.7 Autotuning with a Host Reference on page 8-35

🕼 8.8 Custom Tuning on page 8-42


You can also set the tuning parameters individually to make adjustments. Refer to the following section for details.

3.13 Manual Tuning on page 8-74

5.1.2 Notation for Parameters

There are two types of notation used for parameters that depend on whether the parameter requires a numeric setting (parameter for numeric setting) or requires the selection of a function (parameter for selecting a function).

· Parameters for Numeric Settings

5.1.3 Parameter Setting Methods

You can use the SigmaWin+, a Digital Operator, or the Panel Operator to set parameters. A sample operating procedure is given below.

Setting Parameters with the SigmaWin+

- 1. Select *Parameters Edit Parameters* from the menu bar of the Main Window of the SigmaWin+.
- 2. Select the cell of the parameter to edit.

If the parameter to edit is not displayed in the Parameter Editing Dialog Box, click the 🔺 or 💌 Button to display the parameter to edit.

3. Click the **Edit** Button.

🖉 Parameter Editing :											
	9	Display Mode User Level 2:	Level 2 (To the adju	ustme	nt.)	•			Display Setting		🔚 Import
		Control Mode 4 :	All Control Mode			•			Comment		Customize
All constant number	Function Selec	tion(Pn0xx-) Gain(Pn1	xx-) Speed(Pn3x)	x-) '	Torque(Pn4xx-)	Seq	uence(Pn5	5xx-)	I/O Sign Me	chatro	link(Pn 🔺 🕨
No.	Name		Set value	AX	S#00 Input v	AXIS	#01 Input	valu	AXIS#02 Input	valu	AXIS#03 🔺
🗹 Pn000	Basic Functi	on Select Switch 0	-	000	1H	0000	H		0000H		0000н —
Odigit	Servomotor c	lirection	-	1:	Sets CW as fo	0:	Sets CO	CW.	0 : Sets C	CW a	0 : Se
1 digit	Reserved (Do	o not change.)	-	0 :	Reserved (Do	0:1	Reserved	(Do	0 : Reserved	(Do	0 : Res
2digit	Reserved (Do	o not change.)	-	0 :	Reserved (Do	0:1	Reserved	(Do	0 : Reserved	(Do	0 : Res
3digit	Reserved (Do	o not change.)	-	0 :	Reserved (Do	0:1	Reserved	(Do	0 : Reserved	(Do	0 : Res
Pn001	Application Fur	ction Select Switch 1	-	0013	2H	0010	H		0012H		0012H
Odigit	Servo OFF or	Alarm G1 Stop Mode	-	2 :	Makes the mot	0:	Stops t	he i	2 : Makes the	e mot	2 : Mak
1 digit	Overtravel (C)T) Stop Mode	-		Sets the torqu		Sets the t	orqu	1 : Sets the t	torqu	1 : Set:
2digit	Reserved (Do		-	0 :	Reserved (Do		Reserved			(Do	0 : Res
3digit	Reserved (Do	o not change.)	-	0 :	Reserved (Do	0:1	Reserved	(Do	0 : Reserved	(Do	0 : Res
Pn002	Application Fur	ction Select Switch 2	-	0111	1H	01111	н		0011H		0111H
Odigit	Reserved (Do	o not change.)	-	1:	Reserved (Do	1:1	Reserved	(Do	1 : Reserved	(Do	1 : Res
1digit	Reserved (Do	o not change.)	-	1:	Reserved (Do	1:1	Reserved	(Do	1 : Reserved	(Do	1 : Res
2digit	Absolute End	oder Usage	-	1:	Uses absolute	1:1	Uses abso	olute	0 : Uses a	bsol	1 : Use ▼
•											
		r:include not displayed) lation result of the select	ted axis)								🗸 Edit
Initialize		Compa	re						Read		Write

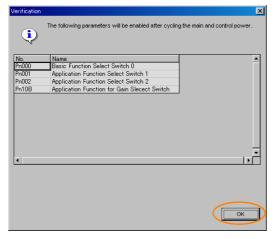
4. Change the setting of the parameter.

Information 1. For a parameter for a numeric setting, input the numeric setting.

For a parameter for a function selection, select the setting from the list for the individual digit.

5. Click the OK Button.

Edit X
Pn001 Basic Function Select Switch 1
digit 0 Servo OFF or Alarm G1 Stop Mode
0: Stops the motor by applying DB (dynamic brake).
digit 1 Overtravel (OT) Stop Mode
0 : Same setting as Pn001.0 (Stops the motor by applying DB or by coasting).
digit 2 AC/DC Power Input Selection
0 : Not applicable to DC power input: Input AC power supply through L1, L2 (, :
digit 3 Warning Code Output Selection
0 : ALO1, ALO2, and ALO3 output only alarm codes.
0000 H


5.1.4 Write Prohibition Setting for Parameters

6. Click the Write Button.

Writing will start.

This concludes the procedure to edit the parameter. Proceed to step 7 only when the dialog box shown in step 7 is displayed.

7. Click the OK Button.

8. To enable changes to the settings, turn the power supply to the SERVOPACK OFF and ON again.

Setting Parameters with a Digital Operator

Refer to the following manual for information on setting the parameters with a Digital Operator. $\square \Sigma$ -7-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33)

Setting Parameters with the Panel Operator

Refer to the following section for information on setting the parameters with the Panel Operator. *13.2 Parameter (PnDDD) Operations on the Panel Operator* on page 13-6

5.1.4 Write Prohibition Setting for Parameters

You can prohibit writing parameters from the Panel Operator or the Digital Operator. Even if you do, you will still be able to change parameter settings from the SigmaWin+.

Preparations

No preparations are required.

Applicable Tools

The following table lists the tools that you can use to change the Write Prohibition Setting and the applicable tool functions.

Tool	Function	Reference
Panel Operator	Fn010	13.4.15 Write Prohibition Setting (Fn010) on page 13-21
Digital Operator	Fn010	Σ-7-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33)
SigmaWin+	Setup - Write Prohibited Setting	Jervice Operating Procedure on page 5-7

5.1.4 Write Prohibition Setting for Parameters

Operating Procedure

Use the following procedure to prohibit or permit writing parameter settings.

- 1. Select *Setup Write Prohibited Setting* from the menu bar of the Main Window of the SigmaWin+.
- **2.** Press the v or for the rightmost digit and set one of the following. 0000: Writing is permitted (default setting). 0001: Writing is prohibited.
- 3. Click the Setting Button.

🔒 Write I	Prohibited Setting AXIS#0		X
	Write Prohibited Setting is ON.		
		Setting	

4. Click the OK Button.

The setting will be written to the SERVOPACK.

5. To enable the new setting, turn the power supply to the SERVOPACK OFF and ON again.

This concludes the procedure to prohibit or permit writing parameter settings.

Restrictions

If you prohibit writing parameter settings, you will no longer be able to execute some functions. Refer to the following table.

5.1.4 Write Prohibition Setting for Parameters

	SigmaWin+	Panel	Operator or Digital Operator	When Writ-	
Menu Bar Button	SigmaWin+ Function Name	Fn No.	Utility Function Name	ing Is Pro- hibited	Reference
	Origin Search	Fn003	Origin Search	Cannot be executed.	page 7-25
	Absolute Encoder Reset	Fn008	Reset Absolute Encoder	Cannot be executed.	page 5-51
		Fn009	Autotune Analog (Speed/ Torque) Reference Offset	Cannot be executed.	page 6-23, page 6-41
	Speed/Torque Reference Offset Adjustment	Fn00A	Manually Adjust Speed Reference Offset	Cannot be executed.	page 6-23
		Fn00B	Manually Adjust Torque Ref- erence Offset	Cannot be executed.	page 6-41
	Analog Monitor Output	Fn00C	Adjust Analog Monitor Output Offset	Cannot be executed.	page 9-8
	Adjustment	Fn00D	Adjust Analog Monitor Output Gain	Cannot be executed.	page 9-8
	Motor Current Detection	Fn00E	Autotune Motor Current Detection Signal Offset	Cannot be executed.	page 6-100
Setup	Offset Adjustment	Fn00F	Manually Adjust Motor Cur- rent Detection Signal Offset	Cannot be executed.	
	Multiturn Limit Setting	Fn013	Multiturn Limit Setting after Multiturn Limit Disagreement Alarm	Cannot be executed.	page 6-83
	Reset Configuration Error of Option Module	Fn014	Reset Option Module Config- uration Error	Cannot be executed.	page 12-42
	Initialize Vibration Detection Level	Fn01B	Initialize Vibration Detection Level	Cannot be executed.	page 6-96
	Setting the Origin of the Absolute Linear Encoder	Fn020	Set Absolute Linear Encoder Origin	Cannot be executed.	page 5-53
	Software Reset	Fn030	Software Reset	Can be executed.	page 6-94
	Polarity Detection	Fn080	Polarity Detection	Cannot be executed.	page 5-28
	Tuning-less Level Setting	Fn200	Tuning-less Level Setting	Cannot be executed.	page 8-15
	EasyFFT	Fn206	Easy FFT	Cannot be executed.	page 8-92
Parameters	Initialize Servo*	Fn005	Initialize Parameters	Cannot be executed.	page 5-9
	Autotuning without Refer- ence Input	Fn201	Advanced Autotuning with- out Reference	Cannot be executed.	page 8-23
	Autotuning with Reference Input	Fn202	Advanced Autotuning with Reference	Cannot be executed.	page 8-35
Tuning	Custom Tuning	Fn203	One-Parameter Tuning	Cannot be executed.	page 8-42
	Anti-Resonance Control Adjustment	Fn204	Adjust Anti-resonance Con- trol	Cannot be executed.	page 8-51
	Vibration Suppression	Fn205	Vibration Suppression	Cannot be executed.	page 8-56
		Fn011	Display Servomotor Model	Can be executed.	page 9-2
Monitor	Product Information	Fn012	Display Software Version	Can be executed.	paye 3-2
MONILOI		Fn01E	Display SERVOPACK and Servomotor IDs	Can be executed.	page 9-2
		Fn01F	Display Servomotor ID from Feedback Option Module	Can be executed.	page 5-2

5.1 Manipulating Parameters (PnDDD)

5.1.5 Initializing Parameter Settings

Continued from	previous	page.
----------------	----------	-------

	SigmaWin+	Panel	Operator or Digital Operator	When Writ-	
Menu Bar Button	SigmaWin+ Function Name	Fn No.	Utility Function Name	ing Is Pro- hibited	Reference
Test Opera-	Jogging	Fn002	Jog	Cannot be executed.	page 7-7
tion	Program Jogging	Fn004	Jog Program	Cannot be executed.	page 7-20
	Display Alarm	Fn000	Display Alarm History	Can be executed.	page 12-40
Alarm		Fn006	Clear Alarm History	Cannot be executed.	page 12-41
	Reset Motor Type Alarm	Fn021	Reset Motor Type Alarm	Cannot be executed.	page 5-15

* The Initialize Button will be displayed when you select Parameters - Edit Parameters from the menu bar.

5.1.5 Initializing Parameter Settings

You can return the parameters to their default settings.

This function will not initialize the settings of the parameters that are adjusted for the Fn009, Fn00A, Fn00B, Fn00C, Fn00D, Fn00E, and Fn00F utility functions.

To enable the new settings, turn the power supply to the SERVOPACK OFF and ON again after you complete the operation.

Preparations

Check the following settings before you initialize the parameter settings.

- The parameters must not be write prohibited.
- The servo must be OFF.

Applicable Tools

The following table lists the tools that you can use to initialize the parameter settings and the applicable tool functions.

Tool	Function	Reference
Panel Operator	Fn005	13.4.5 Initialize Parameters (Fn005) on page 13-15
Digital Operator	Fn005	Σ-7-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33)
SigmaWin+	Parameters - Edit Parameters	Jervice Contracting Procedure on page 5-9

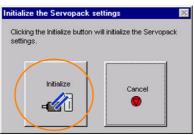
Operating Procedure

Use the following procedure.

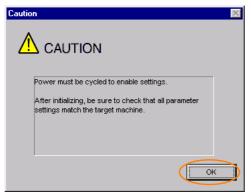
1. Select *Parameters - Edit Parameters* from the menu bar of the Main Window of the SigmaWin+.

5.1.5 Initializing Parameter Settings

2. Click the Initialize Button.


Odigit Servomo 1 digit Reserve 2 digit Reserve 3 digit Reserve 9 h001 Application 0 digit Servo 2 digit Reserve 3 digit Reserve 3 digit Reserve 3 digit Reserve 0 digit Reserve 0 digit Reserve	nction Select Switch (tor direction d (Do not change.) d (Do not change.) d (Do not change.) F for Alarm GI Stop Mode rel (OT) Stop Mode d (Do not change.)	Set value - - - - -	Btxx-> Torque(Pn4xx- AXIS#00 Input 0001H 1 1 Sets CW as 1 0 Reserved (0x 0 Reserved (0x 0 Reserved (0x 0012H 2 1 Sets the torq		nput valu s CCW (rved (Do rved (Do rved (Do	AXIS 0000 0 : 0 : 0 : 0 : 0 : 0 : 0 :	#02 Input IH Sets C(Reserved Reserved Reserved H	valu / CW ((Do (Do (Do	AXIS#03 0000H 0 : Se 0 : Res 0 : Res 0 : Res 0 : Res 012H
P A000 Basic Fut Odigit Servomo 1 digit Reserve 2 digit Reserve 3 digit Reserve 9 n001 Application Odigit Serve 0 1 digit Serve 0 1 digit Serve 0 2 digit Reserve 2 digit Reserve 3 digit Reserve 3 digit Reserve 0 digit Reserve	tor direction d (Do not change.) d (Do not change.) d (Do not change.) n Function Select Switch 1 FF or Alarm G1 Stop Mode rel (OT) Stop Mode d (Do not change.)) - - - - - -	0001H 1: Sets CW as 1 0: Reserved (Do 0: Reserved (Do 0: Reserved (Do 0012H 2: Makes the m	00000H fo 0 : Set lo 0 : Rese lo 0 : Rese	s CCW a rved (Do rved (Do rved (Do	0000 0: 0: 0: 0: 0: 0012	IH Sets CO Reserved Reserved Reserved H	(Do (Do (Do (Do (Do	0000H 0: Se 0: Res 0: Res 0: Res 0: Res
Odigit Servomo 1 digit Reserve 2 digit Reserve 3 digit Reserve 9 h001 Application 0 digit Servo 2 digit Reserve 9 h001 Application 0 digit Servo 2 digit Reserve 3 digit Reserve 9 h002 Application 0 digit Reserve	tor direction d (Do not change.) d (Do not change.) d (Do not change.) n Function Select Switch 1 FF or Alarm G1 Stop Mode rel (OT) Stop Mode d (Do not change.)	- - - -	1 : Sets CW as f 0 : Reserved (Do 0 : Reserved (Do 0 : Reserved (Do 0012H 2 : Makes the m	fo 0:Set 0 0:Rese 10 0:Rese 00:Rese 0010H not 0:Sto	rved (Do rved (Do rved (Do	0 : 0 : 0 : 0 : 0 :	Sets CO Reserved Reserved Reserved H	CW ((Do (Do (Do	0:Res 0:Res 0:Res 0:Res 0:Res
Idigit Reserve 2digit Reserve 3digit Reserve Pn001 Application 0digit Serve Ol 1digit Overtrav 2digit Reserve 3digit Reserve 9n002 Application 0digit Reserve 0digit Reserve	d (Do not change.) d (Do not change.) d (Do not change.) n Function Select Switch 1 FF or Alarm G1 Stop Mode el (OT) Stop Mode d (Do not change.)		0 : Reserved (Do 0 : Reserved (Do 0 : Reserved (Do 0 : Reserved (Do 0012H 2 : Makes the m	0 0:Rese 0 0:Rese 0 0:Rese 0010H not 0:Sto	rved (Do rved (Do rved (Do	0: 0: 0: 0012	Reserved Reserved Reserved H	(Do (Do (Do	0 : Res 0 : Res 0 : Res 012H
2digit Reserve 3digit Reserve 9n001 Application 0digit Servo O 1digit Overtray 2digit Reserve 3digit Reserve 9n002 Application 0digit Reserve 0digit Reserve 0digit Reserve	d (Do not change.) d (Do not change.) n Function Select Switch 1 FF or Alarm G1 Stop Mode rel (OT) Stop Mode d (Do not change.)		0 : Reserved (Do 0 : Reserved (Do 0012H 2 : Makes the m	0 0:Rese 0 0:Rese 0010H not 0:Sto	rved (Do rved (Do	0:1 0:1 0012	Reserved Reserved H	(Do (Do	0 : Res 0 : Res 012H
3digit Reserve Pn001 Application 0digit Servo 01 1digit Overtrav 2digit Reserve 3digit Reserve Pn002 Application 0digit Reserve	d (Do not change.) n Function Select Switch 1 FF or Alarm G1 Stop Mode rel (OT) Stop Mode d (Do not change.)		0 : Reserved (Do 0012H 2 : Makes the m	0 0:Rese 0010H not 0:Sto	rved (Do	0 : 1 0012	Reserved H	(Do C	0 : Res 012H
Pn001 Application Odigit Servo Ol 1 digit Overtrav 2 digit Reserve 3 digit Reserve Pn002 Application Odigit Reserve	n Function Select Switch 1 FF or Alarm G1 Stop Mode rel (OT) Stop Mode d (Do not change.)		0012H 2 : Makes the m	0010H not 0:Sta		0012	Н	0	012H
Odigit Servo Ol 1digit Overtrav 2digit Reserve 3digit Reserve Pn002 Application Odigit Reserve	FF or Alarm G1 Stop Mode rel (OT) Stop Mode d (Do not change.)		2 : Makes the m	not 0:Sta	ns the r				
1 digit Overtrav 2 digit Reserve 3 digit Reserve Pn002 Application 0 digit Reserve	rel (OT) Stop Mode d (Do not change.)	- -							
2digit Reserve 3digit Reserve Pn002 Application 0digit Reserve	d (Do not change.)	_	I : bets the torg		the torau				
3digit Reserve Pn002 Application Odigit Reserve			0 : Reserved (Do		the torqu rved (Do		Sets the t Reserved		1 : Set 0 : Res
Pn002 Application Odigit Reserve			0 : Reserved (Do		rved (Do		Reserved		0 : Res
Odigit Reserve	a (Do not change.) n Function Select Switch 2	-	01111H	0 U:Rese	rvea (Do	011			U: Kes 1111 H
	d (Do not change.)	-	1 : Reserved (Do		wed (De		n Reserved		1 : Res
	d (Do not change)	_	1 : Reserved (Do				Reserved		1 : Res
	e Encoder Usage	-	1 : Uses absolut		absolute		Uses al		
A Hostidie	Chooder Osdge		1 · Oses absolut	1.0868	absolute	0.	USCS G	Dedi	I USC
Select All(All constant n Axis Collation(Display th		cted axis)					ad		Edit

3. Click the OK Button.


Click the Cancel Button to cancel initialization. The Parameter Editing Dialog Box will return.

4. Click the Initialize Button.

Click the **Cancel** Button to cancel initialization. The Parameter Editing Dialog Box will return.

5. Click the OK Button.

5.1.5 Initializing Parameter Settings

6. Turn the power supply to the SERVOPACK OFF and ON again after the parameter settings have been initialized.

This concludes the procedure to initialize the parameter settings.

5

5-11

5.2 Control Method Selection

You can use the SERVOPACK for speed control, position control, or torque control. You set the control method in Pn000 = $n.\Box\Box X\Box$ (Control Method Selection).

Control Method Selection					
Pn000 = n.□□X□	Control Method	Outline	Reference		
n.□□0□ (default set- ting)	Speed control	 The speed of the Servomotor is controlled with an analog voltage speed reference. Use speed control in the following cases. To control speed For position control using encoder pulse outputs from the SERVOPACK to form a position loop in the host controller 	page 6-12		
n.0010	Position control	The position of the machine is controlled with a pulse train position reference. The position is controlled with the number of input pulses, and the speed is controlled with the input pulse frequency. Use position control when positioning is required.	page 6-26		
n.□□2□	Torque control	The torque output by the Servomotor is controlled with an analog voltage torque reference. Use torque control to output the required torque for operations such as pressing.	page 6-40		
n.□□3□	Internal set speed control	Three internal set speeds that are preset in the SERVOPACK are used as references to perform speed control. An analog reference is not necessary for this control method.	page 6-47		
n.0040	Switching between internal set speed control and speed control with analog references				
n.0050	Switching between internal set speed control and position control				
n.□□6□	Switching between internal set speed control and torque control	These are switching methods that you can use to change between two of the above four control methods. You can select the combination that is required for the application.	page 6-58		
n.0070	Switching between position control and speed control				
n.□□8□	Switching between position control and torque control				
n.□□9□	Switching between torque control and speed control				
n.00A0	Switching between speed control with analog references and speed control with zero clamping	You can use zero clamping for speed control.	page 6-24		
n.0080	Switching between normal position con- trol and position con- trol with reference pulse inhibition	You can use reference pulse inhibition for position control.	page 6-39		

5.3.1 AC Power Supply Input/DC Power Supply Input Setting

5.3 Power Supply Type Settings for the Main Circuit and Control Circuit

A SERVOPACK can operated on either an AC power supply input or DC power supply input to the main and control circuits. If you select an AC power supply input, you can operate the SER-VOPACK on either a single-phase power supply input or a three-phase power supply input. This section describes the settings related to the power supplies.

5.3.1 AC Power Supply Input/DC Power Supply Input Setting

Set $Pn001 = n.\Box X \Box \Box$ (Main Circuit Power Supply AC/DC Input Selection) to specify whether to use an AC or DC power supply input for the main circuit power supply to the SERVOPACK.

If the setting of $Pn001 = n.\Box X \Box \Box$ does not agree with the actual power supply input, an A.330 alarm (Main Circuit Power Supply Wiring Error) will occur.

Example Examples of When an A.330 Alarm (Main Circuit Power Supply Wiring Error) Occurs

- A DC power supply is connected between the B1/⊕ and ⊖2 terminals, but an AC power supply input is specified (Pn001 = n.□0□□).
- An AC power supply is input to the L1, L2, and L3 terminals, but a DC power supply is specified (Pn001 = n.□1□□).

Parameter		Meaning	When Enabled	Classification		
Pn001 ((n.0000 default set- ing) n.0100	Use an AC power supply input.	After restart	Setup		
	1.0100	Use a DC power supply input.				
 Connect the AC or DC power supplies to the specified SERVOPACK terminals. Connect an AC power supply to the L1, L2, and L3 terminals and the L1C and L2C terminals on the SERVOPACK. Connect a DC power supply to the B1/⊕ and ⊝2 terminals and the L1C and L2C terminals on the SERVOPACK. There is a risk of failure or fire. Always specify a DC power supply input (Pn001 = n.□1□□) before you input DC power for the main circuit power supply. If you input DC power without specifying a DC power supply input (i.e., without setting Pn001 to n.□1□□), the SERVOPACK's internal elements may burn and may cause fire or damage to the equipment. With a DC power supply input, time is required to discharge electricity after the main power supply is turned OFF. A high residual voltage may remain in the SERVOPACK after the power supply is turned OFF. Be careful not to get an electric shock. Install fuses on the power supply line if you use DC power. The Servomotor returns regenerative energy to the power supply. If you use a SERVOPACK with a DC power supply input, regenerative energy is not processed. Process the regenerative energy at the power supply. If you use a DC power supply input with any of the following SERVOPACKs, externally connect an inrush current limiting circuit and use the power ON and OFF sequences recommended by Yaskawa: SGD7S-330A, -470A, -550A, -590A, or -780A. There is a risk of equipment damage. Befor the following section for the power ON and OFF sequences. If at site of equipment damage. 						

Refer to the following section for information on wiring the SERVOPACK. *4.3.4 Power Supply Wiring Diagrams* on page 4-15

5.3.2 Single-phase AC Power Supply Input/Three-phase AC Power Supply Input Setting

5.3.2 Single-phase AC Power Supply Input/Three-phase AC Power Supply Input Setting

Some models of Three-phase 200-VAC SERVOPACKs can also operate on a single-phase 200-VAC power supply.

You can use a single-phase, 200-VAC power supply input with the following models. • SGD7S-R70A, -R90A, -1R6A, -2R8A, and -5R5A

If you use a single-phase, 200-VAC power supply input for the SERVOPACK's main circuit power supply, set parameter Pn00B to n. $\Box 1 \Box \Box$ (Use a three-phase power supply input as a single-phase power supply input).

Information You do not need to change the setting of Pn00B to n. $\Box 1 \Box \Box$ (Use a three-phase power supply input input as a single-phase power supply input) for a SERVOPACK with a single-phase 200-VAC power supply input (model numbers: SGD7S-120A $\Box \Box \Box$ 008).

Parameter		Meaning	When Enabled	Classification
Pn00B	n.□0□□ (default setting)	Use a three-phase power supply input.	After restart	Setup
	n.0100	Use a three-phase power supply input as a single-phase power supply input.		

Important	 If you use a single-phase power supply input without specifying a signal-phase AC power supply (Pn00B = n.□1□□), an A.F10 alarm (Power Supply Line Open Phase) will occur. Not all SERVOPACKs can be run on a single-phase AC power supply input. If you connect a single-phase AC power supply input to a SERVOPACK that does not support single-phase power, an A.F10 alarm (Power Supply Line Open Phase) will occur.
	3. If you use a single-phase 200-VAC power supply input, the torque-motor speed characteristic of the Servomotor will not be the same as for a three-phase AC power supply input. Decide whether to use a single-phase or three-phase AC power supply input after checking the characteristics given in the Servomotor manual or catalog.

Refer to the following section for information on wiring a single-phase AC power supply input to the SERVOPACK.

₩ wiring Example for Single-Phase, 200-VAC Power Supply Input on page 4-16

5.4 Automatic Detection of Connected Motor

You can use a SERVOPACK to operate either a Rotary Servomotor or a Linear Servomotor. If you connect the Servomotor encoder to the CN2 connector on the SERVOPACK, the SER-VOPACK will automatically determine which type of Servomotor is connected. Therefore, you normally do not need to specify the motor type.

Information If an encoder is not connected, e.g., for a test without a motor, you can specify a Rotary Servomotor or a Linear Servomotor in $Pn000 = n.X \square \square \square$ (Rotary/Linear Startup Selection When Encoder Is Not Connected). If you specify either a Rotary or Linear Servomotor, only the parameters, monitors, alarms, and functions for the specified motor type will be enabled.

Parameter		Meaning	When Enabled	Classification
Pn000	n.0□□□ (default setting)	When an encoder is not con- nected, start as SERVOPACK for Rotary Servomotor.	After restart	Setup
	n.1000	When an encoder is not con- nected, start as SERVOPACK for Linear Servomotor.	Aller Testart	

5.5.1 Function of the /S-ON (Servo ON) Signal

Functions and Settings for the /S-ON (Servo ON) Signal 5.5

The /S-ON (Servo ON) signal is used to enable Servomotor operation. This section describes the function of and settings for the /S-ON signal.

Function of the /S-ON (Servo ON) Signal 5.5.1

Туре	Signal	Connector Pin No.	Signal Status	Function	
Input	/S-ON	CN1-40 (default setting)	ON (closed)	Power is supplied to the Servomo- tor to enable operation.	
			OFF (open)	Power supply to the Servomotor is stopped and operation is disabled.	

You can use $Pn50A = n.\Box \Box X \Box$ (/S-ON (Servo ON) Signal Allocation) to allocate the /S-ON signal to a different input signal terminal. Refer to the following section for details on input signal allocation.

6.1.1 Input Signal Allocations on page 6-4

 \bigcirc

1. Always input the /S-ON signal before you input a speed, position, or torque reference to start the Servomotor. Never input the reference first and then use the /S-ON signal or turn ON the AC power supply to start the Servomotor. Doing so will degrade internal elements and may cause an accident.

2. Input the /S-ON signal while the Servomotor is stopped. You cannot turn ON the servo while the Servomotor is operating.

5.5.2 Setting to Keep the Servo ON and Supply Power to the Motor Continuously

You can set Pn50A = n. DDXD (/S-ON (Servo ON) Signal Allocation) to 7 (The signal is always active) to keep the servo ON and supply power to the motor continuously.

Parameter		Meaning	When Enabled	Classification
Pn50A	n.□□0□ (default setting)	The S-ON signal is active when CN1-40 input signal is ON (closed).	After restart	Setup
	n.0070	The signal is always active. (The /S-ON signal is always active.)	Aller Testart	

1. If you set this parameter to keep the servo ON continuously, power will be supplied to the motor as soon the main circuit power supply to the SERVOPACK is turned ON. If there is already a speed, position, or torque reference input, the Servomotor or machine may perform Important unexpected operation. Always implement safety measures.

2. If a resettable alarm occurs and operation is disabled (power is not supplied to the motor), operation will be automatically enabled (power will be supplied to the motor) when the alarm is reset. If you set this parameter to keep the servo ON continuously, the Servomotor or machine may perform unexpected operation when an alarm is reset.

5.6 Motor Direction Setting

You can reverse the direction of Servomotor rotation by changing the setting of $Pn000 = n.\square\square\squareX$ (Direction Selection) without changing the polarity of the speed or position reference. This causes the rotation direction of the motor to change, but the polarity of the signals, such as encoder output pulses, output from the SERVOPACK do not change. Set the appropriate direction for your system.

Refer to the following section for details on the encoder divided pulse output. 6.8 Encoder Divided Pulse Output on page 6-47

Rotary Servomotors

The default setting for forward rotation is counterclockwise (CCW) as viewed from the load end of the Servomotor.

I	Parameter	Forward/Reverse Reference	Motor Direction and End	Motor Direction and Encoder Divided Pulse Outputs	
Pn000	n.□□□0 Use CCW as	Forward reference	CCW Torque reference	Encoder Divided Pulse Outputs PAO PBO Phase-B lead	P-OT (For- ward Drive Prohibit) signal
	the forward direction. (default setting)	Reverse reference	Torque reference	Encoder Divided Pulse Outputs PAO Phase-A lead PBO	N-OT (Reverse Drive Prohibit)signal
	n.□□□1 Use CW as the forward direc-	Forward reference	+ Torque reference	Encoder Divided Pulse Outputs PAO PBO Phase-B lead	P-OT (For- ward Drive Prohibit) signal
	tion. (Reverse Rota- tion Mode)	Reverse reference	CCW Torque reference	Encoder Divided Pulse Outputs PAO Phase-A lead PBO	N-OT (Reverse Drive Prohibit) signal

Note: The trace waveforms of the SigmaWin+ are shown in the above table for the torque reference and motor speed diagrams. If you measure them on a measuring instrument, e.g., with an analog monitor, the polarity will be reversed.

Linear Servomotors

Before you set this parameter, make sure that $Pn080 = n.\Box\Box X\Box$ (Motor Phase Sequence Selection) is set correctly.

F	Parameter	Forward/Reverse Reference	Motor Moving Direction and Encoder Divided Pulse Outputs	Applicable Overtravel Signal (OT)
	n.□□□0 Use the direc- tion in which the linear encoder counts up as the for- ward direction. (default setting)	Forward reference	Moves in the count-up direction.	P-OT (For- ward Drive Prohibit)signal
		Reverse reference	Moves in the count-down direction. Force reference Encoder Divided Pulse Outputs Moves in the count-down direction. Motor speed PBO	N-OT (Reverse Drive Prohibit) signal
Pn000	n. n. D 1 Use the direc- tion in which the linear encoder counts down as the forward direc- tion.	Forward reference	+ Force reference Encoder Divided Pulse Outputs Moves in the count-down direction. Motor speed PAO	P-OT (For- ward Drive Prohibit)signal
		Reverse reference	Horse in the count-up direction. Force reference Encoder Divided Pulse Outputs PAO PAO Phase-A lead	N-OT (Reverse Drive Prohibit)signal

Note: The trace waveforms of the SigmaWin+ are shown in the above table for the force reference and motor speed diagrams. If you measure them on a measuring instrument, e.g., with an analog monitor, the polarity will be reversed.

Term

Setting the Linear Encoder Pitch

If you connect a linear encoder to the SERVOPACK through a Serial Converter Unit, you must set the scale pitch of the linear encoder in Pn282.

If a Serial Converter Unit is not connected, you do not need to set Pn282.

Serial Converter Unit

The Serial Converter Unit converts the signal from the linear encoder into a form that can be read by the SERVOPACK.

Scale Pitch

A linear encoder has a scale for measuring lengths (positions). The length of one division on this scale is the scale pitch.

	Linear Encoder Pitch Speed				osition Force
Pn282	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 6,553,600	0.01 µm	0	After restart	Setup

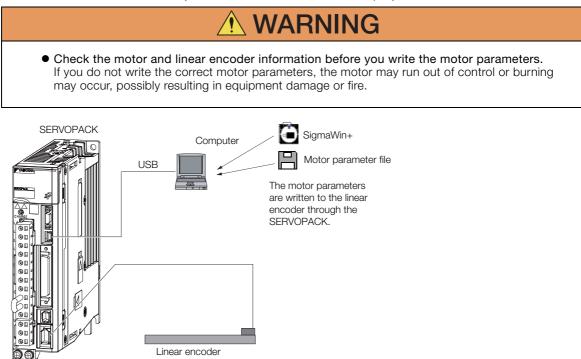
You will not be able to control the Linear Servomotor if Pn282 is not set correctly. Check the above table and always set the correct value before you operate the Linear Servomotor.

Type of Linear Encoder	Manufacturer	Model	Serial Converter Unit Model	Linear Encoder Pitch [µm]
		LIDA480	JZDP-H003-DDD-E	20
	Heidenhain Corporation		JZDP-J003-DD-E	20
Incremental		LIF480	JZDP-H003-DD-E	4
Incremental		LIF40	JZDP-J003-DD-E	
	Renishaw PLC	RGH22B	JZDP-H005-DDD-E	
	HEITISTIAW FLU	nui 122D	JZDP-J005-DDD-E	20

The first time you supply power to the SERVOPACK, the panel display on the front of the Servomotor will display an A.080 alarm (Linear Encoder Pitch Setting Error). The A.080 alarm is displayed because the setting of Pn282 has not been changed. The A.080 alarm will be cleared when you change the setting of Pn282 and then turn the power supply OFF and ON again.

Information

Linear Encoder Pitch


If you do not use a Serial Converter Unit, the linear encoder pitch is automatically set. It is not necessary to set Pn282. You can use the SigmaWin+ to check the linear encoder pitch that was automatically set. Refer to the following section for details.

3 9.1 Monitoring Product Information on page 9-2

5.8 Writing Linear Servomotor Parameters

If you connect a linear encoder to the SERVOPACK without going through a Serial Converter Unit, you must use the SigmaWin+ to write the motor parameters to the linear encoder. The motor parameters contain the information that is required by the SERVOPACK to operate the Linear Servomotor.

You can download the motor parameters from our web site (http://www.e-mechatronics.com/).

Serial number information is not included in the motor parameters. You cannot use the monitor functions of the SERVOPACK to monitor the serial number. If you attempt to monitor the serial number, ********** will be displayed.

Precautions

- If the encoder parameters are not written to the linear encoder, an A.CAO alarm (Encoder Parameter Error) will occur. Consult the manufacturer of the linear encoder.
- If the motor parameters are not written to the linear encoder, an A.CAO alarm (Encoder Parameter Error) will not occur, but the following alarms will occur.
 A.040 (Parameter Setting Error), A.041 (Encoder Output Pulse Setting Error),
 A.050 (Combination Error), A.051 (Unsupported Device Alarm),
 A.550 (Maximum Speed Setting Error), A.710 (Instantaneous Overload),
 - A.720 (Continuous Overload), and A.C90 (Encoder Communications Error)

Applicable Tools

The following table lists the tools that you can use to write the parameters to the Linear Servomotor and the applicable tool functions.

Tool	Function Reference		
Panel Operator	You cannot write Linear Servomotor parameters from the Panel Operator.		
Digital Operator You cannot write Linear Servomotor part		ameters from the Digital Operator.	
SigmaWin+Setup - Motor ParametersI Operating Procedure on parameters		Operating Procedure on page 5-20	

Operating Procedure

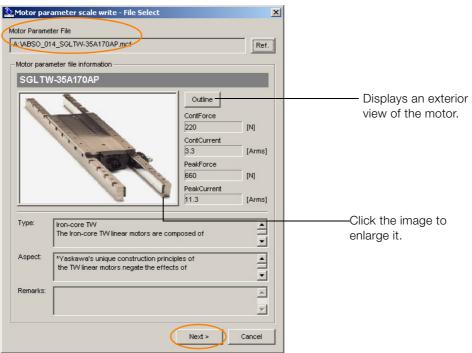
Use the following procedure to write the motor parameters to the linear encoder.

- 1. You can download the motor parameter file to write to the linear encoder from our web site (http://www.e-mechatronics.com/).
- 2. Select Setup Motor Parameter Scale Write from the menu bar of the Main Window of the SigmaWin+.
- 3. Click the OK Button.

Motor parameter scale write	2
This function rewrites data in the scale. If the data which does not suit the connected motor is rewritten, the motor may not work normally, resulting in motor overrun, etc., and it is very dangerous. Be sure that the data written in the scale suits the connected motor.	
OK Cacnel	

Click the **Cancel** Button to cancel writing the motor parameters to the linear encoder. The Main Window will return.

If the write is completed normally, the Motor Parameter Scale Write - File Select Dialog Box will be displayed.

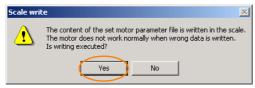

4. Click the Ref. Button.

Motor Parameter File	
	Ref.
- Motor parameter file information	

5. Select the motor parameter file that you downloaded and click the Open Button.

Open	? ×
Look in: 🛃 3½ Floppy (A:) 💽 🔶 💼 📸	
ABSO_014_SGLTW-35A170AP.mcf	_
File name: ABS0_014_SGLTW-35A170AP	
Files of type: Motor parameter file(*.mcf)	a

6. Confirm that the motor parameter file information that is displayed is suitable for your motor, and then click the Next Button.



Click the **Cancel** Button to cancel writing the motor parameters to the linear encoder. The Main Window will return.

7. Click the Write Button.

🌺 Motor par	ameter scale write - Scale write		×		
Please confin the following		ling to	Write		
	neter file information				
SGLTW-35A170AP					
Care C		Outline ContForce 220 ContCurrent 3.3 PeakForce 660	[N] [Arms]		
		PeakCurrent 11.3	[Arms]		
Туре:	Iron-core TVV The Iron-core TVV linear motors are comp	posed of	•		
Aspect:	*Yaskawa's unique construction principl the TW linear motors negate the effects		•		
Remarks:			×		
	< Back	Complete	Cancel		

8. Click the Yes Button.

Click the No Button to cancel writing the motor parameters to the linear encoder.

If you click the Yes Button, writing the motor parameter scale will start.

9. Click the Complete Button.

🌺 Motor par	ameter scale write - Scale write		×
	ameter is written in the scale. n the motor which connects is correspond information.	ling to	Write
Motor parar	neter file information		
SGLTV	V-35A170AP		
State C		Outline ContForce 220 ContCurrent 3.3 PeakForce 660 PeakCurrent 11.3	[N] [Arms] [N] [Arms]
Туре:	Iron-core TW The Iron-core TW linear motors are com	oosed of	1
Aspect:	*Yaskawa's unique construction princip the TW linear motors negate the effects		
Remarks:			A V
L	< Back	Complete	Cancel

10. Click the OK Button.

Motor parameter scale write	l
The scale writing of the motor parameter was completed. Please execute the power supply re-turning ON. The setting value will be enabled the next power ON.	
*After the next power ON, when "A.CA0:Encoder parameter error" occur, the writing of data is required separately. Please ask for the data file to our company.	
ОК	

11. Turn the power supply to the SERVOPACK OFF and ON again.

This concludes the procedure to write the motor parameters.

Confirming If the Motor Parameters Have Been Written

After you write the motor parameters, you can use a monitor function to confirm that the motor parameters are in the encoder.

If the motor parameters have not been written, no information on the Servomotor will be displayed.

9.1 Monitoring Product Information on page 9-2

5.9 Selecting the Phase Sequence for a Linear Servomotor

You must select the phase sequence of the Linear Servomotor so that the forward direction of the Linear Servomotor is the same as the encoder's count-up direction.

Before you set the Linear Servomotor phase sequence (Pn080 = $n.\Box\Box X\Box$), check the following items.

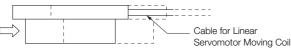
- Confirm that the signal from the linear encoder is being received normally.
- Make sure that the forward direction of the Linear Servomotor and the count-up direction of the linear encoder are in the same direction.

If you do not confirm the above items before you attempt to operate the motor, the motor may not operate or it may run out of control. Always confirm these items before you operate the motor.

Related Parameters

Parameter		Meaning	When Enabled	Classification
Pn080	n.□□0□ (default setting)	Set a phase-A lead as a phase sequence of U, V, and W.	After restart	Setup
	n.🗆 🗆 1 🗆	Set a phase-B lead as a phase sequence of U, V, and W.		

Setting Procedure


- **1.** Set Pn000 to n. $\Box\Box\Box$ (Set a phase-A lead as a phase sequence of U, V, and W). This setting is to make following confirmation work easier to understand.
- 2. Select *Monitor Monitor Motion Monitor* from the menu bar of the Main Window of the SigmaWin+.

A dialog box will be displayed so that you can check the feedback pulse counter. To check the feedback pulse counter with the Panel Operator or Digital Operator, use Un00D (Feedback Pulse Counter).

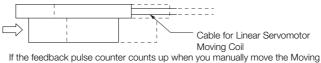
3. Manually move the Moving Coil from one end to the other of the stroke and confirm that only the correct number of feedback pulses is returned.

If the correct number and only the correct number of pulses is returned, the signal is being received correctly from the linear encoder.

Example In this example, assume that a linear encoder with a scale pitch of 20 μ m and a resolution of 256 is used. If you manually move the Moving Coil 1 cm in the count-up direction of the linear encoder, the number of feedback pulses would be as follows: 1 cm/(20 μ m/256) = 128,000 pulses

If there are 128,000 pulses on the feedback pulse counter after you manually move the Moving Coil in the direction of the cable, you have completed the confirmation.

Note: The actual monitor display will be offset by the error in the travel distance. There is no problem as long as the above value is close to the calculated value.


Information If the correct value is not displayed for the feedback pulse counter, the following conditions may exist. Check the situation and correct any problems.

- The linear encoder pitch is not correct. If the scale pitch that is set in Pn282 does not agree with the actual scale pitch, the expected number of feedback pulses will not be returned. Check the specifications of the linear encoder.
- The linear encoder is not adjusted properly.

 If the linear encoder is not adjusted properly, the output
- If the linear encoder is not adjusted properly, the output signal level from the linear encoder will drop and the correct number of pulses will not be counted. Check the adjustment of the linear encoder. Contact the manufacturer of the linear encoder for details.
- There is a mistake in the wiring between the linear encoder and the Serial Converter Unit.

If the wiring is not correct, the correct number of pulses will not be counted. Correct the wiring.

4. Manually move the Moving Coil in the direction of the cable and check the value of the feedback pulse counter on the SigmaWin+ to confirm that it is counting up. If the pulses are counted up, the forward direction of the Linear Servomotor is the same as the count-up direction of the linear encoder.

Coil in the direction of the cable, you have completed the confirmation.

- 5. If the feedback pulse counter counts down, set a phase-B lead as a phase sequence of U, V, and W (Pn080 = n.□□1□) and turn the power supply OFF and ON again.
- **6.** If necessary, return $Pn000 = n.\Box\Box\BoxX$ (Direction Selection) to its original setting.

This concludes the procedure to set the phase sequence of the Linear Servomotor.

5.10 Polarity Sensor Setting

The polarity sensor detects the polarity of the Servomotor. You must set a parameter to specify whether the Linear Servomotor that is connected to the SERVOPACK has a polarity sensor. Specify whether there is a polarity sensor in Pn080 = $n.\square\square\squareX$ (Polarity Sensor Selection).

If the Linear Servomotor has a polarity sensor, set Pn080 to n. $\Box\Box\Box$ (Use polarity sensor) (default setting).

If the Linear Servomotor does not have a polarity sensor, set Pn080 to n. $\Box\Box\Box$ (Do not use polarity sensor). Turn the power supply OFF and ON again to enable the new setting.

	Parameter	Meaning	When Enabled	Classification
Pn080	n.□□□0 (default setting)	Use polarity sensor.	After restart	Setup
	n.0001	Do not use polarity sensor.		

5.11.1 Restrictions

5.11 Polarity Detection

If you use a Linear Servomotor that does not have a polarity sensor, then you must detect the polarity.

Detecting the polarity means that the position of the electrical phase angle on the electrical angle coordinates of the Servomotor is detected. The SERVOPACK cannot control the Servomotor correctly unless it accurately knows the position of the electrical angle coordinate of the Servomotor.

The execution timing and execution method for polarity detection depend on the encoder specification as described in the following table.

Encoder Specification	Polarity Detection Execution Timing	Polarity Detection Execution Method
	Each time the control power supply to the SERVOPACK is turned ON	 Use the /S-ON (Servo ON) signal. Use the /P-DET (Polarity Detection) signal.
Incremental encoder	(Even after you execute polarity detec- tion, the position of the polarity will be lost the next time the control power supply to the SERVOPACK is turned OFF.)	 Use the polarity detection function of the SigmaWin+. Execute the Fn080 (Polarity Detection) utility function from the Digital Opera- tor or Panel Operator.
	Only for initial setup, or after the SER- VOPACK, linear encoder, or motor has been replaced	 Use the polarity detection function of the SigmaWin+.
Absolute encoder	(The results of polarity detection is stored in the absolute encoder, so the polarity position is not lost when the control power supply is turned OFF.)	• Execute the Fn080 (Polarity Detection) utility function from the Digital Opera- tor or Panel Operator.

Information If you use a Linear Servomotor that does not have a polarity sensor, you will not be able to turn ON the servo until polarity detection has been completed.

5.11.1 Restrictions

Assumed Conditions

The Servomotor will move when you execute polarity detection. The following conditions must be met before you start.

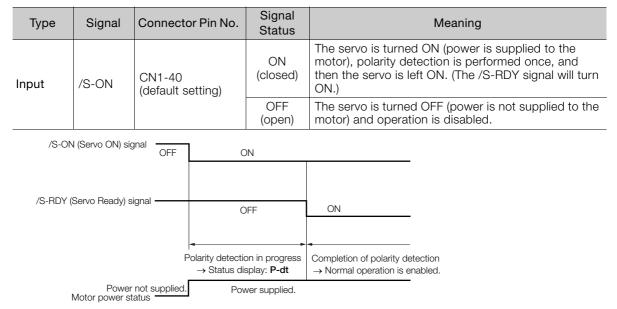
- It must be OK to move the Moving Coil about 10 mm.
- (If polarity detection fails, the Moving Coil may move approximately 5 cm. The amount of movement depends on conditions.)
- The linear encoder pitch must be 100 μm or less. (We recommend a pitch of 40 μm or less for an incremental encoder.)
- As much as possible, the motor must not be subjected to an imbalanced external force. (We recommend 5% or less of the rated force.)
- The mass ratio must be 50x or less.
- The axis must be horizontal.
- There must be friction equivalent to a few percent of the rated force applied to the guides. (Air sliders cannot be used.)

Preparations

Check the following settings before you execute polarity detection.

- Not using a polarity sensor must be specified (Pn080 = $n.\Box\Box\Box$ 1).
- The servo must be OFF.
- The main circuit power supply must be ON.
- There must be no hard wire base block (HWBB).
- There must be no alarms except for an A.C22 alarm (Phase Information Disagreement).

- The parameters must not be write prohibited. (This item applies only when using the SigmaWin+ or Digital Operator.)
- The test without a motor function must be disabled (Pn00C = $n.\Box\Box\Box$).
- There must be no overtravel.
- If the motor parameters have been written or the origin of the absolute linear encoder has been set, the power supply to the SERVOPACK must be turned OFF and ON again after completion of the writing or setting operation.


1. Power is supplied to the Servomotor during polarity detection. Be careful not to get an electric shock. Also, the Moving Coil of the Linear Servomotor may greatly move during detection. Do not approach the moving parts of the Servomotor.

2. Polarity detection is affected by many factors. For example, polarity detection may fail if the mass ratio or friction is too large or the cable tension is too strong.

5.11.2 Using the /S-ON (Servo ON) Signal to Perform Polarity Detection

You can use the /S-ON (Servo ON) signal to perform polarity detection only with an incremental linear encoder.

Polarity detection will be performed when you turn the control power supply to the SERVO-PACK OFF and then ON again, and then input the /S-ON signal. As soon as polarity detection is completed, the /S-RDY (Servo Ready) signal will turn ON.

5.11.3 Using the /P-DET (Polarity Detection) Signal to Perform Polarity Detection

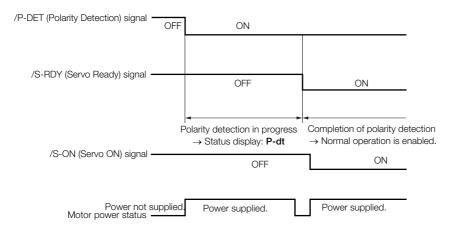
You can allocate the /P-DET (Polarity Detection) signal if you want to create a sequence on the host computer to monitor the /S-RDY (Servo Ready) signal and output the /S-ON (Servo ON) signal, or if you want to perform polarity detection at times other than when the /S-ON signal turns ON.

On the rising edge of the /P-DET signal, the servo will turn ON and polarity detection will be performed once. As soon as polarity detection is completed, the servo will turn ON and the /S-RDY (Servo Ready) signal will turn ON. After polarity detection has been completed, it will not be executed again even if you turn ON the /P-DET signal.

5.11 Polarity Detection

5.11.4 Using a Tool Function to Perform Polarity Detection

Туре	Signal	Connector Pin No.	Signal Status	Meaning
Input	/S-ON	CN1-40 (default setting)	ON (closed)	Turns ON the servo (supplies power to the motor) and enables operation.
			OFF (open)	Turns OFF the servo (stops power supply to the motor) and disables operation.
	/P-DET	Must be allocated.	ON (closed)	Executes polarity detection, but only on the first rising edge of the signal after the power supply is turned ON.
			OFF (open)	_


Note: You must allocate the /P-DET signal to use it. Use the following parameters to allocate signals.

Refer to the following section for details

3 6.1.1 Input Signal Allocations on page 6-4

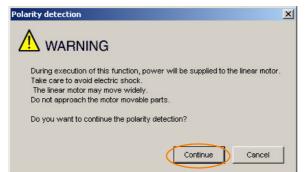
When the /P-DET (Polarity Detection) signal is set to be always active, polarity detection will automatically start when the main circuit power supply is turned ON. This can result in unexpected operation of the Servomotor. Always implement safety measures when you preform polarity detection.

5.11.4 Using a Tool Function to Perform Polarity Detection

Applicable Tools

The following table lists the tools that you can use to perform polarity detection and the applicable tool functions.

Tool	Function	Reference
Panel Operator	Fn080	13.4.26 Polarity Detection (Fn080) on page 13-27
Digital Operator	Fn080	Σ-7-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33)
SigmaWin+	Setup - Polarity Detection	G Operating Procedure on page 5-28


Operating Procedure

Use the following procedure.

1. Select Setup - Polarity Detection from the menu bar of the Main Window of the SigmaWin+.

5.11.4 Using a Tool Function to Perform Polarity Detection

2. Click the Continue Button.

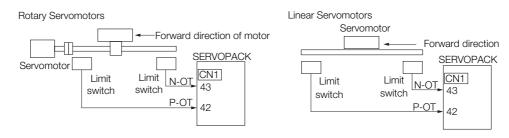
Click the Cancel Button to cancel polarity detection. The Main Window will return.

3. Click the Start Button.

Polarity detection will be executed.

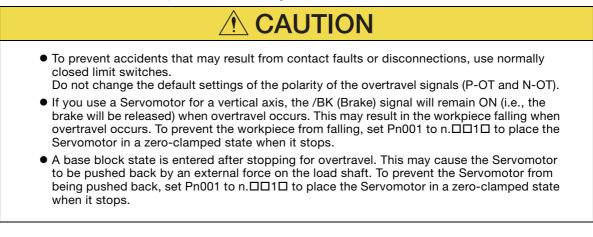
Polarity detection AXIS#0	×
The polarity detection will be executed.	
Start	

This concludes the procedure to execute polarity detection.


5.12 Overtravel and Related Settings

Overtravel is a safety function of the SERVOPACK that forces the Servomotor to stop in response to a signal input from a limit switch that is activated when a moving part of the machine exceeds the safe range of movement.

The overtravel signals include the P-OT (Forward Drive Prohibit) and the N-OT (Reverse Drive Prohibit) signals.


You use the P-OT and N-OT signals to stop the machine by installing limit switches at the positions where you want to stop the machine that is operated by the Servomotor.

A SERVOPACK wiring example is provided below.

Using the overtravel function is not necessary for rotating applications such as rotary tables and conveyors. No wiring for overtravel input signals is required.

This section describes the parameters settings related to overtravel.

5.12.1 Overtravel Signals

5.12.1 Overtravel Signals

The overtravel signals include the P-OT (Forward Drive Prohibit) and the N-OT (Reverse Drive Prohibit) signals.

Туре	Signal	Connector Pin No.	Signal Status	Meaning
P-OT			ON	Forward drive is enabled (actual operation).
	CN1-42	OFF	Forward drive is prohibited (forward overtravel).	
Input			ON	Reverse drive is enabled (actual operation).
	N-OT CN1-43	OFF	Reverse drive is prohibited (reverse overtravel).	

You can operate the Servomotor in the opposite direction during overtravel by inputting a reference.

When the Servomotor stops due to overtravel during position control, the position deviation is held.

You must input the CLR (Clear) signal to clear the position deviation.

Refer to the following section for information on the CLR signal.

6.6.2 CLR (Position Deviation Clear) Signal Function and Settings on page 6-33

5.12.2 Setting to Enable/Disable Overtravel

You can use $Pn50A = n.X \square \square \square$ (P-OT (Forward Drive Prohibit) Signal Allocation) and $Pn50B = n.\square \square \square X$ (N-OT (Reverse Drive Prohibit) Signal Allocation) to enable and disable the overtravel function.

You do not need to wire the overtravel input signals if you are not going to use the overtravel function.

Parameter		Meaning	When Enabled	Classification
Pn50A	n.2□□□ (default setting)	The forward overtravel function is enabled and the P-OT (Forward Drive Prohibit) signal is input from CN1-42.		Setup
	n.8000	The forward overtravel function is disabled. Forward drive is always enabled.	After restart	
Pn50B	n.ロロロ3 (default setting)	The reverse overtravel function is enabled and the N-OT (Reverse Drive Prohibit) signal is input from CN1-43.		
	n.□□□8	The reverse overtravel function is disabled. Reverse drive is always enabled.		

You can allocate the P-OT and N-OT signals to other connector pins. Refer to the following section for details.

6.1.1 Input Signal Allocations on page 6-4

5.12.3 Motor Stopping Method for Overtravel

5.12.3 Motor Stopping Method for Overtravel

You can set the stopping method of the Servomotor when overtravel occurs in $Pn001 = n.\Box \Box XX$ (Servo OFF or Alarm Group 1 Stopping Method and Overtravel Stopping Method).

Р	arameter	Motor Stopping Method [*]	Status after Stopping	When Enabled	Classification	
	n.□□00 (default setting)	Dynamic brake				
	n.□□01	,	Coasting -		Setup	
	n.□□02	Coasting		After restart		
Pn001	n.0010	Deceleration	Zero clamp			
	n.0020	according to setting of Pn406	Coasting			
	n.🗆 🗆 3 🗆	Deceleration	Zero clamp	-		
	n.0040	according to setting of Pn30A	Coasting			

* You cannot decelerate a Servomotor to a stop during torque control. For torque control, the Servomotor will be stopped with the dynamic braking or coast to a stop (according to the setting of Pn001 = n.□□□X (Servo OFF or Alarm Group 1 Stopping Method)), and then the Servomotor will enter a coasting state.

Refer to the following section for information on stopping methods other than those for overtravel.

5.14.1 Stopping Method for Servo OFF on page 5-41

Stopping the Servomotor by Setting Emergency Stop Torque

To stop the Servomotor by setting emergency stop torque, set Pn406 (Emergency Stop Torque).

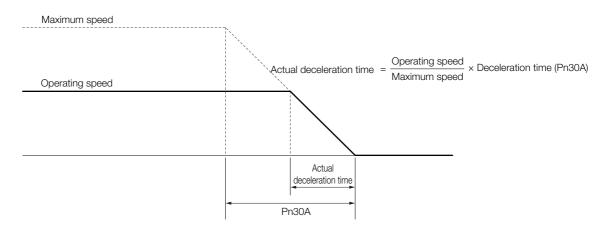
If $Pn001 = n.\Box\Box X\Box$ is set to 1 or 2, the Servomotor will be decelerated to a stop using the torque set in Pn406 as the maximum torque.

The default setting is 800%. This setting is large enough to allow you to operate the Servomotor at the maximum torque. However, the maximum emergency stop torque that you can actually use is the maximum torque of the Servomotor.

	Emergency Stop Torque			Speed Positio	n Torque
Pn406	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 800	1%*	800	Immediately	Setup

* Set a percentage of the motor rated torque.

Stopping the Servomotor by Setting the Deceleration Time


To specify the Servomotor deceleration time and use it to stop the Servomotor, set Pn30A (Deceleration Time for Servo OFF and Forced Stops).

	Deceleration Time for Servo OFF and Forced Stops			Speed Position	٦
Pn30A	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 10,000	1 ms	0	Immediately	Setup

If you set Pn30A to 0, the Servomotor will be stopped with a zero speed.

The deceleration time that you set in Pn30A is the time to decelerate the motor from the maximum motor speed.

5.12.4 Overtravel Warnings

5.12.4 Overtravel Warnings

You can set the system to detect an A.9A0 warning (Overtravel) if overtravel occurs while the servo is ON. This allows the SERVOPACK to notify the host controller with a warning even when the overtravel signal is input only momentarily. An alarm occurs only if overtravel occurs while the servo is ON. An overtravel warning will not be detected when the servo is OFF, even if overtravel occurs.

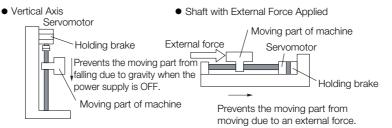
Important	 The occurrence of an A.9A0 warning will not stop the motor or have any affect on host controller motion operations. The next step (e.g., the next motion or command) can be executed even if an overtravel warning exists. However, depending on the processing specifications and programming for warnings in the host controller, operation may be affected when an overtravel warning occurs (e.g., motion may stop or not stop). Confirm the specifications and programming in the host controller. When overtravel occurs, the SERVOPACK will perform stop processing for overtravel. Therefore, when an A.9A0 warning occurs, the Servomotor may not reach the target position specified by the host controller. Check the feedback position to make sure that the axis is stopped at a safe position.
-----------	---

The following parameter is set for this function.

Parameter		Meaning	When Enabled	Classification
Pn00D	n.0□□□ (default setting)	Do not detect overtravel warnings.	Immediately	Setup
	n.1000	Detect overtravel warnings.		

A timing chart for warning detection is provided below.

Servo ON/OFF status	OFF			ON	
Overtravel signal (P-OT or N-OT signal)	Disabled Enabled	Disabled	Enabled	Disabled	
Overtravel warning (A.9A0) A warning is n because the se	ot detected	al status	Ĺ	Warning status for 1 s	Normal status The warning is automatically cleared.


5.12.4 Overtravel Warnings

- Information 1. Warnings are detected for overtravel in the same direction as the reference.
 - 2. Warnings are not detected for overtravel in the opposite direction from the reference. Example: A warning will not be output for a forward reference even if the N-OT signal turns ON.
 - 3. A warning can be detected in either the forward or reverse direction if there is no reference.
 - 4. A warning will not be detected when the servo is turned ON even if overtravel status exists.
 - 5. The warning status will be held for one second after the overtravel status no longer exists and it will then be cleared automatically.

5.13 Holding Brake

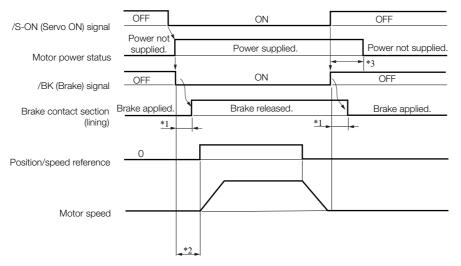
A holding brake is used to hold the position of the moving part of the machine when the SER-VOPACK is turned OFF so that moving part does not move due to gravity or an external force. You can use the brake that is built into a Servomotor with a Brake, or you can provide one on the machine.

The holding brake is used in the following cases.

The brake built into a Servomotor with a Brake is a de-energization brake. It is used only to hold the Servomotor and cannot be used for braking. Use the holding brake only to hold a Servomotor that is already stopped.

5.13.1 Brake Operating Sequence

You must consider the time required to release the brake and the time required to brake to determine the brake operation timing, as described below.


Term

Time Required to Release Brake

The time from when the /BK (Brake) signal is turned ON until the brake is actually released.

Time Required to Brake

The time from when the /BK (Brake) signal is turned OFF until the brake actually operates.

*1. Rotary Servomotors: The brake delay times for Servomotors with Holding Brakes are given in the following table. The operation delay times in the following table are examples for when the power supply is switched on the DC side. You must evaluate the actual brake delay times on the actual equipment before using the application.

5.13.2 /BK (Brake) Signal

Model	Voltage	Time Required to Release Brake [ms]	Time Required to Brake [ms]
SGM7J-A5 to -04		60	
SGM7J-06 and -08		80	100
SGM7A-A5 to -04		60	100
SGM7A-06 to -10		80	
SGM7A-15 to -25		170	80
SGM7A-30 to -50		100	00
SGM7P-01	24 VDC	20	
SGM7P-02 and -04		40	100
SGM7P-08 and -15		20	
SGM7G-03 to -20		100	80
SGM7G-30 to -44		170	100
SGM7G-55 to -1A		170	90
SGM7G-1E		250	80

Linear Servomotors: The brake delay times depend on the brake that you use. Set the parameters related to /BK signal output timing according to the delay times for the brake that you will actually use.

*2. Before you output a reference from the host controller to the SERVOPACK, wait for at least 50 ms plus the time required to release the brake after you turn ON the /S-ON signal.
*2. Here the full a time required to release the brake after you turn ON the /S-ON signal.

- *3. Use the following parameters to set the timing of when the brake will operate and when the servo will be turned OFF.
 - Rotary Servomotors: Pn506 (Brake Reference-Servo OFF Delay Time), Pn507 (Brake Reference Output Speed Level), and Pn508 (Servo OFF-Brake Reference Waiting Time)
 - Linear Servomotors: Pn506 (Brake Reference-Servo OFF Delay Time), Pn508 (Servo OFF-Brake Reference Waiting Time), and Pn583 (Brake Reference Output Speed Level)

Connection Examples

Refer to the following section for information on brake wiring. *4.4.4 Wiring the SERVOPACK to the Holding Brake* on page 4-28

5.13.2 /BK (Brake) Signal

The following settings are for the output signal that controls the brake. The /BK (Brake) signal is not allocated by default. To use the brake, change the setting of $Pn50F = n.\Box X \Box \Box$ (/BK (Brake Output) Signal Allocation).

The /BK signal is turned OFF (to operate the brake) when the servo is turned OFF or when an alarm is detected. You can adjust the timing of brake operation (i.e., the timing of turning OFF the /BK signal) with the servo OFF delay time (Pn506).

Туре	Signal	Connector Pin No.	Signal Status	Meaning
Output /BK			ON (closed)	Releases the brake.
	/BK Must be allocated.		OFF (open)	Activates the brake.

Information The /BK signal will remain ON during overtravel. The brake will not be applied.

Allocating the /BK (Brake) Signal

To use the brake, you must allocate an output signal for the /BK signal. Set the allocation for the /BK signal in Pn50F = $n.\Box X\Box\Box$ (/BK (Brake Output) Signal Allocation).

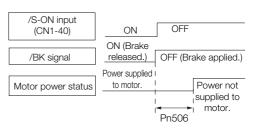
5.13.3 Output Timing of /BK (Brake) Signal When the Servomotor Is Stopped

Parameter		Connector Pin No.		Meaning	When	Classification
1 0	arameter	+ Pin	- Pin	Meaning	Enabled	Classification
	n.□0□□ (default set- ting)	-	-	The /BK signal is not used.		
Pn50F	n.0100	CN1-25	CN1-26	The /BK signal is output from CN1-25 and CN1-26.	After restart	Setup
	n.0200	CN1-27	CN1-28	The /BK signal is output from CN1-27 and CN1-28.		
	n.¤3¤¤	CN1-29	CN1-30	The /BK signal is output from CN1-29 and CN1-30.		

 Signals other than the /BK signal are allocated to the connector pins by default. To allocate connector pins to the /BK signal, you must clear the allocations for the originally allocated signals.

portant

- Example: Allocating the /BK Signal to CN1-25 and CN1-26 By default, the /COIN (Positioning Completion) signal is allocated to CN1-25 and the /V-CMP (Speed Coincidence Detection) signal is allocated to CN1-26. Therefore, to allocate the connector pins to the /BK signal, you must change the settings of the following two parameters.
- Pn50F = $n.\Box 1\Box\Box$ (Output the /BK signal from CN1-25 and CN1-26.)
- Set Pn50E = n.□□XX to a value other than 1. (This clears the allocations of the /COIN and / V-CMP signals to CN1-25 and CN1-26.)
- If you allocate more than one signal to the same output connector pin, a logical OR of the signals is output. Allocate the /BK signal to its own output connector pin, i.e., do not use the same output terminal for another signal.
 For example, never allocate the /TGON (Rotation Detection) signal and /BK signal to the same


output connector pin. If you did so, the /TGON signal would be turned ON by the falling speed on a vertical axis, and the brake would not operate.

5.13.3 Output Timing of /BK (Brake) Signal When the Servomotor Is Stopped

When the Servomotor is stopped, the /BK signal turns OFF at the same time as the /S-ON signal turns OFF. Use the servo OFF delay time (Pn506) to change the timing to turn OFF power supply to the motor after the /S-ON signal turns OFF.

	Brake Reference-Se	ervo OFF Delay Time	Speed Position Torque		
Pn506	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 50	10 ms	0	Immediately	Setup

- When the Servomotor is used to control a vertical axis, the machine moving part may move slightly due to gravity or an external force. You can eliminate this slight motion by setting the servo OFF delay time (Pn506) so that power supply to the motor is stopped after the brake is applied.
- This parameter sets the timing of stopping power supply to the Servomotor while the Servomotor is stopped.

Power supply to the Servomotor will be stopped immediately when an alarm occurs, regardless of the setting of this parameter. The machine moving part may move due to gravity or an external force before the brake is applied.

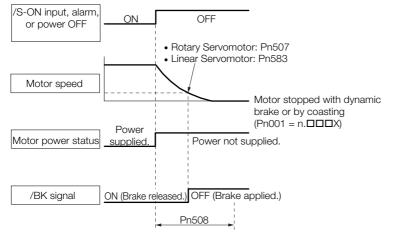
5.13.4 Output Timing of /BK (Brake) Signal When the Servomotor Is Operating

5.13.4 Output Timing of /BK (Brake) Signal When the Servomotor Is Operating

If an alarm occurs while the Servomotor is operating, the Servomotor will start stopping and the /BK signal will be turned OFF. You can adjust the timing of /BK signal output by setting the brake reference output speed level (Rotary Servomotors: Pn507, Linear Servomotors: Pn583) and the servo OFF-brake reference waiting time (Pn508).

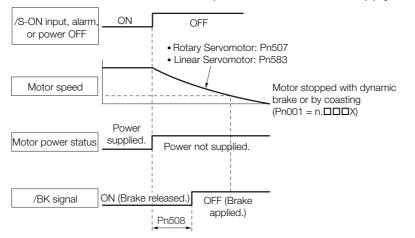
Note: If zero-speed stopping is set as the stopping method for alarms, the setting of Pn506 (Brake Reference-Servo OFF Delay Time) is used after the motor stops.

Rotary Servomotors


	Brake Reference Ou	utput Speed Level	Speed Position Torque		
Pn507	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 10,000	1 min⁻¹	100	Immediately	Setup
	Servo OFF-Brake Reference Waiting Time			Speed Positi	on Torque
Pn508	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	10 to 100	10 ms	50	Immediately	Setup

· Linear Servomotors

	Brake Reference Ou	utput Speed Level	Speed Position Force		
Pn583	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 10,000	1 mm/s	10	Immediately	Setup
	Servo OFF-Brake Reference Waiting Time			Speed Positi	on Force
Pn508	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	10 to 100	10 ms	50	Immediately	Setup


The brake operates when either of the following conditions is satisfied:

• When the Motor Speed Goes below the Level Set in Pn507 for a Rotary Servomotor or in Pn583 for a Linear Servomotor after the Power Supply to the Motor Is Stopped

5.13.4 Output Timing of /BK (Brake) Signal When the Servomotor Is Operating

• When the Time Set In Pn508 Elapses after the Power Supply to the Motor Is Stopped

The Servomotor will be limited to its maximum speed even if the brake reference output speed level (Rotary Servomotor: Pn507, Linear Servomotor: Pn583) is higher than the maximum speed.

Motor Stopping Methods for Servo OFF and Alarms 5.14

You can use the following methods to stop the Servomotor when the servo is turned OFF or an alarm occurs.

There are the following four stopping methods.

Motor Stopping Method	Meaning
Stopping by Applying the Dynamic Brake	The electric circuits are internally connected to stop the Servomotor quickly.
Coasting to a Stop	The motor stops naturally due to friction during operation.
Zero Clamping	The speed reference is set to 0 to stop the Servomotor quickly.
Decelerating to a Stop	Emergency stop torque is used to decelerate the motor to a stop.

There are the following three conditions after stopping.

Status after Stopping	Meaning
Dynamic Brake Applied	The electric circuits are internally connected to hold the Servomotor.
Coasting	The SERVOPACK does not control the Servomotor. (The machine will move in response to a force from the load.)
Zero Clamping	A position loop is created and the Servomotor remains stopped at a position reference of 0. (The current stop position is held.)

• The dynamic brake is used for emergency stops. The dynamic brake circuit will operate frequently if the power supply is turned ON and OFF or the servo is turned ON and OFF while a reference input is applied to start and stop the Servomotor. This may result in deterioration of the internal elements in the SERVOPACK. Use speed input references or position references to Important start and stop the Servomotor.

• If you turn OFF the main circuit power supply or control power supply during operation before you turn OFF the servo, the Servomotor stopping method depends on the SERVOPACK model as shown in the following table.

	Servomotor Stopping Method				
Condition	SGD7S-R70A, -1R6A, -2R8A, -3R8A, -5R5A, -7R6A, -120A, -180A, or -200A	SGD7S-330A, -470A, -550A, -590A, or -780A			
Main circuit power supply turned OFF before turning OFF the servo	Stopping with dynamic brake				
Control power supply turned OFF before turning OFF the servo	Stopping with dynamic brake Coasting to a sto				
To minimize the coasting distance of the Servomotor to come to a stop when an alarm occurs, zero-speed stopping is the default method for alarms to which it is applicable. However, depending on the application, stopping with the dynamic brake may be more suitable than zero-speed stopping. For example, when coupling two shafts (twin-drive operation), machine damage may occur if a					

zero-speed stopping alarm occurs for one of the coupled shafts and the other shaft stops with a dynamic brake. In such cases, change the stopping method to the dynamic brake.

5.14.1 Stopping Method for Servo OFF

5.14.1 Stopping Method for Servo OFF

Set the stopping method for when the servo is turned OFF in Pn001 = $n.\Box\Box\BoxX$ (Servo OFF or Alarm Group 1 Stopping Method).

Parameter		Servomotor Stop- ping Method	Status after Servo- motor Stops	When Enabled	Classifi- cation
D-001	n.□□□0 (default setting)	Dynamic brake	Dynamic brake	A (t	Setup
Pn001	n.0001		Coasting	After restart	
	n.🗆 🗆 🗠 2	Coasting	Coasting		

Note: If Pn001 is set to n. DDD (Stop the motor by applying the dynamic brake) and the Servomotor is stopped or operates at a low speed, braking force may not be generated, just like it is not generated for coasting to a stop.

5.14.2 Servomotor Stopping Method for Alarms

There are two types of alarms, group 1 (Gr. 1) alarms and group 2 (Gr. 2) alarms. A different parameter is used to set the stopping method for alarms for each alarm type.

Refer to the following section to see which alarms are in group 1 and which are in group 2. *12.2.1 List of Alarms* on page 12-5

Motor Stopping Method for Group 1 Alarms

When a group 1 alarm occurs, the Servomotor will stop according to the setting of $Pn001 = n.\Box\Box\BoxX$. The default setting is to stop by applying the dynamic brake.

Refer to the following section for details.

5.14.1 Stopping Method for Servo OFF on page 5-41

Motor Stopping Method for Group 2 Alarms

When a group 2 alarm occurs, the Servomotor will stop according to the settings of the following three parameters. The default setting is for zero clamping.

- Pn001 = n. DDDX (Servo OFF or Alarm Group 1 Stopping Method)
- Pn00A = n. DDX (Motor Stopping Method for Group 2 Alarms)
- Pn00B = n. DXD (Motor Stopping Method for Group 2 Alarms)

However, during torque control, the group 1 stopping method is always used. If you set Pn00B to n. $\Box\Box$ 1 \Box (Apply dynamic brake or coast Servomotor to a stop), you can use the same stopping method as group 1. If you are coordinating a number of Servomotors, you can use this stopping method to prevent machine damage that may result because of differences in the stopping method.

The following table shows the combinations of the parameter settings and the resulting stopping methods.

5.14.2 Servomotor Stopping Method for Alarms

	Paramete	er	Servomotor	Status after	When	
Pn00B	Pn00A	Pn001	Stopping Method	Servomotor Stops	Enabled	Classification
n.□□0□		n.□□□0 (default setting)	Zero-speed stop-	Dynamic brake		
(default setting)	-	n.0001	ping	Coasting		
ootting)		n.□□□2		Obasting		
		n.□□□0 (default setting)	Dynamic brake	Dynamic brake		
n.0010	-	n.□□□1		Coasting		
		n.0002	Coasting	Coasting		
	n.□□□0	n.□□□0 (default setting)	Dynamic brake	Dynamic brake	-	Setup
	(default setting)	n.□□□1		Coasting		
		n.□□□2	Coasting	Coasting		
	n.0001	n.□□□0 (default setting)		Dynamic brake	After restart	
		n.0001	Motor is deceler- ated using the torque set in Pn406 as the maximum torque.	Coasting		
		n.□□□2				
n.0020		n.□□□0 (default setting)		Coasting		
11.0020		n.□□□1		obasting		
		n.□□□2				
		n.□□□0 (default setting)		Dynamic brake		
	n.□□□3	n.□□□1		Coasting		
		n.🗆 🗆 🗠 2	Motor is deceler- ated according to	Coasting	_	
		n.□□□0 (default setting)	setting of Pn30A.	Orachian		
	n.□□□4	n.0001		Coasting		
		n.🗆 🗆 🗠 2				

Note: 1. The setting of Pn00A is ignored if Pn001 is set to n. DDD or n. DD1D.

2. The setting of Pn00A = n. TIX is enabled for position control and speed control. During torque control, the setting of Pn00A = n. TIX will be ignored and only the setting of Pn001 = n. TIX will be used.

3. Refer to the following section for details on Pn406 (Emergency Stop Torque).

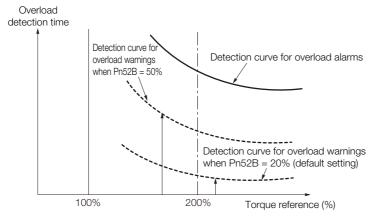
Stopping the Servomotor by Setting Emergency Stop Torque on page 5-32

4. Refer to the following section for details on Pn30A (Deceleration Time for Servo OFF and Forced Stops).

5.15.1 Detection Timing for Overload Warnings (A.910)

5.15 Motor Overload Detection Level

The motor overload detection level is the threshold used to detect overload alarms and overload warnings when the Servomotor is subjected to a continuous load that exceeds the Servomotor ratings.


It is designed to prevent Servomotor overheating.

You can change the detection timing for A.910 warnings (Overload) and A.720 alarms (Continuous Overload). You cannot change the detection level for A.710 alarms (Instantaneous Overload).

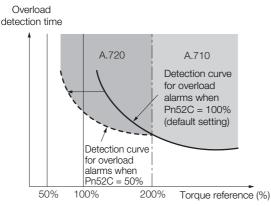
5.15.1 Detection Timing for Overload Warnings (A.910)

With the default setting for overload warnings, an overload warning is detected in 20% of the time required to detect an overload alarm. You can change the time required to detect an overload warning by changing the setting of the overload warning level (Pn52B). You can increase safety by using overload warning detection as an overload protection function matched to the system.

The following graph shows an example of the detection of overload warnings when the overload warning level (Pn52B) is changed from 20% to 50%. An overload warning is detected in half of the time required to detect an overload alarm.

	Overload Warning L	evel	Speed Position Torque		
Pn52B	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	1 to 100	1%	20	Immediately	Setup

5.15.2 Detection Timing for Overload Alarms (A.720)


5.15.2 Detection Timing for Overload Alarms (A.720)

If Servomotor heat dissipation is insufficient (e.g., if the heat sink is too small), you can lower the overload alarm detection level to help prevent overheating.

To reduce the overload alarm detection level, change the setting of Pn52C (Base Current Derating at Motor Overload Detection).

	Base Current Derati	ng at Motor Overloa	Speed Position Torque		
Pn52C	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	10 to 100	1%	100	After restart	Setup

An A.720 alarm (Continuous Overload) can be detected earlier to protect the Servomotor from overloading.

Note: The gray areas in the above graph show where A.710 and A.720 alarms occur.

Refer to the relevant manual given below for a diagram that shows the relationships between the motor heat dissipation conditions (heat sink size, surrounding air temperature, and derating). You can protect the motor from overloads more effectively by setting this derating value in Pn52C.

Ω Σ-7-Series Rotary Servomotor Product Manual (Manual No.: SIEP S800001 36)

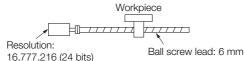
Ω Σ-7-Series Linear Servomotor Product Manual (Manual No.: SIEP S800001 37)

Ω Σ-7-Series Direct Drive Servomotor Product Manual (Manual No.: SIEP S800001 38)

5.16 Electronic Gear Settings

The minimum unit of the position data that is used to move a load is called the reference unit. The reference unit is used to give travel amounts, not in pulses, but rather in distances or other physical units (such as μ m or °) that are easier to understand.

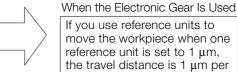
The electronic gear is used to convert the travel distances that are specified in reference units to pulses, which are required for actual movements.


With the electronic gear, one reference unit is equal to the workpiece travel distance per reference pulse input to the SERVOPACK. In other words, if you use the SERVOPACK's electronic gear, pulses can be read as reference units.

- Note: 1. If you set an electronic gear in the host controller, normally set the electronic gear ratio in the SERVOPACK to 1:1.
 - 2. If you enable reference pulse input multiplication switching, the reference unit is defined as the position data that is n times the reference pulses input from the host controller. ("n" is the reference pulse input multiplier.)

The difference between using and not using the electronic gear is shown below.

Rotary Servomotors


In this example, the following machine configuration is used to move the workpiece 10 mm.

When the Electronic Gear Is Not Used

Calculating the number of reference pulses for each reference is troublesome.

move the workpiece when one reference unit is set to 1 μ m, the travel distance is 1 μ m per pulse. To move the workpiece 10 mm (10,000 μ m), 10,000 ÷ 1 = 10,000 pulses, so 10,000 pulses would be input.

Calculating the number of reference pulses for each reference is not necessary.

Linear Servomotors

In this example, the following machine configuration is used to move the load 10 mm. We'll assume that the resolution of the Serial Converter Unit is 256 and that the linear encoder pitch is 20 μ m.

Linear encoder

5.16 Electronic Gear Settings

5.16.1 Electronic Gear Ratio Settings

When the Electronic Gear Is Not Used

To move the load 10 mm: $10 \times 1000 \div 20 \times 256 = 128,000$ pulses, so 128,000 pulses are input as the reference.

Calculating the number of reference pulses for each reference is trouble-some.

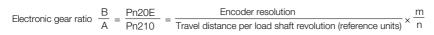
When the Electronic Gear Is Used

To use reference units to move the load 10 mm: If we set the reference unit to 1 μ m, the travel distance is 1 μ m per pulse. To move the load 10 mm (10,000 μ m), 10,000/1 = 10,000 pulses, so 10,000 pulses would be input as the reference.

Calculating the number of reference pulses for each reference is not necessary.

5.16.1 Electronic Gear Ratio Settings

Set the electronic gear ratio using Pn20E and Pn210.


Set the electronic gear ratio within the following range. $0.001 \le \text{Electronic gear ratio (B/A)} \le 64,000$ If the electronic gear ratio is outside of this range, an A.040 alarm (Parameter Setting Error) will occur.

	Electronic Gear Rati	io (Numerator)		Position	I	
Pn20E	Setting Range	Setting Unit	Default Setting	When Enabled	Classification	
	1 to 1,073,741,824	1	64	After restart	Setup	
	Electronic Gear Rati	io (Denominator)		Position		
Pn210	Setting Range	Setting Unit	Default Setting	When Enabled	Classification	
	1 to 1,073,741,824	1	1	After restart	Setup	

Calculating the Settings for the Electronic Gear Ratio

Rotary Servomotors

If the gear ratio between the Servomotor shaft and the load is given as n/m, where n is the number of load rotations for m Servomotor shaft rotations, the settings for the electronic gear ratio can be calculated as follows:

5.16.1 Electronic Gear Ratio Settings

Encoder Resolution

You can check the encoder resolution in the Servomotor model number.

SGM7J, SGM7A,

SGM7P,	or SGM7G	-0000	
			-

 Code	Specification	Encoder Resolution
7	24-bit multiturn absolute encoder	16,777,216
F	24-bit incremental encoder	16,777,216

 Code	Specification	Encoder Resolution
3	20-bit single-turn absolute encoder	1,048,576
D	20-bit incremental encoder	1,048,576

SGMCV - DDDDDDD

 Code	Specification	Encoder Resolution
E	22-bit single-turn absolute encoder	4,194,304
I	22-bit multiturn absolute encoder	4,194,304

♦ Linear Servomotors

You can calculate the settings for the electronic gear ratio with the following equation: When Not Using a Serial Converter Unit

Use the following formula if the linear encoder and SERVOPACK are connected directly or if a linear encoder that does not require a Serial Converter Unit is used.

Electronic gear ratio $\frac{B}{A} = \frac{Pn20E}{Pn210} = \frac{Travel distance per reference unit (reference units) × Linear encoder resolution Linear encoder pitch (the value from the following table)$

When Using a Serial Converter Unit

Electronic gear ratio $\frac{B}{A} = \frac{Pn20E}{Pn210} = \frac{Travel distance per reference unit (reference units) \times Resolution of the Serial Converter Unit Linear encoder pitch (setting of Pn282)$

Feedback Resolution of Linear Encoder

The linear encoder pitches and resolutions are given in the following table. Calculate the electronic gear ratio using the values in the following table.

Type of Linear Encoder	Manufacturer	Linear Encoder Model	Linear Encoder Pitch [µm]	Model of Serial Con- verter Unit or Model of Head with Interpolator	Resolution	Resolution
		LIDA480	20	JZDP-H003- DDD -E ^{*1}	256	0.078 μm
	Heidenhain		20	JZDP-J003-DDD-E ^{*1}	4,096	0.0049 µm
	Corporation	LIF480	4	JZDP-H003- DDD -E ^{*1}	256	0.016 μm
			4	JZDP-J003- DDD -E ^{*1}	4,096	0.00098 µm
	Renishaw PLC	RGH22B	20	JZDP-H005- DDD -E ^{*1}	256	0.078 μm
Incremen-				JZDP-J005-DDD-E ^{*1}	4,096	0.0049 µm
tal		SR75-0000LF*4	80	-	8,192	0.0098 µm
		SR75-DDDDDMF	80	-	1,024	0.078 μm
	Magnescale	SR85-0000LF*4	80	_	8,192	0.0098 µm
	Co., Ltd.	SR85-DDDDDMF	80	_	1,024	0.078 μm
		SL700 ^{*4} , SL710 ^{*4} ,	800	PL101-RY*2	8,192	0.0977 μm
		SL720 ^{*4,} SL730 ^{*4}	000	MJ620-T13*3		

5.16.1 Electronic Gear Ratio Settings

Type of Linear Encoder	Manufacturer	Linear Encoder Model	Linear Encoder Pitch [µm]	Model of Serial Con- verter Unit or Model of Head with Interpolator	Resolution	Resolution
	Heidenhain Corporation	LIC4100 Series	20.48	EIB3391Y*3	4,096	0.005 μm
		ST781A/ST781AL	256	-	512	0.5 µm
	Mitutoyo Corporation	ST782A/ST782AL	256	-	512	0.5 µm
		ST783/ST783AL	51.2	_	512	0.1 µm
		ST784/ST784AL	51.2	-	512	0.1 µm
		ST788A/ST788AL	51.2	_	512	0.1 µm
Absolute		ST789A/ST789AL	25.6	-	512	0.05 µm
		ST1381	5.12	-	512	0.01 µm
		ST1382	0.512	-	512	0.001 µm
		SR77-0000LF*4	80	-	8,192	0.0098 μm
	Magnescale	SR77-DDDDDMF	80	-	1,024	0.078 µm
	Co., Ltd.	SR87-DDDDDLF*4	80	-	8,192	0.0098 µm
		SR87-DDDDDMF	80	_	1,024	0.078 µm

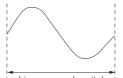
*1. This is the model of the Serial Converter Unit.

*2. This is the model of the Head with Interpolator.

*3. This is the model of the Interpolator.

*4. If you use an encoder pulse output with this linear encoder, the setting range of the encoder output resolution (Pn281) is restricted. Refer to the following section for details on the encoder output resolution (Pn281).
6.8.2 Setting for the Encoder Divided Pulse Output on page 6-52

Information Resolution


You can calculate the resolution that is used inside the SERVOPACK (i.e., the travel distance per feedback pulse) with the following formula.

Resolution (travel distance per feedback pulse) =

Linear encoder pitch

Resolution of Serial Converter Unit or linear encoder

The SERVOPACK uses feedback pulses as the unit to control a Servomotor.

Linear encoder pitch =Distance for one cycle of the analog voltage feedback signal from the linear encoder

Linear encoder pitch

5.16.2 Electronic Gear Ratio Setting Examples

5.16.2 Electronic Gear Ratio Setting Examples

Setting examples are provided in this section.

• Rotary Servomotors

			Machine Configuration	
		Ball Screw	Rotary Table	Belt and Pulley
Step	Description	Reference unit: 0.001 mm Load shaft Load shaft Encoder: Ball screw lead: 24 bits 6 mm	Reference unit: 0.01° Gear ratio: 1/100 Load shaft Encoder: 24 bits	Reference unit: 0.005 mm Load shaft Gear ratio: Pulley dia.: 1/50 Encoder: 24 bits
1	Machine Specifications	 Ball screw lead: 6 mm Gear ratio: 1/1 	 Rotation angle per revolution: 360° Gear ratio: 1/100 	 Pulley dia.: 100 mm (Pulley circumference: 314 mm) Gear ratio: 1/50
2	Encoder Resolution	16,777,216 (24 bits)	16,777,216 (24 bits)	16,777,216 (24 bits)
3	Reference Unit	0.001 mm (1 μm)	0.01°	0.005 mm (5 μm)
4	Travel Distance per Load Shaft Revolution (Reference Units)	6 mm/0.001 mm = 6,000	360°/0.01° = 36,000	314 mm/0.005 mm = 62,800
5	Electronic Gear Ratio	$\frac{B}{A} = \frac{16,777,216}{6,000} \times \frac{1}{1}$	$\frac{B}{A} = \frac{16,777,216}{36,000} \times \frac{100}{1}$	$\frac{B}{A} = \frac{16,777,216}{62,800} \times \frac{50}{1}$
6	Parameters	Pn20E: 16,777,216	Pn20E: 1,677,721,600	Pn20E: 838,860,800
0	ו מומוווכנכוס	Pn210: 6,000	Pn210: 36,000	Pn210: 62,800

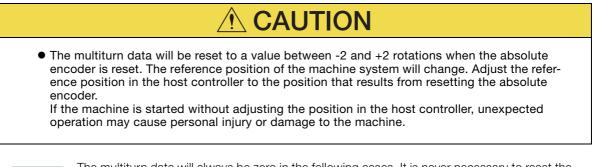
• Linear Servomotors

A setting example for a Serial Converter Unit resolution of 256 is given below.

	Description	Machine Configuration
Step		Reference unit: 0.02 mm (20 μm) Forward direction
1	Linear encoder pitch	0.02 mm (20 μm)
2	Reference Unit	0.001 mm (1 μm)
3	Electronic Gear Ratio	$\frac{B}{A} = \frac{1 (\mu m)}{20 (\mu m)} \times 256$
4	Setting Parameters	Pn20E: 256 Pn210: 20

Basic Functions That Require Setting before Operation

5.17.1 Precautions on Resetting


5.17 Resetting the Absolute Encoder

In a system that uses an absolute encoder, the multiturn data must be reset at startup. An alarm related to the absolute encoder (A.810 or A.820) will occur when the absolute encoder must be reset, such as when the power supply is turned ON.

When you reset the absolute encoder, the multiturn data is reset and any alarms related to the absolute encoder are cleared.

Reset the absolute encoder in the following cases.

- When starting the system for the first time
- When an A.810 alarm (Encoder Backup Alarm) occurs
- When an A.820 alarm (Encoder Checksum Alarm) occurs
- When you want to reset the multiturn data in the absolute encoder

Information

The multiturn data will always be zero in the following cases. It is never necessary to reset the absolute encoder in these cases.

- · When you use a single-turn absolute encoder
- When the encoder is set to be used as a single-turn absolute encoder (Pn002 = $n.\Box 2\Box \Box$) Also, an alarm related to the absolute encoder (A.810 or A.820) will not occur.

5.17.1 Precautions on Resetting

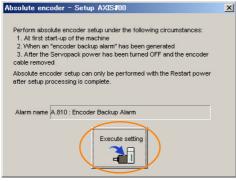
- The parameters must not be write prohibited.
- The servo must be OFF to reset the absolute encoder.
- You cannot use the /ALM-RST (Alarm Reset) signal from the SERVOPACK to clear the A.810 alarm (Encoder Backup Alarm) or the A.820 alarm (Encoder Checksum Alarm). Always use the operation to reset the absolute encoder to clear these alarms.
- If an A.8 alarm (Internal Encoder Monitoring Alarm) occurs, turn OFF the power supply to reset the alarm.

5.17.2 Applicable Tools

The following table lists the tools that you can use to reset the absolute encoder and the applicable tool functions.

Tool	Function	Reference
Panel Operator	Fn008	13.4.7 Reset Absolute Encoder (Fn008) on page 13-16
Digital Operator	Fn008	Ω Σ-7-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33)
SigmaWin+	Setup - Absolute Encoder Reset	5.17.3 Operating Procedure on page 5-51

5.17.3 Operating Procedure


Use the following procedure to reset the absolute encoder

- 1. Confirm that the servo is OFF.
- 2. Select Setup Reset Absolute Encoder from the menu bar of the Main Window of the SigmaWin+.
- 3. Click the Continue Button.

Absolute Encoder Warning	\mathbf{X}
The Absolute Encoder Setup function resets the multi-turn amount of the connected serial-type absolute encoder as well as encoder alarms from the PC.	
Upon resetting the absolute encoder multi-turn to "0", the mechanical system will go to a position data system differing from that used until now.	
Operating the machine in this state is extremely dangerous(In the worst case, my lead to injury to person or damage to machine). Be sure to reset the zero point of the machine after completing	
Continue absolute encoder setup processing?	
Continue Cancel	

Click the **Cancel** Button to cancel resetting the absolute encoder. The Main Window will return.

4. Click the Execute setting Button.

The current alarm code and name will be displayed in the **Alarm name** Box.

5. Click the Continue Button.

Setup Verification	E
Upon execution of processing, the multi-turn data absolute encoder is reset to "0" and the mechani go to a position data system different from that us	al system will
Continue processing?	Cancel

Click the **Cancel** Button to cancel resetting the absolute encoder. The previous dialog box will return.

5.17.3 Operating Procedure

6. Click the OK Button.

The absolute encoder will be reset.

When Resetting Fails

If you attempted to reset the absolute encoder when the servo was ON in the SERVOPACK, the following dialog box will be displayed and processing will be canceled.

Absol	ute encoder reset conditions error	
1	Servo ON now. Turn the Servo OFF when resetting the absolute end	oder.

Click the **OK** Button. The Main Window will return. Turn OFF the servo and repeat the procedure from step 1.

When Resetting Is Successful

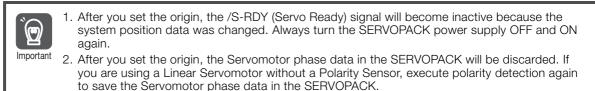
The following dialog box will be displayed when the absolute encoder has been reset.

C	Completion Warning Message
	Absolute Encoder reset processing has been performed. The multi-turn amount in the absolute encoder has been to "0". Be sure to reset the mechanical system to "0" after restarting power.
	ОК

The Main Window will return.

7. To enable the change to the settings, turn the power supply to the SERVOPACK OFF and ON again.

This concludes the procedure to reset the absolute encoder.


5.18.1 Setting the Origin of the Absolute Linear Encoder

5.18 Setting the Origin of the Absolute Encoder

5.18.1 Setting the Origin of the Absolute Linear Encoder

You can set any position as the origin in the following Linear Encoders.

 Mitutoyo Corporation ABS ST780A Series or ST1300 Series Models: ABS ST78□A/ST78□AL/ST13□□

Preparations

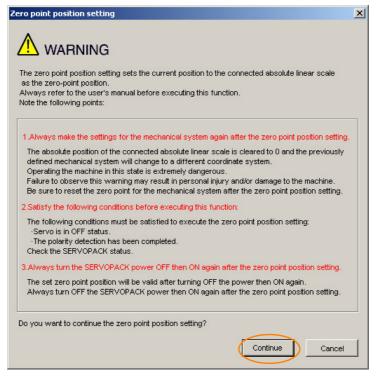
The following conditions must be met to set the origin of the absolute linear encoder.

- The parameters must not be write prohibited.
- The servo must be OFF.

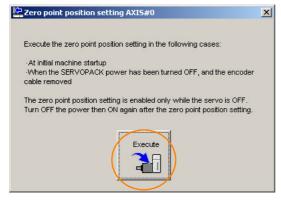
Applicable Tools

The following table lists the tools that you can use to set the origin of the absolute linear encoder and the applicable tool functions.

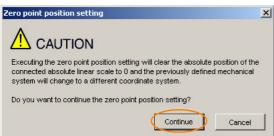
Tool	Function	Reference
Panel Operator	Fn020	13.4.23 Set Absolute Linear Encoder Origin (Fn020) on page 13-26
Digital Operator	Fn020	Σ-7-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33)
SigmaWin+	Setup - Set Origin	Gerating Procedure on page 5-53


Operating Procedure

Use the following procedure.


1. Select Setup - Set Origin from the menu bar of the Main Window of the SigmaWin+. Click the Cancel Button to cancel setting the origin of the absolute linear encoder. The Main Window will return.

5.18.1 Setting the Origin of the Absolute Linear Encoder


2. Click the Continue Button.

3. Click the Execute setting Button.

4. Click the Continue Button.

Click the **Cancel** Button to cancel setting the origin of the absolute linear encoder. The previous dialog box will return.

5.18.1 Setting the Origin of the Absolute Linear Encoder

5. Click the OK Button.

Zero point position setting
Zero-point position setting has been executed. The movement amount saved in the encoder has been reset to 0 (zero). Always turn the power to the Servopack off and then on again after execution of this function.
When using a linear motor without a hall sensor, execute polarity detection after turning the power off and then on again.
ОК

- 6. Turn the power supply to the SERVOPACK OFF and ON again.
- 7. If you use a Linear Servomotor that does not have a polarity sensor, perform polarity detection.

Refer to the following section for details on the polarity detection.

This concludes the procedure to set the origin of the absolute linear encoder.

5.19 Setting the Regenerative Resistor Capacity

The regenerative resistor consumes regenerative energy that is generated by the Servomotor, e.g., when the Servomotor decelerates.

If an External Regenerative Resistor is connected, you must set Pn600 (Regenerative Resistor Capacity) and Pn603 (Regenerative Resistor Resistance).

- **WARNING**
- If you connect an External Regenerative Resistor, set Pn600 and Pn603 to suitable values. If a suitable value is not set, A.320 alarms (Regenerative Overload) will not be detected correctly, and the External Regenerative Resistor may be damaged or personal injury or fire may result.
- When you select an External Regenerative Resistor, make sure that it has a suitable capacity.

There is a risk of personal injury or fire.

	Regenerative Resiste	or Capacity	Speed Position Torque			
Pn600	Setting Range Setting Unit Default Setting		When Enabled	Classification		
	0 to SERVOPACK's maximum applica- ble motor capacity	10 W	0	Immediately	Setup	
	Regenerative Resistor Resistance			Speed Position Torque		
Pn603	Setting Range	Setting Unit	Default Setting	When Enabled	Classification	
	0 to 65,535	10 mΩ	0	Immediately	Setup	

Set the regenerative resistor capacity to a value that is consistent with the allowable capacity of the External Regenerative Resistor. The setting depends on the cooling conditions of the External Regenerative Resistor.

- For self-cooling (natural convection cooling): Set the parameter to a maximum 20% of the capacity (W) of the actually installed regenerative resistor.
- For forced-air cooling: Set the parameter to a maximum 50% of the capacity (W) of the actually installed regenerative resistor.

Example

For a self-cooling 100-W External Regenerative Resistor, set Pn600 to 2 (×10 W) (100 W × 20% = 20 W).

Note: 1. An A.320 alarm will be displayed if the setting is not suitable.

2. The default setting of 0 specifies that the SERVOPACK's built-in regenerative resistor or Yaskawa's Regenerative Resistor Unit is being used.

1. When an External Regenerative Resistor is used at the normal rated load ratio, the resistor temperature increases to between 200°C and 300°C. Always apply derating. Consult the manufacturer for the resistor's load characteristics.

2. For safety, use an External Regenerative Resistor with a thermoswitch.

Application Functions

This chapter describes the application functions that you can set before you start servo system operation. It also describes the setting methods.

6.1	I/O Signal Allocations	6-4
	 6.1.1 Input Signal Allocations 6.1.2 Output Signal Allocations 6.1.3 ALM (Servo Alarm) Signal 6.1.4 ALO1 to ALO3 (Alarm Code) 6.1.5 /WARN (Warning) Signal 6.1.6 /TGON (Rotation Detection) S 6.1.7 /S-RDY (Servo Ready) Signal 	
6.2	Operation for Momentary Powe	r Interruptions .6-12
6.3	SEMI F47 Function	6-13
6.4	Setting the Motor Maximum	Speed6-15
6.5	Speed Control	6-16
	 6.5.1 Basic Settings for Speed Con 6.5.2 Soft Start Settings 6.5.3 Speed Reference Filter 6.5.4 Zero Clamping 6.5.5 /V-CMP (Speed Coincidence 6.5.6 Operation Examples for Char Direction	ntrol
6.6	Position Control	0.00
		6-30

	6.6.3 6.6.4 6.6.5 6.6.6 6.6.7	Reference Pulse Input Multiplication Switching.6-34Smoothing Settings.6-35/COIN (Positioning Completion) Signal.6-36/NEAR (Near) Signal.6-38Reference Pulse Inhibition Function.6-39
6.7	Torqu	e Control6-40
	6.7.1 6.7.2 6.7.3 6.7.4	Basic Settings for Torque Control
6.8	Enco	der Divided Pulse Output6-47
	6.8.1 6.8.2	Encoder Divided Pulse Output Signals
6.9	Intern	al Set Speed Control6-54
	6.9.1 6.9.2	Input Signals for Internal Set Speed Control6-54 Setting the Control Method to Internal Set Speed Control
	6.9.3 6.9.4	Settings for Internal Set Speed Control6-55 Changing Internal Set Speeds with Input Signals
6.10	Selec	ting Combined Control Methods6-58
	6.10.1 6.10.2 6.10.3	Setting Pn000 = $n.\Box\Box X\Box$ (Control Method Selection) to 4, 5, or 6
6.11	Selec	ting Torque Limits6-63
	6.11.1 6.11.2 6.11.3 6.11.4 6.11.5	Internal Torque Limits
6.12	Absol	ute Encoders6-73
	6.12.16.12.26.12.36.12.4	Connecting an Absolute Encoder
	6.12.5 6.12.6	Transmission Specifications

	6.12.7 6.12.8 6.12.9	Alarm Output from Output Ports for the Position Data from the Absolute Encoder
6.13	Absol	ute Linear Encoders6-86
	6.13.1 6.13.2	Connecting an Absolute Linear Encoder 6-86 Structure of the Position Data of the Absolute Linear Encoder 6-86
	6.13.3	Output Ports for the Position Data from the Absolute Linear Encoder
	6.13.4	Reading the Position Data from the Absolute Linear Encoder
	6.13.5 6.13.6	Transmission Specifications
	6.13.7	Coordinates
6.14	Softw	are Reset6-94
	6.14.1 6.14.2 6.14.3	Preparations6-94Applicable Tools6-94Operating Procedure6-94
6.15	Initiali	izing the Vibration Detection Level 6-96
	6.15.1 6.15.2 6.15.3 6.15.4	Preparations6-96Applicable Tools6-97Operating Procedure6-97Related Parameters6-99
6.16	Adjustir	ng the Motor Current Detection Signal Offset 6-100
	6.16.1 6.16.2	Automatic Adjustment 6-100 Manual Adjustment 6-101
6.17	Forcing	the Motor to Stop
	6.17.1 6.17.2 6.17.3	FSTP (Forced Stop Input) Signal 6-104 Stopping Method Selection for Forced Stops . 6-105 Resetting Method for Forced Stops 6-106

6.1.1 Input Signal Allocations

6.1 I/O Signal Allocations

Functions are allocated to the pins on the I/O signal connector (CN1) in advance. You can change the allocations and the polarity for some of the connector pins. Function allocations and polarity settings are made with parameters.

This section describes the I/O signal allocations.

6.1.1 Input Signal Allocations

Although you can use the input signals with the default settings, you can also allocate the desired input signals to pins 40 to 46 on the I/O signal connector (CN1).

Parameter		Description	When Enabled	Classification
Pn50A	n.□□□0 (default set- ting)	Use the sequence input signal terminals with the default allocations.	After startup	Setup
	n.0001	Change the individual sequence input signal allocations.		

Using the Default Settings

The default settings for signal allocations are given in the following table.

If you change the control method that is set in $Pn000 = n.\Box\Box X\Box$, the signals will be allocated as required for the specified control method, as given in the following table.

If the control method is set to internal set speed control with contact commands (Pn000 = $\square \square 3 \square$), the /P-CON signal (CN1-41) will be allocated as the /SPD-D signal, the /P-CL signal (CN1-45) as the /SPD-A signal, and the /N-CL signal (CN1-46) as the /SPD-B signal.

Pn000 = Control Method Selection		CN1 Pin No.						
n.□□X□	Control Method Selection	40	41	42	43	44	45	46
0	Speed control							
1	Position control		/P-CON				/P-CL	/N-CL
2	Torque control							
3	Internal set speed control							
4	Switching between internal set speed control and speed con- trol with analog references							
5	Switching between internal set speed control and position control	/SPD-D /SPE		/SPD-A	/SPD-B			
6	Switching between internal set speed control and torque control and torque control	/S-	/S-		NOT	/ALM-		
7	Switching between position control and speed control	ON		P-OT	N-OT	RST		
8	Switching between position control and torque control		/C-SEL					
9	Switching between torque control and speed control							
A	Switching between speed control with analog references and speed control with zero clamping			/P-CL	/N-CL			
В	Switching between normal position control and position control and position control with reference pulse inhibition	/INHIBIT						

Changing Input Signal Allocations

- If you change the default polarity settings for the /S-ON (Servo ON), P-OT (Forward Drive Prohibit), or N-OT (Reverse Drive Prohibit) signal, the main circuit power supply will not be turned OFF and the overtravel function will not operate if there are signal line disconnections or other Important problems. If you must change the polarity of one of these signals, verify operation and make sure that no safety problems will exist.
 - If you allocate two or more signals to the same input circuit, a logical OR of the inputs will be used and all of the allocated signals will operate accordingly. This may result in unexpected operation.

The input signals that you can allocate to the pins on the I/O signal connector (CN1) and the related parameters are given in the following table.

Input Signal	Input Signal Name	Parameter
/S-ON	Servo ON	Pn50A = n.□□X□
/P-CON	Proportional Control	Pn50A = n.□X□□
P-OT	Forward Drive Prohibit	Pn50A = n.XDDD
N-OT	Reverse Drive Prohibit	Pn50B = n.□□□X
/ARM-RST	Alarm Reset	Pn50B = n.□□X□
/P-CL	Forward External Torque Limit	Pn50B = n.□X□□
/N-CL	Reverse External Torque Limit	Pn50B = n.XDDD
/SPD-D	Motor Direction	Pn50C = n.□□□X
/SPD-A	Internal Set Speed Selection	Pn50C = n.□□X□
/SPD-B	Internal Set Speed Selection	Pn50C = n.□X□□
/C-SEL	Control Selection	Pn50C = n.X□□□
/ZCLAMP	Zero Camping	Pn50D = n.□□□X
/INHIBIT	Reference Pulse Inhibit	Pn50D = n.□□X□
/G-SEL	Gain Selection	Pn50D = n.□X□□
/P-DET	Polarity Detection	Pn50D = n.XDDD
SEN	Absolute Data Request	Pn515 = n.□□□X
/PSEL	Reference Pulse Input Multiplication Switch	Pn515 = n.□□X□
FSTP	Forced Stop	Pn516 = n.□□□X

Relationship between Parameter Settings, Allocated Pins, and Polarities

The following table shows the relationship between the input signal parameter settings, the pins on the I/O signal connector (CN1), and polarities.

Parameter Setting	Pin No.	Description			
0	40				
1	41				
2	42				
3	43	A reverse signal (a signal with "/" before the signal abbreviation, such as the /			
4	44	S-ON signal) is active when the contacts are ON (closed).			
5	45	A signal that does not have "/" before the signal abbreviation (such as the P- OT signal) is active when the contacts are OFF (open). The input signal is not allocated to a connector pin and it is always active. If the signal is processed on a signal edge, then it is always inactive.			
6	46				
7	_				
8	-	The input signal is not allocated to a connector pin and it is always inactive. Set the parameter to 8 if the signal is not used.			

6.1.2 Output Signal Allocations

Parameter Setting	Pin No.	Description
9	40	
А	41	
В	42	
С	43	A reverse signal (a signal with "/" before the signal abbreviation, such as the /
D	44	S-ON signal) is active when the contacts are OFF (open). A signal that does not have "/" before the signal abbreviation (such as the OT signal) is active when the contacts are ON (closed).
E	45	
F	46	

Note: Refer to the following section for details on input signal parameter settings.

14.1 List of Parameters on page 14-2

Example of Changing Input Signal Allocations

The following example shows reversing the P-OT (Forward Drive Prohibit) signal allocated to CN1-42 and the /P-CL (External Torque Limit) signal allocated to CN1-45.

Pn50A = n.2 \square 0 Pn50B = n. \square 5 \square Defore change \downarrow \downarrow \downarrow Pn50A = n.5 \square 01 Pn50B = n. \square 2 \square After change

Refer to the following section for the parameter setting procedure. *5.1.3 Parameter Setting Methods* on page 5-5

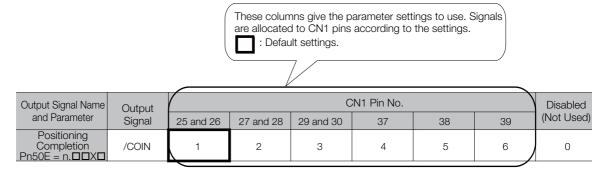
Confirming Input Signals

You can confirm the status of input signals on the I/O signal monitor. Refer to the following section for information on the I/O signal monitor.

6.1.2 Output Signal Allocations

You can allocate the desired output signals to pins 25 to 30 and 37 to 39 on the I/O signal connector (CN1). You set the allocations in the following parameters: Pn50E, Pn50F, Pn510, Pn512, Pn513, Pn514, and Pn517.

Ĩ	 The signals that are not detected are considered to be OFF. For example, the /COIN (Position- ing Completion) signal is considered to be OFF during speed control.
	• Reversing the polarity of the /BK (Brake) signal, i.e., changing it to positive logic, will prevent
Important	the holding brake from operating if its signal line is disconnected. If you must change the polar-
	ity of this signal world, exercises and make sure that no sofety problems will eviat


ity of this signal, verify operation and make sure that no safety problems will exist.If you allocate more than one signal to the same output circuit, a logical OR of the signals will be output.

Output signals are allocated as shown in the following table.

Refer to *Interpreting the Output Signal Allocation Tables* and change the allocations accordingly.

6.1.2 Output Signal Allocations

Interpreting the Output Signal Allocation Tables

Output Signal Nama	Output CN1 Pin No.							Disabled
Output Signal Name and Parameter	Signal	25 and 26	27 and 28	29 and 30	37	38	39	(Not Used)
Positioning Completion Pn50E = $n.\Box\Box\BoxX$	/COIN	1	2	3	4	5	6	0
Speed Coincidence Detection Pn50E = n.□□X□	/V-CMP	1	2	3	4	5	6	0
Rotation Detection Pn50E = n.□X□□	/TGON	1	2	3	4	5	6	0
Servo Ready Pn50E = n.X□□□	/S-RDY	1	2	3	4	5	6	0
Torque Limit Detection Pn50F = n.□□□X	/CLT	1	2	3	4	5	6	0
Speed Limit Detection Pn50F = n.□□X□	/VLT	1	2	3	4	5	6	0
Brake Pn50F = n.□X□□	/BK	1	2	3	4	5	6	0
Warning Pn50F = n.X□□□	/WARN	1	2	3	4	5	6	0
Near Pn510 = n.□□□X	NEAR	1	2	3	4	5	6	0
Reference Pulse Input Multiplication Switch- ing Output Pn510 = n.□□X□	/PSELA	1	2	3	4	5	6	0
Preventative Mainte- nance Pn514 = n.□X□□	/PM	1	2	3	4	5	6	0
Alarm Code Pn517 = n.□□□X	ALO1	1	2	3	4	5	6	0
Alarm Code Pn517 = n.□□X□	ALO2	1	2	3	4	5	6	0
Alarm Code Pn517 = n.□X□□	ALO3	1	2	3	4	5	6	0
Pn512 = n.□□□1	Reverse pol CN1-25 and	arity for CN1-26						
Pn512 = n.□□1□	Reverse polar C	ity for CN N1-28	1-27 and					
Pn512 = n.□1□□	Reverse pola	rity for CN	11-29 and	CN1-30				0 The polarity is not reversed
Pn512 = n.1□□□	R	leverse po	larity for C	N1-37				(in the default settings.
Pn513 = n.□□□1		Revers	se polarity	for CN1-3	8			
Pn513 = n.□□1□		F	leverse po	larity for C	N1-39			

6.1.3 ALM (Servo Alarm) Signal

Example of Changing Output Signal Allocations

The following example shows disabling the /COIN (Positioning Completion) signal allocated to CN1-25 and CN1-26 and allocating the /BK (Brake) signal.

Pn50E = n.□□1□ Pn50F = n.□0□□ Before change \downarrow \downarrow \downarrow Pn50E = n.□1□□ After change

Refer to the following section for the parameter setting procedure. 5.1.3 Parameter Setting Methods on page 5-5

Checking Output Signal Status

You can confirm the status of output signals on the I/O signal monitor. Refer to the following section for information on the I/O signal monitor.

6.1.3 ALM (Servo Alarm) Signal

This signal is output when the SERVOPACK detects an error.

Configure an external circuit so that this alarm output turns OFF the main circuit power supply to the SERVOPACK whenever an error occurs.

Туре	Signal	Connector Pin No.	Signal Status	Meaning
Output ALM	CN1-31 and	ON (closed)	Normal SERVOPACK status	
		CN1-32	OFF (open)	SERVOPACK alarm

Alarm Reset Methods

Refer to the following section for information on the alarm reset methods. (2) 12.2.3 Resetting Alarms on page 12-39

6.1.4 ALO1 to ALO3 (Alarm Code) Signals

The ALO1 to ALO3 (Alarm Code) signals report alarms and warnings that occur in the SERVO-PACK. Use the alarm code output signals as required to display the contents of the alarm at the host controller (e.g., HMI).

Refer to the following sections for the relationship between the alarm code output and the alarms/warnings.

12.2.1 List of Alarms on page 12-5

12.3.1 List of Warnings on page 12-45

6.1.5 /WARN (Warning) Signal

ALO1 to ALO3 (Alarm Code) Signals

The ALO1 to ALO3 signals are allocated to the following output signal terminals (CN1) by default.

Туре	Signal	Name	Pin No.
Output	ALO1		CN1-37
	ALO2	Alarm Code Output	CN1-38
Output	ALO3		CN1-39
	SG	Signal ground for alarm code output	CN1-1

You can allocate the ALO1 to ALO3 signals to connector pins other than those given above. Refer to the following section for details.

6.1.2 Output Signal Allocations on page 6-6

6.1.5 /WARN (Warning) Signal

Both alarms and warnings are generated by the SERVOPACK. Alarms indicate errors in the SERVOPACK for which operation must be stopped immediately. Warnings indicate situations that may results in alarms but for which stopping operation is not yet necessary.

The /WARN (Warning) signal indicates that a condition exists that may result in an alarm.

Туре	Signal	Connector Pin No.	Signal Status	Meaning
Output	ut /WARN	RN Must be allocated.	ON (closed)	Warning
Output /WARN			OFF (open)	Normal status

Note: You must allocate the /WARN signal to use it. Use Pn50F = n.XDDD (/WARN (Warning Output) Signal Allocation) to allocate the signal to a connector pin. Refer to the following section for details.

6.1.2 Output Signal Allocations on page 6-6

Setting the Warning Code Output

You can use the ALO1 to ALO3 (Alarm Code Output) signals to output warning codes. Use $Pn001 = n.X \square \square \square$ (Warning Code Output Selection) to set the output.

Refer to the following sections for details on the warnings.

3 12.3.1 List of Warnings on page 12-45

Parameter		Description	When Enabled	Classification
	n.0000	Output only alarm codes on the ALO1 to ALO3 terminals.		
Pn001	n.1000	Output both warning codes and alarm codes on the ALO1 to ALO3 terminals. If there is an alarm, the alarm code is output.	After restart	Setup

6.1.6 /TGON (Rotation Detection) Signal

6.1.6 /TGON (Rotation Detection) Signal

The /TGON signal indicates that the Servomotor is operating.

This signal is output when the shaft of the Servomotor rotates at the setting of Pn502 (Rotation Detection Level) or faster or the setting of Pn581 (Zero Speed Level) or faster.

The /TGON signal is allocated to CN1-27 and CN1-28 by default.

Туре	Signal	Connector Pin No.	Signal Status	Servomotor	Meaning
Output	/TGON	CN1-27 and CN1- 28 (default setting)		Rotary Servomotors	The Servomotor is operating at the setting of Pn502 or faster.
			ON (closed)	Linear Servomotors	The Servomotor is operating at the setting of Pn581 or faster.
			OFF (open)	Rotary Servomotors	The Servomotor operat- ing at a speed that is slower than the setting of Pn502.
				Linear Servomotors	The Servomotor is operating at a speed that is slower than the setting of Pn581.

Note: Use Pn50E = n. IXIII (/TGON (Rotation Detection Output) Signal Allocation) to allocate the /TGON signal to another connector pin. Refer to the following section for details.

G 6.1.2 Output Signal Allocations on page 6-6

Setting the Rotation Detection Level

Use the following parameter to set the speed detection level at which to output the /TGON signal.

Rotary Servomotors

	Rotation Detection	Level	Speed Position	Torque	
Pn502	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	1 to 10,000	1 min ⁻¹	20	Immediately	Setup

Linear Servomotors

	Zero Speed Level		Speed Position Force		
Pn581	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	1 to 10,000	1 mm/s	20	Immediately	Setup

6.1.7 /S-RDY (Servo Ready) Signal

The /S-RDY (Servo Ready) signal turns ON when the SERVOPACK is ready to accept the /S-ON (Servo ON) input signal.

The /S-RDY signal is turned ON under the following conditions.

- Main circuit power supply is ON.
- There is no hard wire base block state.
- There are no alarms.
- If an absolute encoder is used, the SEN (Absolute Data Request) signal is ON (high level).
- If a Servomotor without a polarity sensor is used, polarity detection has been completed. *
- If an absolute encoder is used, the SERVOPACK must be ready to accept the /S-ON (Servo ON) signal and, if the SEN signal is ON (high level), the output of the position data from the absolute encoder to the host controller must have been completed.
- * Do not include this condition if the /S-ON (Servo ON) signal is input for the first time after the control power supply was turned ON. In that case, when the first /S-ON signal is input, polarity detection is started immediately and the /S-RDY signal turns ON at the completion of polarity detection.

6.1.7 /S-RDY (Servo Ready) Signal

The /S-RDY signal is allocated to CN1-29 and CN1-30 by default.

Туре	Signal	Connector Pin No.	Signal Status	Meaning
Output /S-RDY	CNI1 00 and CNI1	ON (closed)	Ready to receive the /S-ON (Servo ON) signal.	
	/S-RDY	CN1-29 and CN1- 30 (default setting)	OFF (open)	Not ready to receive the /S-ON (Servo ON) sig- nal.

Note: 1. Use Pn50E = n.XDDD (/S-RDY (Servo Ready) Signal Allocation) to allocate the /S-RDY signal to another connector pin. Refer to the following section for details. 3 6.1.2 Output Signal Allocations on page 6-6

2. Refer to the following section for information on the hard wire base block and the /S-RDY signal. *11.2.7 /S-RDY (Servo Ready Output) Signal on page 11-7*

6.2 Operation for Momentary Power Interruptions

Even if the main power supply to the SERVOPACK is interrupted momentarily, power supply to the motor (servo ON status) will be maintained for the time set in Pn509 (Momentary Power Interruption Hold Time).

	Momentary Power In	terruption Hold Time	Speed Position	n Torque	
Pn509	Setting Range	Setting Unit	Default Setting	When Enabled Classificati	
	20 to 50,000	1 ms	20	Immediately	Setup

If the momentary power interruption time is equal to or less than the setting of Pn509, power supply to the motor will be continued. If it is longer than the setting, power supply to the motor will be stopped. Power will be supplied to the motor again when the main circuit power supply recovers.

- Information 1. If the momentary power interruption time exceeds the setting of Pn509, the /S-RDY (Servo Ready) signal will turn OFF.
 - 2. If uninterruptible power supplies are used for the control power supply and main circuit power supply, the SERVOPACK can withstand a power interruption that lasts longer than 50,000 ms.
 - 3. The holding time of the SERVOPACK control power supply is approximately 100 ms. If control operations become impossible during a momentary power interruption of the control power supply, the setting of Pn509 will be ignored and the same operation will be performed as for when the power supply is turned OFF normally.

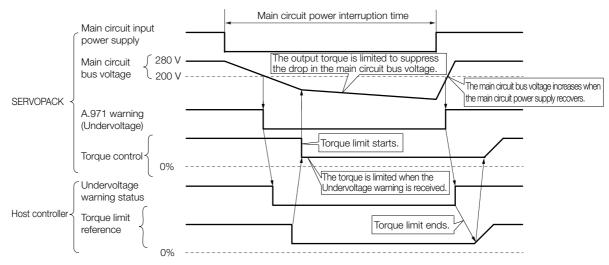
The holding time of the main circuit power supply depends on the output from the SERVOPACK. If the load on the Servomotor is large and an A.410 alarm (Undervoltage) occurs, the setting of Pn509 will be ignored.

6.3 SEMI F47 Function

The SEMI F47 function detects an A.971 warning (Undervoltage) and limits the output current if the DC main circuit power supply voltage to the SERVOPACK drops to a specified value or lower because the power was momentarily interrupted or the main circuit power supply voltage was temporarily reduced.

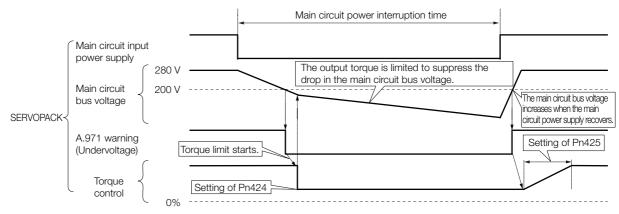
This function complies with the SEMI F47 standards for semiconductor manufacturing equipment.

You can combine this function with the momentary power interruption hold time (Pn509) to allow the Servomotor to continue operating without stopping for an alarm or without recovery work even if the power supply voltage drops.


Execution Sequence

This function can be executed either with the host controller or with the SERVOPACK. Use $Pn008 = n.\square\squareX\square$ (Function Selection for Undervoltage) to specify whether the function is executed by the host controller or by the SERVOPACK.

• Execution with the Host Controller (Pn008 = $n.\Box\Box1\Box$)


The host controller limits the torque in response to an A.971 warning (Undervoltage).

The host controller removes the torque limit after the Undervoltage warning is cleared.

• Execution with the SERVOPACK (Pn008 = $n.\Box\Box2\Box$)

The torque is limited in the SERVOPACK in response to an Undervoltage warning. The SERVOPACK controls the torque limit for the set time after the Undervoltage warning is cleared.

Setting for A.971 Warnings (Undervoltage)

You can set whether or not to detect A.971 warnings (Undervoltage).

F	arameter	Meaning	When Enabled	Classification
	n.□□0□ (default setting)	Do not detect undervoltage warning.		
Pn008	n.0010	Detect undervoltage warning and limit torque at host controller.		Setup
1 11000	n.0020	Detect undervoltage warning and limit torque with Pn424 and Pn425 (i.e., only in SERVOPACK).		

Related Parameters

The following parameters are related to the SEMI F47 function.

	Torque Limit at Mair	n Circuit Voltage Dro	Speed Position	n Torque	
Pn424	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 100	1%*	50	Immediately	Setup
	Release Time for To	rque Limit at Main C	Speed Position	n Torque	
Pn425	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 1,000	1 ms	100	Immediately	Setup
	Momentary Power Interruption Hold Time Speed Position Torque				
Pn509	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	20 to 50,000	1 ms	20	Immediately	Setup

* Set a percentage of the motor rated torque.

Note: If you will use the SEMI F47 function, set the time to 1,000 ms.

This function handles momentary power interruptions for the voltage and time ranges stipulated in SEMI F47. An uninterruptible power supply (UPS) is required as a backup for momentary power interruptions that exceed these voltage and time ranges.
Set the host controller or SERVOPACK torque limit so that a torque reference that exceeds the specified acceleration torque will not be output when the power supply for the main circuit is restored.
For a vertical axis, do not limit the torque to a value that is lower than the holding torque.
This function limits torque within the range of the SERVOPACK's capability for power interruptions. It is not intended for use under all load and operating conditions. Set the parameters while monitoring operation on the actual machine.
You can set the momentary power interruption hold time to increase the amount of time from when the power supply to the motor immediately, use the /S-ON (Servo ON) signal.

6.4 Setting the Motor Maximum Speed

You can set the maximum speed of the Servomotor with the following parameter. • Rotary Servomotors

	Maximum Motor Sp	eed	Speed Posit	on Torque	
Pn316	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 65,535	1 min ⁻¹	10,000	After restart	Setup

Linear Servomotors

	Maximum Motor Speed			Speed Positi	on Force
Pn385	Setting Range	Setting Unit	Default Setting	When Enabled Classification	
	1 to 100	100 mm/s	50	After restart	Setup

You can achieve the following by lowering the maximum speed of the Servomotor.

- If the motor speed exceeds the setting, an A.510 alarm (Overspeed) will occur.
- With a Linear Servomotor, you can increase the upper limit for the setting of Pn281 (Encoder Output Resolution). Refer to the following section for details.
 6.8 Encoder Divided Pulse Output on page 6-47

Changing the setting of the parameter is effective in the following cases.

- To protect the machine by stopping machine operation with an alarm when the set speed is reached or exceeded
- To limit the speed so that the load is not driven beyond the allowable moment of inertia Refer to relevant manual from the following list for the relationship between the speed and the allowable moment of inertia.
 - Ω Σ-7-Series Rotary Servomotor Product Manual (Manual No.: SIEP S800001 36)
 - Ω Σ-7-Series Direct Drive Servomotor Product Manual (Manual No.: SIEP S800001 38)
 - Ω Σ-7-Series Linear Servomotor Product Manual (Manual No.: SIEP S800001 37)
- To increase the encoder output resolution and increase the position resolution managed by the host controller (for a Linear Servomotor)

6.5.1 Basic Settings for Speed Control

6.5 Speed Control

There are two types of speed control: speed control with an analog voltage reference and speed control with internal set speeds. This section describes speed control with an analog voltage reference.

You input a speed reference into the SERVOPACK with an analog voltage to operate the Servomotor at the reference speed. Refer to the following section for information on speed control with internal set speeds.

6.9 Internal Set Speed Control on page 6-54

- If you create a position loop in the host controller, you use the SERVOPACK for speed control.
- If you need to control only the speed of the Servomotor, you use the SERVOPACK for speed control.

You set the control method in $Pn000 = n.\Box\Box X\Box$ (Control Method Selection).

Set Pn000 to n. $\Box \Box \Box \Box$ to set the control method to speed control.

F	arameter	Meaning	When Enabled	Classification
Pn000	n.□□0□ (default setting)	Speed control with analog references	After restart	Setup

6.5.1 Basic Settings for Speed Control

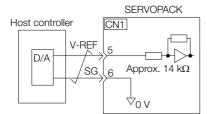
This section describes the use of the V-REF (Speed Reference Input) Signal, /SPD-D (Motor Direction Input) Signal, speed reference input gain, and speed reference offset adjustment in speed control with analog voltages.

V-REF (Speed Reference Input) Signal

Input the V-REF (Speed Reference Input) signal to the SERVOPACK to operate the Servomotor at a speed that is proportional to the input voltage.

Туре	Signal Connector Pin No.		Meaning
Input	V-REF	CN1-5	Speed reference input signal
Input	SG	CN1-6	Signal ground for speed reference input signal

Maximum input voltage: ±12 VDC


Rotary Servomotors

Speed Reference Input	Rotation Direction	Speed	For SGM7A Servomotor
+6 V	Forward	Rated motor speed	3000 min ⁻¹
-3 V	Reverse	1/2 of rated motor speed	-1500 min ⁻¹
+1 V	Forward	1/6 of rated motor speed	500 min ⁻¹

Linear Servomotors

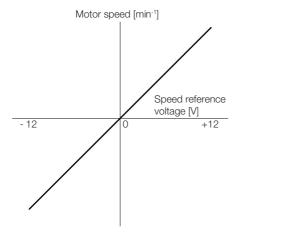
Speed Reference Input	Movement Direction	Speed	For SGLGW-30A Servomotor
+6 V	Forward	Rated motor speed	1500 mm/s
-3 V	Reverse	1/2 of rated motor speed	-750 mm/s
+1 V	Forward	1/6 of rated motor speed	250 mm/s

If you will use a host controller, such as a programmable controller, for position control, connect the above output pins to the speed reference output terminals on the host controller.

Note: Always use twisted-pair cables to control noise.

/SPD-D (Motor Direction Input) Signal

You can turn the /SPD-D signal ON and OFF to change the direction of the Servomotor.


Classification	Signal	Connector Pin No.	Description
Input	/SPD-D	Must be allocated.	Changes the Servomotor direction.

Note: You must allocate the /SPD-D signal to use it. Use Pn50C = n. DDX (/SPD-D (Motor Direction Input) Signal Allocation) to allocate the signal to a connector pin. Refer to the following section for details.

6.1.1 Input Signal Allocations on page 6-4

Relation between the /SPD-D (Motor Direction Input) Signal and V-REF (Speed Reference Input) Signal

The following graphs show the relationship between the V-REF (Speed Reference Input) signal and the speed reference depending on whether the /SPD-D signal is ON or OFF.

Motor speed [min⁻¹] Speed reference voltage [V] - 12 0 +12

/SPD-D (Motor Direction Input) Signal: OFF

/SPD-D (Motor Direction Input) Signal: ON

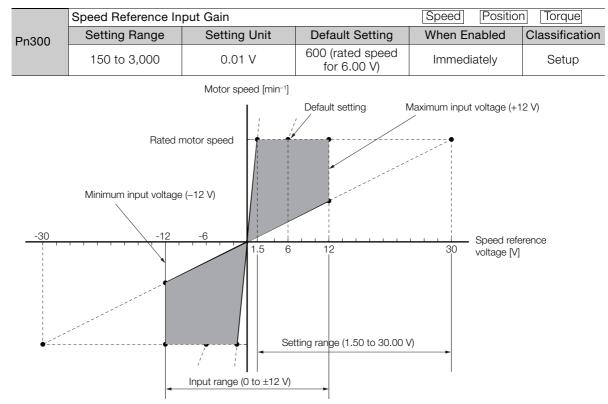
6.5.1 Basic Settings for Speed Control

Example

Speed Reference Input Example

If Pn300 is set to 600, the motor would operate at the rated speed for 6.00 V.

• For Rotary Servomotors

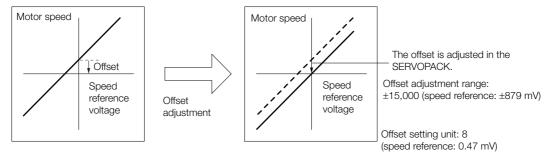

Speed Ref- erence Input	/SPD-D Signal	Rotation Direction	Motor Speed	For SGM7A Servomotor
	ON	Reverse	Rated	-3000 min ⁻¹
+6 V	OFF	Forward	motor speed	3000 min ⁻¹
0.1/	ON	Forward	1/2 of rated	1500 min ⁻¹
-3 V	OFF	Reverse	motor speed	-1500 min ⁻¹
	ON	Reverse	1/6 of rated	-500 min ⁻¹
+1 V	OFF	Forward	motor speed	500 min ⁻¹

• Linear Servomotors

Speed Ref- erence Input	/SPD-D Signal	Rotation Direction	Movement Speed	For SGLGW-30A Linear Servomotor
	ON	Reverse	Rated	-1500 mm/s
+6 V	OFF	Forward	motor speed	1500 mm/s
	ON	Forward	1/2 of rated	750 mm/s
-3 V	OFF	Reverse	motor speed	-750 mm/s
	ON	Reverse	1/6 of rated	-250 mm/s
+1 V	OFF	Forward	motor speed	250 mm/s

Setting the Speed Reference Input Gain (Pn300)

The reference voltage for the rated motor speed is set for the speed reference input gain (Pn300) to define the relationship between the position reference voltage and the motor speed.



Adjusting the Speed Reference Offset

With speed control, the Servomotor may sometimes rotate at a very low speed for a speed reference of 0 V (with a reference speed of 0 or when the speed reference is stopped). This occurs because the internal reference in the SERVOPACK has a slight offset.

If the Servomotor moves at a very low speed, the offset needs to be eliminated by adjusting the offset.

You can adjust the speed reference offset either automatically or manually.

• Automatically Adjusting the Speed Reference Offset

To automatically adjust the speed reference offset, the amount of offset is measured and the speed reference voltage is adjusted automatically.

The measured offset is saved in the SERVOPACK.

Information The offset does not use a parameter, so it will not change even if the parameter settings are initialized.

■ Conditions for Automatically Adjusting the Speed Reference Offset

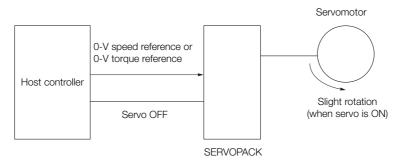
The following conditions must be met to automatically adjust the reference offset.

- The parameters must not be write prohibited.
- The servo must be OFF.
- There must not be a position loop in the host controller.

Applicable Tools

The following table lists the tools that you can use to automatically adjust the speed reference offset and the applicable tool functions.

Tool	Function	Operating Procedure Reference
Panel Operator	Fn009	13.4.8 Autotune Analog (Speed/Torque) Reference Offset (Fn009) on page 13-17
Digital Operator	Fn013	C Σ-7-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33)
SigmaWin+	Setup - Speed/Torque Ref- erence Offset Adjustment	Operating Procedure on page 6-19


Operating Procedure

Use the following procedure to automatically adjust the speed reference offset.

1. Confirm that the servo is OFF in the SERVOPACK.

6.5.1 Basic Settings for Speed Control

2. Input a 0-V reference voltage from the host controller or an external circuit.

- 3. Select Setup Adjust Offset Adjust the Speed and Torque Reference Offset from the menu bar of the Main Window of the SigmaWin+.
- 4. Click the Automatic Adjustment Tab.
- 5. Click the Adjust Button.

In Adjust the Speed and Torque Reference Offset ☑
Automatic Adjustment Speed Reference Torque Re

The value that results from automatic adjustment will be displayed in the New Box.

Adjust the Speed and Torque Reference Offset 🗹						
Automatic Adjustment Speed Reference Torque Re						

Manually Adjusting the Speed Reference Offset

You can directly input a speed reference offset to adjust the speed reference. The offset is adjusted manually in the following cases.

- When a position loop is created with the host computer and the position deviation when the Servomotor is stopped by a servo lock is to be set to 0
- · To intentionally set the offset to a desired value
- To check an offset that was set automatically

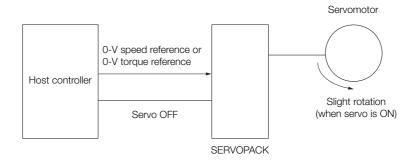
Information The offset does not use a parameter, so it will not change even if the parameter settings are initialized.

■ Conditions for Manually Adjusting the Speed Reference Offset

The following conditions must be met to manually adjust the reference offset.

- The parameters must not be write prohibited.
- The servo must be in ready status.

Applicable Tools


The following table lists the tools that you can use to manually adjust the speed reference offset and the applicable tool functions.

Tool	Function	Operating Procedure Reference		
Panel Operator	Fn00A	13.4.9 Manually Adjust Speed Reference Offset (Fn00A) on page 13-17		
Digital Operator	Fn00A	Σ-7-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33)		
SigmaWin+	Setup - Speed/Torque Ref- erence Offset Adjustment	Operating Procedure on page 6-21		

Operating Procedure

Use the following SigmaWin+ procedure to manually adjust the reference offset.

1. Input a 0-V reference voltage from the host controller or an external circuit.

2. Select Setup - Adjust Offset - Adjust the Speed and Torque Reference Offset from the menu bar of the Main Window of the SigmaWin+.

6.5.1 Basic Settings for Speed Control

3. Click the Speed Reference Tab.

🏫 Adjust the Speed and Torque Reference Offset AXIS#0	×
Automatic Adjustment Speed Reference Torque Reference	
Speed Reference -8 [min-1] Speed Reference Offset	

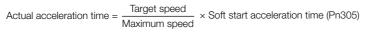
4. Use the +1 and -1 Buttons to adjust the value in the **Speed Reference** Box to 0.

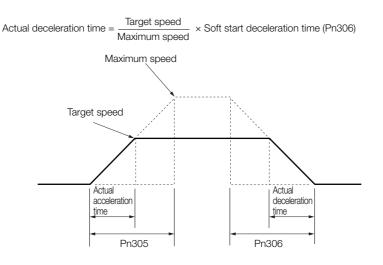
Higher the Speed and Torque Reference Offset AX15#0	х
Automatic Adjustment Speed Reference Torque Reference	
Speed Reference 0 [min-1]	
Speed Reference Offset	

6.5.2 Soft Start Settings

The soft start function takes a stepwise speed reference input and applies the specified acceleration/deceleration rates to convert it to a trapezoidal speed reference.

You specify the acceleration/deceleration rates in Pn305 (Soft Start Acceleration Time) and Pn306 (Soft Start Deceleration Time).


Use this function to perform smoother speed control (including internal set speed control).


	Soft Start Acceleration Time			Speed	
Pn305	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 10,000	1 ms	0	Immediately	Setup
		i e un Time e	Speed		
	Soft Start Decelerat	ion Time		Speed	
Pn306	Setting Range	Setting Unit	Default Setting	When Enabled	Classification

Pn305: The time required for the Servomotor to accelerate from a stopped state to the maximum motor speed.

Pn306: The time required for the Servomotor to decelerate from the maximum motor speed to a stopped state.

You can calculate the actual acceleration/deceleration times with the following formulas.

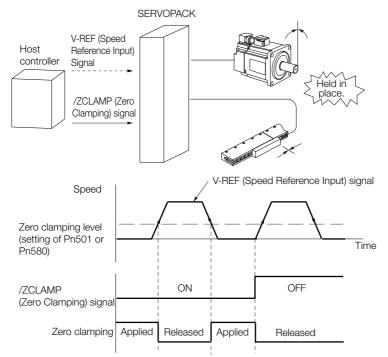
6.5.3 Speed Reference Filter

6.5.3 Speed Reference Filter

The speed reference filter is a first order lag filter that is applied to the V-REF (Speed Reference Input) signal.

You set the speed reference filter in Pn307 (Speed Reference Filter Time Constant).

It is normally not necessary to change this parameter. If the setting is too high, the response to the speed reference may be slowed down. Monitor the response to the speed reference as you set this parameter.


	Speed Reference Filter Time Constant			Speed Position	n Torque
Pn307	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 65,535	0.01 ms	40	Immediately	Setup

6.5.4 Zero Clamping

Zero clamping is used to lock the servo when the input voltage of the V-REF (Speed Reference Input) signal is equal to or lower than the speed set for the zero clamping level (Pn501 or Pn580) while the /ZCLAMP (Zero Clamping) signal is ON. The SERVOPACK internally forms a position loop, ignoring the speed reference.

Zero clamping is used for speed control in systems in which the host controller does not form a position loop.

The Servomotor is clamped within one pulse of the position where zero clamping was applied, and will return to the zero clamping position even if it is moved by an external force.

Adjust Pn102 (Position Loop Gain) if the Servomotor oscillates during zero clamping. If gain selection is used, you must also adjust Pn106 (Second Position Loop Gain).

/ZCLAMP (Zero Clamping) Signal

Use the /ZCLAMP signal to enable zero clamping.

• When Using the Default Input Signal Allocations (Pn50A = $n.\Box\Box\Box$)

The /ZCLAMP signal is allocated to pin CN1-41 on the I/O signal connector by default.

Туре	Signal	Connector Pin No.	Signal Status	Meaning
Input	/ZCLAMP	CN1-41	ON (closed)	Zero clamping is applied if the input voltage of the V-REF (Speed Reference Input) signal is equal to or lower than the speed set for the zero clamping level (Pn501 or Pn580).
		(OFF (open)	Zero clamping is disabled.

◆ When Changing Input Signal Allocations (Pn50A = n.□□□1)

You must allocate the /ZCLAMP signal. Allocate the signal with $Pn50D = n.\Box\Box\BoxX$ (/ZCLAMP (Zero Clamping Input) Signal Allocation).

Refer to the following section for details.

6.1.1 Input Signal Allocations on page 6-4

Туре	Signal	Connector Pin No.	Signal Status	Meaning
Input	but /ZCLAMP Must be allocated.	ON (closed)	Zero clamping is applied if the input voltage of the V-REF (Speed Reference Input) signal is equal to or lower than the speed set for the zero clamping level (Pn501 or Pn580).	
			OFF (open)	Zero clamping is disabled.

Enabling Zero Clamping

To enable using zero clamping, set the control method (Pn000 = $n.\Box\Box X\Box$) to 0, 3, 4, 5, 6, 7, 9 or A. You can use zero clamping only for operation with speed control.

If $Pn000 = n.\Box\BoxX\Box$ is set to 5, 6, 7, or 9, zero clamping will be disabled when the control method is changed to any method other than speed control.

Information If you set the parameter to keep the /ZCLAMP always active (Pn50D = $n.\Box\Box\Box$ 7) for speed control, zero clamping will be applied whenever the speed reference is equal to or lower than the speed set for the zero clamping level. In this case, using the /ZCLAMP signal is not necessary.

Parameter		Control Method	Used Input Signals	When Enabled	Classification
	n.🗆 🗆 🗆	Speed control	/ZCLAMP		
Pn000	n.0030	Internal set speed control	/ZCLAMP, SPD-A, SPD-B, SPD-D	After restart	
	n.0040	Switching between internal set speed control and speed control with analog references	/ZCLAMP, SPD-A, SPD-B, SPD-D, C-SEL		Setup
	n.0050	Switching between internal set speed control and position control	/ZCLAMP, SPD-A, SPD-B, SPD-D, C-SEL		
	n.0060	Switching between internal set speed control and torque control	/ZCLAMP, SPD-A, SPD-B, SPD-D, C-SEL		
	n.0070	Switching between position con- trol and speed control	/ZCLAMP, C-SEL		
	n.🗆 🗆 9 🗆	Switching between torque control and speed control	/ZCLAMP, C-SEL		
	n.00A0	Switching between speed control with analog references and speed control with zero clamping	/ZCLAMP		

6.5.5 /V-CMP (Speed Coincidence Detection) Signal

Related Parameters

You set the speed at which to apply zero clamping as the zero clamping level (Pn501 or Pn580). If you set a value that exceeds the maximum speed of the Servomotor, the actual speed will be limited to the maximum speed of the Servomotor.

Rotary Servomotors

	Zero Clamping Level		Speed		
Pn501	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 10,000	1 min ⁻¹	10	Immediately	Setup

Linear Servomotors

	Zero Clamping Leve	l	Speed		
Pn580	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 10,000	1 mm/s	10	Immediately	Setup

6.5.5 /V-CMP (Speed Coincidence Detection) Signal

The /V-CMP (Speed Coincidence Output) signal is output when the Servomotor speed is the same as the reference speed. This signal is used, for example, to interlock the SERVOPACK and the host controller. You can use this output signal only during speed control.

The /V-CMP signal is described in the following table.

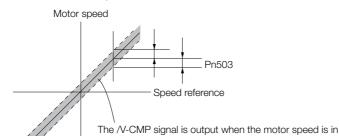
Туре	Signal	Connector Pin No.	Signal Status	Meaning
Output	/V-CMP	CN1-25 and CN1-26	ON (closed)	The speed coincides.
			OFF (open)	The speed does not coincide.

Note: You can use Pn50E = n. $\Box \Box X \Box$ (/V-CMP (Speed Coincidence Detection Output) Signal Allocation) to allocate the /V-CMP signal to different output connector pins.

Refer to the following section for details on allocations.

6.1.2 Output Signal Allocations on page 6-6

You can set the speed detection width for the /V-CMP signal in Pn503 (Speed Coincidence Signal Detection Width) for a Rotary Servomotor or in Pn582 (Speed Coincidence Signal Detection Width) for a Linear Servomotor.

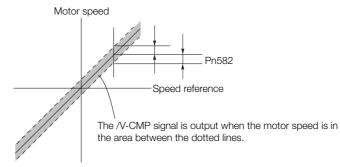

· Rotary Servomotors

	Speed Coincidence	Signal Detection Wi	Speed		
Pn503	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 100	1 min ⁻¹	10	Immediately	Setup

The signal is output when the difference between the reference speed and motor speed is equal or less than the setting.

If Pn503 is set to 100 and the speed reference is 2,000 min⁻¹, the signal would be output when the motor speed is between 1,900 and 2,100 min⁻¹.

6.5.6 Operation Examples for Changing the Motor Direction


· Linear Servomotors

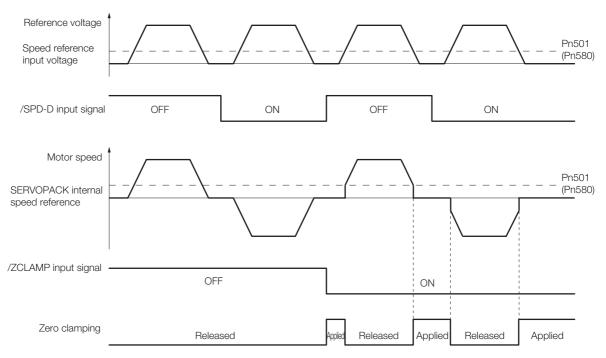
	Speed Coincidence	Signal Detection Wi	Speed		
Pn582	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 100	1 mm/s	10	Immediately	Setup

The signal is output when the difference between the reference speed and motor speed is equal or less than the setting.

e If Pn582 is set to 100 and the speed reference is 2,000 mm/s the signal would be output when the motor speed is between 1,900 and 2,100 mm/s.

6.5.6 Operation Examples for Changing the Motor Direction

This section describes examples of using the /SPD-D (Motor Direction Input) signal in combination with zero clamping and internal set speed control.


Operation Example for Changing the Motor Direction and Zero Clamping

This section provides an example of changing the motor direction without changing the polarity of the speed reference voltage by using the /SPD-D (Motor Direction Input) signal.

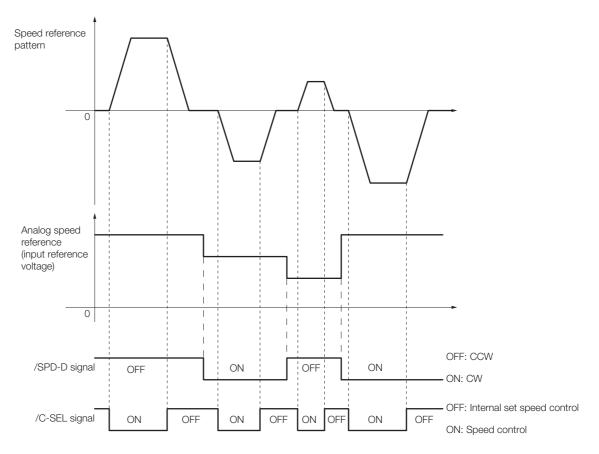
		Polarity of Analog Speed Reference Voltage			
/ZCLAMP	/SPD-D	Positive	Zero Clamping Level or Lower ((Pn501 (Pn580))*	Negative	
		Rotation Direction	Operating Status	Rotation Direction	
OFF	OFF	CCW	Speed Control	CW	
OFF	ON	CW	Speed Control	CCW	
ON	OFF	CCW	Servo lock (clamped to zero)	CW	
ON	ON	CW	Servo lock (clamped to zero)	CCW	

* Pn501 (Zero Clamping Level): Used with a Rotary Servomotor. Pn580 (Zero Clamping Level): Used with a Linear Servomotor.

6.5.6 Operation Examples for Changing the Motor Direction

Note: The soft start function is used for the acceleration/deceleration time of the speed reference.

Operation Example for Changing the Motor Direction and Internal Set Speed Control


Even with a speed reference with the same polarity, you can change the motor direction and stop the Servomotor by changing the control mode to internal set speed control and combining the /SPD-D (Motor Direction Input) signal and /C-CEL (Control Selection Input) signal.

The following operation example combines internal set speed control, the /SPD-D signal, and the /C-CEL signal. For this example, the internal set speeds must be set to 0.

Parameter Settings

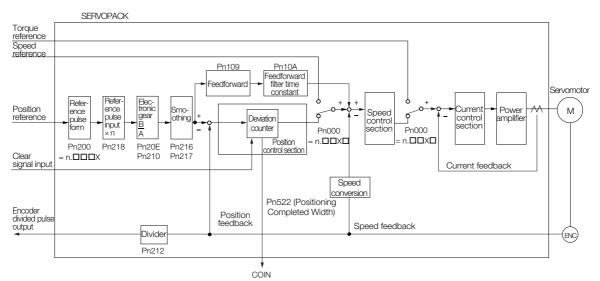
You must make the following parameter settings to combine internal set speed control, the /SPD-D signal, and the /C-CEL signal.

- Set Pn000 = n.□□X□ (Control Method Selection) to 4 (Switching between internal set speed control and speed control).
- Set Pn305 (Soft Start Acceleration Time) to the required acceleration time.
- Set Pn306 (Soft Start Deceleration Time) to the required deceleration time.
- Set Pn50A = n. DDDX (Input Signal Allocation Mode) to 1 (Change the sequence input signal allocations).
- Set Pn50C = n. $\Box\Box\BoxX$ (/SPD-D (Motor Direction) Signal Allocation) to any setting other than 7 (the signal is always active) or 8 (the signal is always inactive).
- Set Pn50C = n.□□X□ (/SPD-A (Internal Set Speed Selection Input) Signal Allocation) to 8 (the signal is always inactive).
- Set Pn50C = n. $\Box X \Box \Box$ (/SPD-B (Internal Set Speed Selection Input) Signal Allocation) to 8 (the signal is always inactive).
- Set Pn50C = n.X (/C-SEL (Control Selection Input) Signal Allocation) to any setting other than 7 (the signal is always active) or 8 (the signal is always inactive).

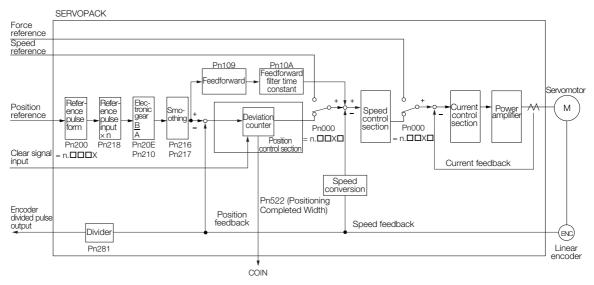
6-29

Application Functions

6.6 **Position Control**


Position control is used to input a pulse train reference from the host controller to the SERVO-PACK to move to a target position. The position is controlled with the number of input pulses, and the speed is controlled with the input pulse frequency. Use position control when positioning is required.

You set the control method to position control in $Pn000 = n.\Box\Box X\Box$ (Control Method Selection).


Parameter		Meaning	When Enabled	Classification
Pn000 n	.0010	Position Control	After restart	Setup

The control block diagrams for position control are provided below.

Rotary Servomotors

Linear Servomotors

6.6.1 Basic Settings for Position Control

This section describes the reference pulse forms and input filters.

Reference Pulse Forms

To perform speed control, you must specify how the reference is input from the host controller (i.e., the reference pulse form). You set the reference pulse form in Pn200 (Position Control Reference Form Selections).

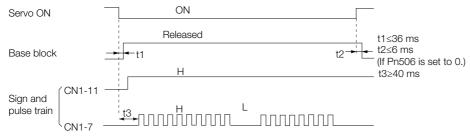
Parameter		Reference Pulse Form	Input Pulse Multiplier	Forward Reference	Reverse Reference
	n.ロロロ0 (default setting)	Sign and pulse train, positive logic.	_	PULS (CN1-7)	PULS (CN1-7)
	n.0001	CW and CCW pulse trains, positive logic	-	CW (CN1-7) Low level CCW (CN1-11)	CW (CN1-7) CCW (CN1-11)Low level
	n.0002	90° phase-differen-	×1	→ ⊲ −90°	
Pn200	n.🗆 🗆 🗠 3		×2	Phase A	Phase A (CN1-7)
	n.0004	tial pulses	×4	Phase B	Phase B (CN1-11)
	n.0005	Sign and pulse train, negative logic.	_	PULS (CN1-7) SIGN (CN1-11) Low level	PULS (CN1-7) SIGN (CN1-11)High level
	n.□□□6	CW and CCW pulse trains, negative logic	_	CW (CN1-7) High level CCW (CN1-11)	CW (CN1-7) CCW (CN1-11) High level

Selecting an Input Filter

Parameter		Meaning	When Enabled	Classification
	n.0□□□ (default setting)	Use the reference input filter 1 for a line- driver signal. (1 Mpps max.)		Setup
Pn200	n.1000	Use the reference input filter for an open-col- lector signal. (200 kpps max.)	After restart	
	n.2000	Use reference input filter 2 for a line-driver signal. (1 to 4 Mpps)		

6.6.1 Basic Settings for Position Control

Electrical Specifications for Pulse Train Reference


The following table describes the forms for pulse train references.

Pulse Train Reference Form	Electrical Specifi	ications	Remarks
Sign and pulse train (SIGN and PLUS signals) Maximum reference frequency: 4 Mpps (maximum reference frequency for open-collector output: 200 kpps)	SIGN t1 t2 PULS t4 t t7 t4 t t5 t t6 Forward reference	t1, t2, t3, t7 \leq 0.025 μ s t4, t5, t6 \geq 0.5 μ s $\tau \geq$ 0.125 μ s T- $\tau \geq$ 0.125 μ s	SIGN is high for a forward refer- ence and low for a reverse refer- ence.
CW and CCW pulse trains Maximum reference frequency: 4 Mpps (maximum reference frequency for open-collector output: 200 kpps)	CCW CW Everse Forward reference	t1, t2 ≤ 0.025 μs t3 ≥ 0.5 μs τ ≥ 0.125 μs T-τ ≥ 0.125 μs	_
Two-phase pulse trains with 90° phase differential (phases A and B) Maximum reference frequency: 1 Mpps* (maximum reference frequency for open-collector output: 200 kpps)	Phase A Phase B Forward reference Phase B leads phase A by 90°. Phase A by 90°.	t1 ≤ 0.1 μs t2 ≤ 0.1 μs τ ≥ 0.5 μs T-τ ≥ 0.5 μs	-

* The maximum reference frequency for the multipliers before multiplication are as follows:
 ×1 multiplier: 1 Mpps
 ×2 multiplier: 1 Mpps
 ×4 multiplier: 1 Mpps

Timing Example for Pulse Train References

The following example shows the timing of inputting the pulse train reference after the servo turns ON when a signal and pulse train are used.

The interval (t3) between when the servo is turned ON until the pulse train reference is input must be at least 40 ms. If the reference is input in less than 40 ms, the reference pulses may not be received by the SERVO-PACK.

CLR (Position Deviation Clear) Signal Function and Set-6.6.2 tings

The CLR (Position Deviation Clear) signal is used to clear the deviation counter in the SERVO-PACK.

As long as the CLR signal is ON, the deviation counter will be 0, so a position loop will not be formed.

Term

Deviation counter

The deviation counter counts the deviation between the reference input pulses and the feedback pulses from the encoder (i.e., the accumulated pulses).

CLR (Position Deviation Clear) Signal

Туре	Signal	Connector Pin No.	Name	
laput	CLR	CN1-15	Position deviation clear input	
Input	/CLR	CN1-14	Fosition deviation clear input	

Setting the Form of the CLR (Position Deviation Clear) Signal

You set the CLR signal form to use to clear the deviation counter in Pn200 = $n.\Box\Box X \Box$ (Clear Signal Form).

F	Parameter	Reference Form	Clear Timing	When Enabled	Classification
	n.□□0□ (default setting)	Clear position deviation when the signal is at high level.	CLR ON (CN1-15) Cleared.		
D =200	n.0010	Clear position deviation on the rising edge of the signal.	CLR ON (CN1-15) Cleared here just once.	After restart	Catura
	n.0020	Clear position deviation when the signal is at low level.	CLR OFF (CN1-15) Cleared.	After restart	Setup
	n.0030	Clear position deviation on the falling edge of the signal.	CLR OFF (CN1-15) Cleared here just once.		

The pulse width of the CLR signal must meet the following condition.

Information • If Pn200 = n. $\Box \Box X \Box$ is set to 0 or 2, the width of the CLR signal must be at least 250 µs to reset the deviation counter.

• If Pn200 = n. $\Box \Box X \Box$ is set to 1 or 3, the width of the CLR signal must be at least 20 µs to reset the deviation counter.

6.6.3 Reference Pulse Input Multiplication Switching

Setting the Clear Operation (Pn200 = $n.\Box X \Box \Box$)

This parameter determines when the position error should be set to zero according to the condition of the SERVOPACK. Set $Pn200 = n.\Box X \Box \Box$ (Clear Operation).

F	Parameter	Meaning	When Enabled	Classification	
	n.□0□□ (default setting)	Clear position deviation at a base block (at servo OFF or when alarm occurs).			
Pn200	n.0100	Do not clear position deviation. The position deviation is cleared only with CLR (Clear Position Deviation) signal.	After restart	Setup	
	n.□2□□	Clear position deviation when an alarm occurs.			

6.6.3 Reference Pulse Input Multiplication Switching

You can switch the input multiplier for the position reference pulses with the /PSEL (Reference Pulse Input Multiplication Switch) signal. The number of reference pulses input to the SERVO-PACK is multiplied by the reference pulse input multiplier. You can change the multiplier from 1 to a specified value n (n can be up to 100). You set the multiplier in Pn218 (Reference Pulse Input Multiplier).

You can confirm if the multiplier was changed with the /PSELA (Reference Pulse Input Multiplication Switching Output) signal.

This section describes the /PSEL (Reference Pulse Input Multiplication Switch) signal, the reference pulse input multiplier, and restrictions.

/PSEL (Reference Pulse Input Multiplication Switch) Signal

Use the /PSEL signal to change to the reference pulse input multiplier that is set in Pn218 (Reference Pulse Input Multiplier).

Туре	Signal	Connector Pin No.	Signal Status	Meaning
		ON (closed)	Enables the reference pulse input multiplier.	
Input	PSEL Must be allocated.	OFF (open)	Disables the reference pulse input multiplier. The multiplier will be 1.	

Note: You must allocate the /PSEL signal to use it. You can use the following parameters to allocate the signal to a terminal.

• Pn50A = $n.\Box\Box\Box$ 1 (Change the sequence input signal allocations.)

Pn515 = n.
 Imple (PSEL (Reference Pulse Input Multiplication Switching Input) Signal Allocation)

Refer to the following section for details. *a* 6.1.1 Input Signal Allocations on page 6-4

/PSELA (Reference Pulse Input Multiplication Switching Output) Signal

You can confirm if the reference pulse input multiplier was changed with the /PSELA (Reference Pulse Input Multiplication Switching Output) signal.

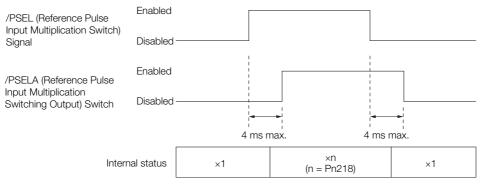
Туре	Signal	Connector Pin No.	Signal Status	Meaning
Output			ON (closed)	The reference pulse input multiplier was enabled.
Output /PSELA	Must be allocated.	OFF (open)	The reference pulse input multiplier was disabled.	

Note: You must allocate the /PSELA signal to use it. You can use Pn510 = n. Input Multiplication Switching Output) Signal Allocation) to allocate the signal to a terminal. Refer to the fol-

lowing section for details.

6.1.2 Output Signal Allocations on page 6-6

6.6.4 Smoothing Settings


• Always use the /PSELA signal to confirm that the reference pulse input multiplier has been switched and make sure that there are no position reference pulses before you input a position reference.

Unexpected operation may occur if position reference pulses are input before the reference pulse input multiplier changes.

Setting the Reference Pulse Input Multiplier (Pn218)

	Reference Pulse Inp	out Multiplier	Position		
Pn218	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	1 to 100	×1	1	Immediately	Setup

A timing chart for switching the reference pulse input multiplier is provided below.

Restrictions

The reference pulse input multiplier will not change during the following operations regardless of the status of the /PSEL signal.

- Program jogging
- Autotuning without a reference input

6.6.4 Smoothing Settings

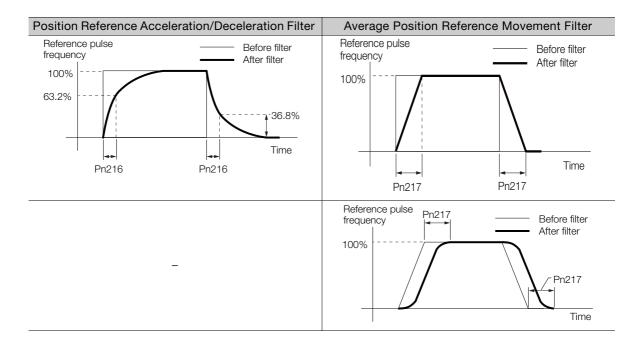
Smoothing allows you to apply a filter to the position reference to produce smoother Servomotor operation. Smoothing is effective in the following cases.

- When the host controller that outputs the references cannot perform acceleration or deceleration
- · When the reference pulse frequency is very low

Note: Smoothing does not affect the travel distance (i.e., the number of reference pulses).

The following parameters are related to smoothing.

Change the settings while there is no reference pulse input and the Servomotor is stopped.


6.6.5 /COIN (Positioning Completion) Signal

	Position Reference Acceleration/Deceleration Time Constant Position						
Pn216	Setting Range	Setting Unit	Default Setting	When Enabled	Classification		
1 112 10	0 to 65,535	0.1 ms	0*	Immediately after the motor stops	Setup		
	Average Position Re	ference Movement	Position				
Pn217	Setting Range	Setting Unit	Default Setting	When Enabled	Classification		
P11217	0 to 10,000	0.1 ms	0*	Immediately after the motor stops	Setup		

* *The filter is disabled if you set the parameter to 0

Information Changes to the settings in Pn216 or Pn217 are not applied while the Servomotor is operating. The changes will be enabled the next time the Servomotor comes to a stop.

The difference between the position reference acceleration/deceleration time constant (Pn216) and the average position reference movement time (Pn217) is shown below.

6.6.5 /COIN (Positioning Completion) Signal

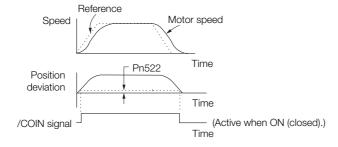
The /COIN (Positioning Completion) signal indicates that Servomotor positioning has been completed during position control.

The /COIN signal is output when the difference between the reference position output by the host controller and the current position of the Servomotor (i.e., the position deviation as given by the value of the deviation counter) is equal to or less than the setting of the positioning completed width (Pn522).

Use this signal to check the completion of positioning from the host controller.

Туре	Signal	Connector Pin No.	Signal Status	Meaning
Output /COIN	CN1-25 and CN1-26	ON (closed)	Positioning has been completed.	
	(default setting)	OFF (open)	Positioning has not been completed.	

Note: Use Pn50E = n. DDX (/COIN (Positioning Completion Output) Signal Allocation) to allocate the /COIN signal to other connector pins. Refer to the following section for details.


6.1.2 Output Signal Allocations on page 6-6

Setting the Positioning Completed Width

The /COIN signal is output when the difference between the reference position and the current position (i.e., the position deviation as given by the value of the deviation counter) is equal to or less than the setting of the positioning completed width (Pn522).

	Positioning Completed Width			Position	
Pn522	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 1,073,741,824	1 reference unit	7	Immediately	Setup

The setting of the positioning completed width has no effect on final positioning accuracy.

Note: If the parameter is set to a value that is too large, the /COIN signal may be output when the position deviation is low during a low-speed operation. If that occurs, reduce the setting until the signal is no longer output.

Setting the Output Timing of the /COIN (Positioning Completion Output) Signal

You can add a reference input condition to the output conditions for the /COIN signal to change the signal output timing.

If the position deviation is always low and a narrow positioning completed width is used, change the setting of $Pn207 = n.X \square \square \square$ (/COIN (Positioning Completion Output) Signal Output Timing) to change output timing for the /COIN signal.

	Parameter	Description	When Enabled	Classification
n.0□□□ (default setting)		Output the /COIN signal when the absolute value of the position deviation is the same or less than the setting of Pn522 (Positioning Completed Width).		
Pn207 n. 1000 n. 2000	n. 1000	Output the /COIN signal when the absolute value of the position deviation is the same or less than the setting of Pn522 (Positioning Completed Width) and the reference after the position reference filter is 0.	After restart	Setup
	n. 2000	Output the /COIN signal when the absolute value of the position deviation is the same or less than the setting of Pn522 (Positioning Completed Width) and the reference input is 0.		

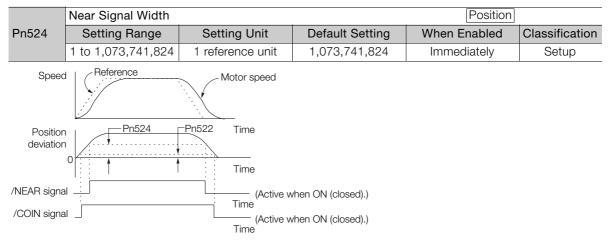
6.6.6 /NEAR (Near) Signal

6.6.6 /NEAR (Near) Signal

The /NEAR (Near) signal indicates when positioning completion is being approached.

The host controller receives the NEAR signal before it receives the /COIN (Positioning Completion) signal, it can start preparations for the operating sequence to use after positioning has been completed. This allows you to reduce the time required for operation when positioning is completed.

The NEAR signal is generally used in combination with the /COIN signal.


Туре	Signal	Connector Pin No.	Signal Status	Meaning
		ON (closed)	The Servomotor has reached a point near to positioning completion.	
Output	Output /NEAR Must be all	Must be anocated.	OFF (open)	The Servomotor has not reached a point near to positioning completion.

Note: You must allocate the /NEAR signal to use it. Use Pn510 = n. DDDX (/NEAR (Near) Signal Allocation) to allocate the signal to a connector pin. Refer to the following section for details.

6.1.2 Output Signal Allocations on page 6-6

/NEAR (Near) Signal Setting

You set the condition for outputting the /NEAR (Near) signal (i.e., the near signal width) in Pn524 (Near Signal Width). The /NEAR signal is output when the difference between the reference position and the current position (i.e., the position deviation as given by the value of the deviation counter) is equal to or less than the setting of the near signal width (Pn524).

Note: Normally, set Pn524 to a value that is larger than the setting of Pn522 (Positioning Completed Width).

6.6.7 Reference Pulse Inhibition Function

You can stop the SERVOPACK from counting the reference input pulses during position control. When this function is enabled, the SERVOPACK will ignore the reference pulse input.

/INHIBIT (Reference Pulse Inhibit) Signal

If you set the control method to switch between normal position control and position control with reference pulse inhibition (Pn000 = $n.\square\squareB\square$), the /INHIBIT signal is used as the Reference Pulse Inhibit signal (default setting).

• When Using the Default Input Signal Allocations (Pn50A = $n.\Box\Box\Box$)

Туре	Signal	Connector Pin No.	Signal Status	Meaning
Input /INHIBIT	CN1-41	ON (closed)	Counting the reference pulses is stopped.	
		OFF (open)	The reference pulses are counted.	

♦ When Changing Input Signal Allocations (Pn50A = n.□□□1)

If you set $Pn000 = n.\square\squareX\square$ (Control Method Selection) to 1, 5, 7, or 8, the /INHIBIT signal is used as the Reference Pulse Inhibit signal for reference pulse inhibition.

Туре	Signal	Connector Pin No.	Signal Status	Meaning	
Input	/INHIBIT	Must be allocated.	ON (closed)	Counting the reference pulses is stopped.	
			OFF (open)	The reference pulses are counted.	

Note: You must allocate the /INHIBIT signal to use it. Use Pn50D = n. \Box X \Box (/INHIBIT (Reference Pulse Inhibit Input) Signal Allocation) to allocate the signal to a connector pin. Refer to the following section for details.

6.1.2 Output Signal Allocations on page 6-6

◆ Reference Pulse Inhibition Settings

To use reference pulse inhibition, set $Pn000 = n.\Box \Box X \Box$ (Control Method Selection) to 1, 5, 7 or 8.

Parameter		Control Method	Used Input Sig- nals	When Enabled	Classifica- tion
Pn000	n.0010	Position control	/INHIBIT		
	n.0050	Switching between internal set speed control and position control	/INHIBIT /SPD-A /SPD-B /SPD-D /C-SEL		Setup
	n.0070	Switching between position control and speed control	/INHIBIT /C-SEL	After restart	
	n.□□8□	Switching between position control and torque control	/INHIBIT /C-SEL		
	Switching between normal position		/INHIBIT		

Information Counting reference pulses can be inhibited only for position control.

6.7.1 Basic Settings for Torque Control

6.7 Torque Control

Torque control is performed by inputting a torque reference with an analog voltage reference to the SERVOPACK to control the Servomotor with a torque that is proportional to the input voltage.

Torque control is set by setting $Pn000 = n.\Box\Box X\Box$ (Control Method Selection) to 2 (Torque control).

Pn000 n.□□2□ Torque control After resta	rt Setup

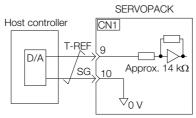
6.7.1 Basic Settings for Torque Control

This section describes the torque reference input signal and torque reference input gain.

T-REF (Torque Reference Input) Signal

The T-REF signal is described in the following table.

Туре	Signal	Connector Pin No.	Name
Input	T-REF	CN1-9	Torque reference input
input	SG	CN1-10	Signal ground for torque reference input

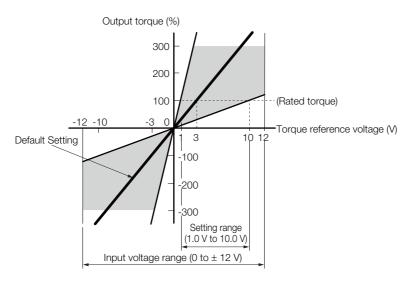

Maximum input voltage: ±12 VDC

Example Input Circuit Example

Pn400 (Torque Reference Input Gain) is set to 3 (setting unit: V) by default.

Torque Reference Input	Rotation Direction	Torque
+3 V	Forward	Rated torque
+1 V	Forward	1/3 rated torque
–1.5 V	Reverse	1/2 rated torque

If you will use a host controller, such as a programmable controller, for torque control, connect the above output pins to the analog reference output terminals on the host controller . Always use twisted-pair cables to control noise.

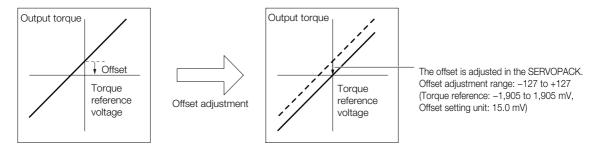


Setting the Torque Reference Input Gain (Pn400)

The torque of the Servomotor is controlled in proportion to an analog voltage reference.

The reference voltage for the rated motor torque is set in Pn400 (Torque Reference Input Gain) to define the relationship between the analog voltage reference and the motor output torque.

Pn400	Torque Reference Input Gain			Speed Position Torque		
	Setting Range	Setting Unit	Default Setting	When Enabled	Classification	
	10 to 100	0.1 V	30 (rated torque at 3.0 V)	Immediately	Setup	


Note: You can input a torque reference that exceeds the rated torque, but A.710 (Instantaneous Overload) or A.720 (Continuous Overload) alarms may occur if the reference is maintained for a long time or the motor outputs a torque that exceeds the rated torque. Refer to the following section for details.

6.7.2 Adjusting the Torque Reference Offset

With torque control, the Servomotor may sometimes operate at a very low speed for a torque reference of 0 V. This occurs because the internal reference in the SERVOPACK has a slight offset of a few millivolts.

If the Servomotor moves at a very low speed, the offset needs to be eliminated by adjusting the offset.

You can adjust the torque reference offset either automatically or manually.

Automatically Adjusting the Torque Reference Offset

To automatically adjust the torque reference offset, the amount of offset is measured and the torque reference voltage is adjusted automatically. The measured offset is saved in the SERVOPACK.

Information The offset does not use a parameter, so it will not change even if the parameter settings are initialized.

Preparations

The following conditions must be met to automatically adjust the reference offset.

- The parameters must not be write prohibited.
- The servo must be OFF.
- There must not be a position loop or speed loop in the host controller.

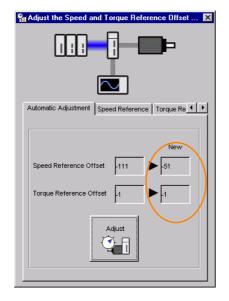
♦ Applicable Tools

The following table lists the tools that you can use to automatically adjust the torque reference offset and the applicable tool functions.

Tool	Function	Operating Procedure Reference
Panel Operator	Fn009	13.4.8 Autotune Analog (Speed/Torque) Reference Off- set (Fn009) on page 13-17
Digital Operator	Fn009	Characteria Science Digital Operator Operating Manual (Manual No.: SIEP S800001 33)
SigmaWin+	Setup - Speed/Torque Ref- erence Offset Adjustment	

Operating Procedure

Use the following procedure to automatically adjust the torque reference offset.


- 1. Confirm that the servo is OFF in the SERVOPACK.
- 2. Input a 0-V reference voltage from the host controller or an external circuit.

- 3. Select Setup Adjust Offset Adjust the Speed and Torque Reference Offset from the menu bar of the Main Window of the SigmaWin+.
- 4. Click the Automatic Adjustment Tab.
- 5. Click the Adjust Button.

	×
Automatic Adjustment Speed Reference Torque Re	

The value that results from automatic adjustment will be displayed in the New Box.

Note: You cannot automatically adjust the reference offset if a position loop is created with the host controller. Manually adjust the torque reference offset.

Manually Adjusting the Torque Reference Offset

You can directly input a torque reference offset to adjust the torque reference. The offset is adjusted manually in the following cases.

- To intentionally set the offset to a desired value
- To check an offset that was set automatically

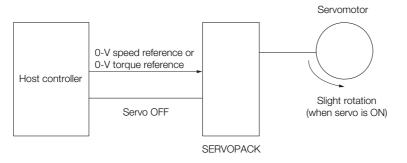
Preparations

The following conditions must be met to manually adjust the reference offset.

- The parameters must not be write prohibited.
- The servo must be in ready status.

♦ Applicable Tools

The following table lists the tools that you can use to manually adjust the torque reference offset and the applicable tool functions.


Tool	Function	Operating Procedure Reference
Panel Operator	Fn009	13.4.10 Manually Adjust Torque Reference Offset (Fn00B) on page 13-18
Digital Operator	Fn009	Ω Σ-7-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33)
SigmaWin+	Setup - Speed/Torque Ref- erence Offset Adjustment	

Information The offset does not use a parameter, so it will not change even if the parameter settings are initialized.

Operating Procedure

Use the following procedure to manually adjust the torque reference offset.

1. Input a 0-V reference voltage from the host controller or an external circuit.

- 2. Select Setup Adjust Offset Adjust the Speed and Torque Reference Offset from the menu bar of the Main Window of the SigmaWin+.
- 3. Click the Torque Reference Tab.

Pil Adjust the Speed and Torque Reference Offsets AX.	<
Automatic Adjustment Speed Reference Torque Reference Internal torque reference [%]	
Torque Reference Offset +1 ᠿ↑ 5 _1 ᠿ↓	

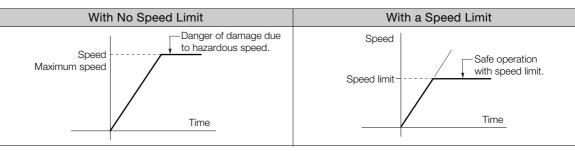
4. Use the +1 and -1 Buttons to adjust the value in the Torque Reference Box to 0.

	st the Speed and Torque Reference Offsets AX.
Au	tomatic Adjustment Speed Reference Torque Reference
	Internal torque reference 0 [%]

6.7.3 Torque Reference Filter Settings

The torque reference filter is a first order lag filter that is applied to the T-REF (Torque Reference Input) signal. The torque reference input filter is set in Pn415 (T-REF Filter Time Constant).

If the setting is too high, the response to the torque reference may be slowed down. Monitor the response as you set this parameter.


	T-REF Filter Time C	onstant	Speed Position Torque		
Pn415	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 65,535	0.01 ms	0	Immediately	Setup

6.7.4 Speed Limit during Torque Control

You can limit the speed of the Servomotor to protect the machine.

When you use a Servomotor for torque control, the Servomotor is controlled to output the specified torque, but the motor speed is not controlled. Therefore, if a reference torque is input that is larger than the machine torque, the speed of the Servomotor may increase greatly. If that may occur, use this function to limit the speed.

Note: The actual limit of motor speed depends on the load conditions on the Servomotor.

/VLT (Speed Limit Detection) Signal

The signal that is output when the motor speed is being limited by the speed limit is described in the following table.

Туре	Signal	Connector Pin No.	Signal Status	Meaning
Output /VLT		ON (closed)	The Servomotor speed is being limited.	
	/VLT	Must be allocated.	OFF (open)	The Servomotor speed is not being lim- ited.

Note: You must allocate the /VLT signal to use it. Use Pn50F = n. $\Box \Box X \Box$ (/VLT (Speed Limit Detection) Signal Allocation) to allocate the signal to a connector pin. Refer to the following section for details.

(2) 6.1.2 Output Signal Allocations on page 6-6

Selecting the Speed Limit

You set the speed limit to use in $Pn002 = n.\square\squareX\square$ (Torque Control Option). If you set Pn.002 to $n.\square\square1\square$ (Use V-REF as an external speed limit input), the smaller of the external speed limit and the internal speed limit will be used.

F	Parameter	Meaning	When Enabled	Classification
n.□□0□ (default settin		Use Pn407 or Pn480 as the speed limit. (Use internal speed limiting.)		
Pn002	n.0010	Use V-REF (CN1-5 and CN1-6) as an external speed limit input signal and limit the speed with the V-REF input voltage and the setting of Pn300. (Use external speed limiting.)	After restart	Setup

Note: If you are using a Rotary Servomotor, set Pn407 (Speed Limit during Torque Control). If you are using a Linear Servomotor, set Pn480 (Speed Limit during Force Control).

6.7.4 Speed Limit during Torque Control

Internal Speed Limiting

If you select internal speed limiting for the torque control option ($Pn002 = n.\Box\Box0\Box$), set the speed limit for the motor in Pn407 (Speed Limit during Torque Control) or Pn480 (Speed Limit during Force Control).

Also set $Pn408 = n.\square\squareX\square$ (Speed Limit Selection) to specify using the maximum motor speed or the overspeed alarm detection speed as the speed limit. Select the overspeed alarm detection speed to limit the speed to the equivalent of the maximum motor speed.

P	arameter	Meaning	When Enabled	Classification
n.□□0□ (default setting)		Use the smaller of the maximum motor speed and the setting of Pn407 or Pn480 as the speed limit.	After restart	Cotup
Pn408	n.0010	Use the smaller of the overspeed alarm detec- tion speed and the setting of Pn407 or Pn480 as the speed limit.	Aller restart	Setup

Note: If you are using a Rotary Servomotor, set Pn407 (Speed Limit during Torque Control). If you are using a Linear Servomotor, set Pn480 (Speed Limit during Force Control).

Rotary Servomotors

	Speed Limit during	Torque			
Pn407	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 10,000	1 min ⁻¹	10000	Immediately	Setup

Linear Servomotors

	Speed Limit during I	Force			
Pn480	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 10,000	1 mm/s	10000	Immediately	Setup

Note: If the parameter setting exceeds the maximum speed of the Servomotor, the Servomotor's maximum speed or the overspeed alarm detection speed will be used.

External Speed Limiting

If you select external speed limiting for the torque control option (Pn002 = $n.\Box\Box1\Box$), set the V-REF (Speed Reference Input) signal and the speed reference input gain (Pn300).

Туре	Signal	Connector Pin No.	Name		
Input	V-REF	CN1-5	External speed limit input		
	SG	CN1-6	Signal ground for external speed limit input		

During torque control, the motor speed limit is controlled by the analog voltage reference.

Information 1. If you set Pn002 to n. **DD**1**D**, the smaller of the speed limit input with the V-REF signal and the value of Pn407 or Pn480 is used.

2. The setting of Pn300 determines the voltage level to be input as the speed limit. The polarity has no effect.

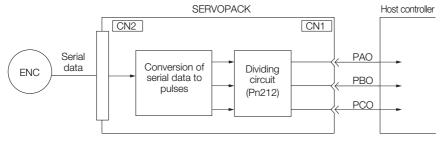
3. If you set Pn300 to 6.00 (default setting) and 6 V is input to the V-REF (CN1-5 and CN1-6) signal, the speed is limited to the rated speed of the Servomotor.

	Speed Reference In	put Gain	Speed Positio	n Torque	
Pn300	Setting Range	Setting Unit	Default Setting	When Enabled	Classifica- tion
	150 to 3,000	0.01 V	600	Immediately	Setup

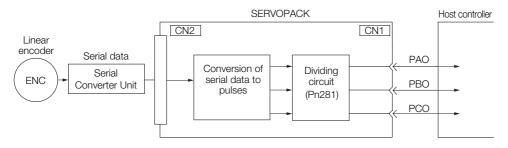
6.8 Encoder Divided Pulse Output

The encoder divided pulse output is a signal that is output from the encoder and processed inside the SERVOPACK. It is then output externally in the form of two phase pulse signals (phases A and B) with a 90° phase differential. At the host controller, it is used as the position feedback.

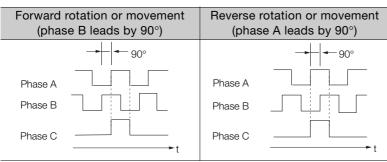
The following table describes the signals and output phase forms.


6.8.1 Encoder Divided Pulse Output Signals

Туре	Signal	Connector Pin No.	Name	Remarks		
Output	PAO	CN1-33	Encoder Divided Pulse Output,	 Rotary Servomotors These encoder divided pulse output pins output the number 		
	/PAO	CN1-34	Phase A	of pulses per motor resolution that is set in Pn212 (Number of Encoder Output Pulses). The phase difference between phase A and phase B is an electric angle of 90°.		
	PBO	CN1-35				
	/PBO	CN1-36	Encoder Divided Pulse Output, Phase B	 Linear Servomotors These encoder divided pulse output pins output pulses at the resolution that is set in Pn281 (Encoder Output Resolution). The phase difference between phase A and phase B is an electric angle of 90°. 		
	PCO	CN1-19	Encoder Divided Pulse Output,	These pins output one pulse		
	/PCO	CN1-20	Phase C*	every motor rotation.		


* Refer to the following section for information on the origin within one encoder rotation.

€ Contract Contract


Rotary Servomotor

· Linear Servomotors

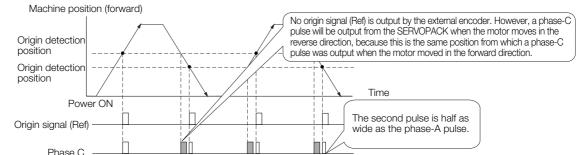
Output Phase Forms

Note: The pulse width of the origin within one encoder rotation depends on the setting of number of encoder output pulses (Pn212) or the encoder output resolution (Pn281). It is the same as the width of phase A. Even for reverse operation (Pn000 = $n.\square\square\square$), the output phase form is the same as shown above.

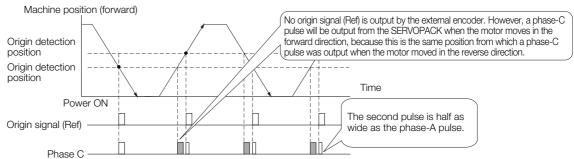
If you use the SERVOPACK's phase-C pulse output for an origin return, rotate the Servomotor two or more rotations before you start an origin return. If the Servomotor cannot be rotated two or more times, perform an origin return operation at a motor speed of 600 min⁻¹ or lower. If the motor speed is higher than 600 min⁻¹, the phase-C pulse may not be output correctly.

Linear Encoder Application Precautions

The following precautions apply to the encoder output pulses when an external linear encoder is used.


Encoder Output Pulse Signal from SERVOPACK with a Linear Encoder from Renishaw PLC

The output position of the origin signal (Ref) will depend on the direction of movement for some models of linear encoders from Renishaw PLC.


In that case, the phase-C pulse of the SERVOPACK is output at two positions.

For detailed specifications on the origin signal for the linear encoder, refer to the manual for the Renishaw PLC linear encoder.

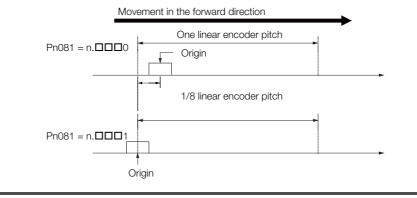
When Passing the First Origin Signal (Ref) in the Forward Direction and Returning after Turning ON the Power Supply

When Passing the First Origin Signal (Ref) in the Reverse Direction and Returning after Turning ON the Power Supply

Precautions When Using a Linear Incremental Encoder from Magnescale Co., Ltd.

Encoder Divided Phase-C Pulse Output Selection

You can also output the encoder's phase-C pulse for reverse movement. To do so, set Pn081 to n. DDD1.

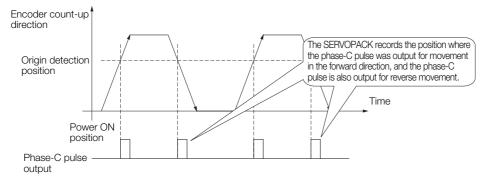

Parameter		Meaning	When Enabled	Classification
Pn081	n.ロロロ0 (default setting)	Output phase-C pulses only in the forward direction.	After restart	Setup
Pn081	n.0001	Output phase-C pulses in both the forward and reverse directions.	Alter restart	

Precautions on Setting the Phase-C Pulse Output Selection (Pn081 = $n.\Box\Box\BoxX$)

If you set Pn081 to n. DDD1 (Output phase-C pulses in both the forward and reverse directions), the width of the phase-C pulse output may be narrower than the width of the phase-A pulse.

There is a difference of 1/8th of the scale pitch in the phase-C detection position for the encoder's phase-C pulse output position between when Pn081 = n. DDX is set to 0 (Output phase-C pulses only in the forward direction) and when it is set to 1 (Output phase-C pulses in both the forward and reverse directions).

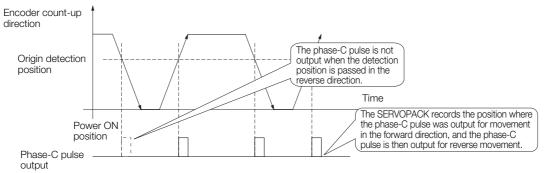
Observe the following precaution if you set Pn081 to n. $\Box\Box\Box$ (Output phase-C pulses only in the forward direction).


When a linear incremental encoder from Magnescale Co., Ltd. is used, the count direction of the encoder determines how the phase-C pulse (CN1-19 and CN1-20) is output.

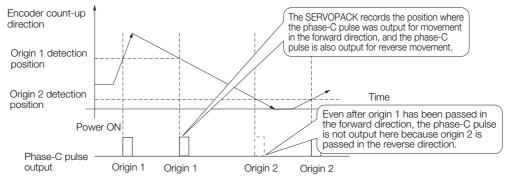
Note: The count direction (up or down) of the linear encoder determines whether a phase-C pulse is output. The output of the pulse does not depend on the setting of the movement direction (Pn000 = $n.\square\square\square$).

Encoder Model	Interpolator	Linear Encoder Pitch [µm]
SL710		800
SL720	PL101-RY MJ620-T13	800
SL730		800
	SR75	80
	SR85	80

When First Passing the Origin Signal in the Forward Direction and Returning after Turning ON the Power Supply

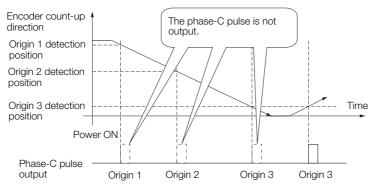

The encoder's phase-C pulse (CN1-19 and CN1-20) is output when the origin detection position is passed for the first time in the forward direction after the power supply is turned ON. After that, the phase-C pulse is output whenever the origin detection position is passed in the forward or reverse direction.

When First Passing the Origin Signal in the Reverse Direction and Returning after Turning ON the Power Supply


The encoder's phase-C pulse (CN1-19 and CN1-20) is not output when the origin detection position is passed for the first time in the reverse direction after the power supply is turned ON.

However, after the origin detection position is passed in the forward direction and the encoder's phase-C pulse is output, it will then also be output when the origin detection point is passed in the reverse direction.

When Using a Linear Encoder with Multiple Origins and First Passing the Origin Position in the Forward Direction and Returning after Turning ON the Power Supply


The encoder's phase-C pulse is output when the origin detection position is passed for the first time in the forward direction after the power supply is turned ON. After that, the phase-C pulse is output whenever the origin detection position is passed in the forward or reverse direction.

When Using a Linear Encoder with Multiple Origins and First Passing the Origin Position in the Reverse Direction after Turning ON the Power Supply

The encoder's phase-C pulse is not output when the origin detection position is passed for the first time in the reverse direction after the power supply is turned ON.

However, after the origin detection position is passed in the forward direction and the encoder's phase-C pulse it output, it will then also be output when the origin detection point is passed in the reverse direction.

6.8.2 Setting for the Encoder Divided Pulse Output

6.8.2 Setting for the Encoder Divided Pulse Output

This section describes the setting for the encoder divided pulse output for a Rotary Servomotor or Linear Servomotor.

Encoder Divided Pulse Output When Using a Rotary Servomotor

If you will use a Rotary Servomotor, set the number of encoder output pulses (Pn212).

	Number of Encoder C	output Pulses	Speed Position Torque		
Pn212	Setting Range Setting Unit Default Set		Default Setting	When Enabled	Classification
	16 to 1,073,741,824	1 P/Rev	2,048	After restart	Setup

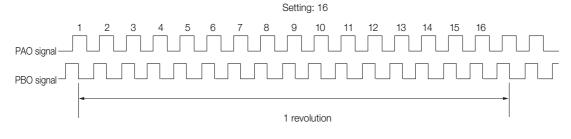
The number of pulses from the encoder per rotation are processed inside the SERVOPACK, divided by the setting of Pn212, and then output.

Set the number of encoder divided output pulses according to the system specifications of the machine or host controller.

The setting of the number of encoder output pulses is limited by the resolution of the encoder.

Setting of the Number		En	coder Resoluti	Upper Limit of Servo-	
of Encoder Output Pulses [P/Rev]	Setting Increment	20 bits (1,048,576 pulses)	22 bits (4,194,304 pulses)	24 bits (16,777,216 pulses)	motor Speed for Set Number of Encoder Output Pulses [min ⁻¹]
16 to 16,384	1	0	0	0	6,000
16,386 to 32,768	2	0	0	0	3,000
32,772 to 65,536	4	0	0	0	1,500
65,544 to 131,072	8	0	0	0	750
131,088 to 262,144	16	0	0	0	375
262,176 to 524,288	32	_	0	0	187
524,352 to 1,048,576	64	_	0	0	93
1,048,704 to 2,097,152	128	_	_	0	46
2,097,408 to 4,194,304	256	_	_	0	23

Note: 1. The setting range of the number of encoder output pulses (Pn212) depends on the resolution of the Servomotor encoder. An A.041 alarm (Encoder Output Pulse Setting Error) will occur if the above setting conditions are not met.


Correct setting example: Pn212 can be set to 25,000 [P/Rev].

Incorrect setting example: Pn212 cannot be set to 25,001 (P/Rev) because the setting increment in the above table is not used.

 The upper limit of the pulse frequency is approximately 1.6 Mpps. The Servomotor speed will be limited if the setting of the number of encoder output pulses is too high.
 An A.511 alarm (Encoder Output Pulse Overspeed) will occur if the upper limit of the motor speed is

An A.511 alarm (Encoder Output Pulse Overspeed) will occur if the upper limit of the motor speed is exceeded.

Output example: An output example is given below for the PAO (Encoder Pulse Output Phase A) signal and the PBO (Encoder Pulse Output Phase B) signal when Pn212 is set to 16 (16 pulses output per revolution).

6.8.2 Setting for the Encoder Divided Pulse Output

Encoder Divided Pulse Output When Using a Linear Servomotor

If you will use a Linear Servomotor, set the encoder output resolution (Pn281).

	Encoder Output Re	solution	Speed Posit	ion Force	
Pn281	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	1 to 4,096	1 edge/pitch	20	After restart	Setup

Note: The maximum setting for the encoder output resolution is 4,096. Pulse output at a linear encoder resolution of 4,096 or higher is not possible.

Set the encoder output resolution for the encoder pulse output signals (PAO, /PAO, PBO, and /PBO) from the SERVOPACK to the host controller.

The number of feedback pulses per linear encoder pitch is divided by the setting of Pn281 (after multiplication by 4) inside the SERVOPACK and then the resulting number of pulses is output. Set the parameter according to the system specifications of the machine or host controller.

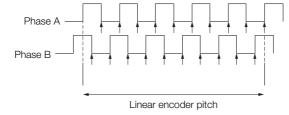
The setting range depends on the Servomotor's maximum speed (Pn385) and the linear scale pitch (Pn282).* You can calculate the upper limit of the setting of Pn281 with the following formula.

Upper limit of Pn281 = $\frac{\text{Linear Encoder Pitch*/100}}{\text{Pn385}} \times 72$

* The value depends on whether a Serial Converter Unit is used.

Using a Serial Converter Unit	Setting of Pn282
ear encoder and SERVOPACK are connected	The linear encoder pitch is automatically detected by the SERVO- PACK, so the setting of Pn282 is ignored. You can use the monitor functions of the SigmaWin+ to check the linear encoder pitch that was automatically detected.

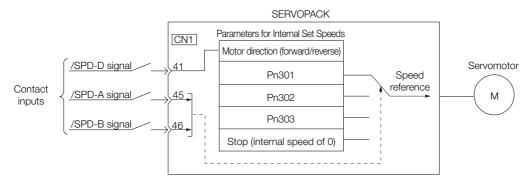
Information When the linear encoder pitch is 4 μm, the maximum motor speed is limited to 1 mm/s because of the maximum response frequency of the Serial Converter Unit. If the setting is out of range or does not satisfy the setting conditions, an A.041 alarm (Encoder Output Pulse Setting Error) will be output. If the motor speed exceeds the upper limit for the set encoder output resolution, an A.511 alarm (Encoder Output Pulse Overspeed) will be output.


The upper limit of the encoder output resolution is restricted by the dividing specifications of the Serial Converter Unit.

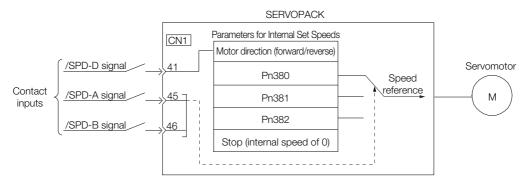
Example Setting Example Correct setting for a linear encoder pitch of 20 μm and a maximum motor speed of 5 m/s (Pn385 = 50): Pn281 = 28 (edges/pitch) Incorrect setting: Pn281 = 29 (edges/pitch) (An A.041 alarm would be output.)

Pulse Output Example

When Pn281 = 20 (20-edge output (5-pulse output) per linear encoder pitch)



6.9.1 Input Signals for Internal Set Speed Control


Internal Set Speed Control 6.9

You can set motor speeds in three parameters in the SERVOPACK and then perform speed control by using external input signals to select the motor speed and direction. Because the speed is controlled with parameters in the SERVOPACK, an external pulse generator or a reference generator is not required to control the speed.

· Rotary Servomotors

Linear Servomotors

6.9.1 Input Signals for Internal Set Speed Control

The following input signals are used to change the speed.

When Using the Default Input Signal Allocations $(Pn50A = n.\Box\Box\BoxO)$

Туре	Signal	Connector Pin No.	Meaning
	/SPD-D	CN1-41	Changes the Servomotor direction.
Input	/SPD-A	CN1-45	Used to select the internal set speed.
	/SPD-B	CN1-46	Used to select the internal set speed.

When Changing Input Signal Allocations (Pn50A = $n.\Box\Box\Box$ 1)

Туре	Signal	Connector Pin No.	Meaning
	/SPD-D		Changes the Servomotor direction.
Input	/SPD-A	Must be allocated.	Used to select the internal set speed.
	/SPD-B		Used to select the internal set speed.

Note: You must allocate the /SPD-D, /SPD-A, and /SPD-B signals to use them. You can use the following parameters to allocate the signal to a terminal.

Pn50C = n.□□□X (/SPD-D (Motor Direction) Signal Allocation)
 Pn50C = n.□□X (/SPD-A (Internal Set Speed Selection Input) Signal Allocation)

• Pn50C = n. IXIII (/SPD-B (Internal Set Speed Selection Input) Signal Allocation)

Refer to the following section for details.

3 6.1.1 Input Signal Allocations on page 6-4

6.9.2 Setting the Control Method to Internal Set Speed Control

Set Pn000 to n. DXD (Control Method Selection) to 3 to specify internal set speed control.

Parameter		Meaning	When Enabled	Classification
Pn000	n.0030	Internal set speed control with contact commands	After restart	Setup

6.9.3 Settings for Internal Set Speed Control

The parameters that you set depend on the type of Servomotor.

· Rotary Servomotors

	Internal Set Speed 1			Speed	Speed	
Pn301	Setting Range	Setting Unit [*]	Default Setting	When Enabled	Classification	
	0 to 10,000	1 min ⁻¹	100	Immediately	Setup	
	Internal Set Speed 2	2		Speed		
Pn302	Setting Range	Setting Unit*	Default Setting	When Enabled	Classification	
	0 to 10,000	1 min⁻¹	200	Immediately	Setup	
	Internal Set Speed 3	3		Speed		
Pn303	Setting Range	Setting Unit*	Default Setting	When Enabled	Classification	
	0 to 10,000	1 min ⁻¹	300	Immediately	Setup	

* When a Direct Drive Servomotor is connected, the setting unit will automatically be 0.1 min⁻¹.

Note: If you set a value that exceeds the maximum speed of the Servomotor, the actual speed will be limited to the maximum speed of the Servomotor.

Linear Servomotors

	Internal Set Speed 1		Speed	Speed	
Pn380	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 10,000	1 mm/s	10	Immediately	Setup
	Internal Set Speed 2	2		Speed	
Pn381	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 10,000	1 mm/s	20	Immediately	Setup
	Internal Set Speed 3	3		Speed	
Pn382	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 10,000	1 mm/s	30	Immediately	Setup

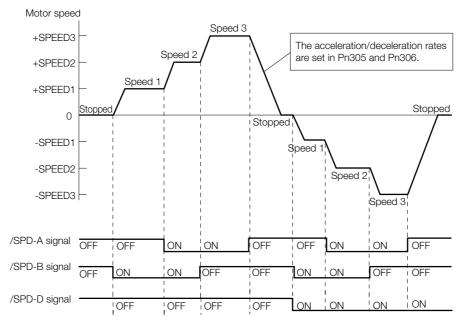
Note: If you set a value that exceeds the maximum speed of the Servomotor, the actual speed will be limited to the maximum speed of the Servomotor.

6.9.4 Changing Internal Set Speeds with Input Signals

6.9.4 Changing Internal Set Speeds with Input Signals

You can select the internal set speed and direction with the ON/OFF combinations of the /SPD-D (Motor Direction) signal and the /SPD-A and /SPD-B (Internal Set Speed Selection) signals.

	Input Signals		Motor	Motor Speed	
/SPD-D	/SPD-A	/SPD-B	Direction	Motor Speed	
	OFF	OFF		Stops the motor with an internal speed of 0.	
OFF	OFF	ON		Operates the motor with internal set speed 1, which is set in Pn301.	
	ON	ON	Forward	Operates the motor with internal set speed 2, which is set in Pn302.	
	ON	OFF		Operates the motor with internal set speed 3, which is set in Pn303.	
	OFF	OFF	-	Stops the motor with an internal speed of 0.	
	OFF	ON		Operates the motor with internal set speed 1, which is set in Pn301.	
ON	ON	ON	Reverse	Operates the motor with internal set speed 2, which is set in Pn302.	
	ON	OFF		Operates the motor with internal set speed 3, which is set in Pn303.	


Rotary Servomotors

• Linear Servomotors

	Input Signals	6	Motor	Motor Speed	
/SPD-D	/SPD-A	/SPD-B	Direction	Motor Speed	
	OFF	OFF		Stops the motor with an internal speed of 0.	
OFF	OFF	ON		Operates the motor with internal set speed 1, which is set in Pn380.	
	ON	ON	Forward	Operates the motor with internal set speed 2, which is set in Pn381.	
	ON	OFF		Operates the motor with internal set speed 3, which is set in Pn382.	
	OFF	OFF	-	Stops the motor with an internal speed of 0.	
	OFF	ON		Operates the motor with internal set speed 1, which is set in Pn380.	
ON	ON	ON	Reverse	Operates the motor with internal set speed 2, which is set in Pn381.	
	ON	OFF		Operates the motor with internal set speed 3, which is set in Pn382.	

6.9.4 Changing Internal Set Speeds with Input Signals

An operating example of speed control with the internal set speeds is given below. This example combines speed control with the internal set speeds with the soft start function. The shock that results from speed changes is reduced by using the soft start function.

6.10.1 Setting Pn000 = $n.\Box\Box X\Box$ (Control Method Selection) to 4, 5, or 6

6.10 Selecting Combined Control Methods

You can specify switching the SERVOPACK between two control methods. To combine control methods, set $Pn000 = n.\square\squareX\square$ (Control Method Selection) to between 4 and B. This section describes how to switch between the methods and the switching conditions.

Parameter		Combined	Cont	rol Methods	When Enabled	Classification
Pn000	n.0040	Internal set speed control	\Leftrightarrow	Speed control with external references		Setup
	n.0050	Internal set speed control	\Leftrightarrow	Position control		
	n.0060	Internal set speed control	\Leftrightarrow	Torque control		
	n.0070	Position control	\Leftrightarrow	Speed control with external references	After restart	
FIIUUU	n.🗆 🗆 8 🗆	Position control	\Leftrightarrow	Torque control		
	n.0090	Torque control	\Leftrightarrow	Speed control with external references		
	n.🗆 🗆 A 🗆	Speed control with external references	\Leftrightarrow	Speed control with zero clamping		
	n.0080	Normal position con- trol	\Leftrightarrow	Position control with reference pulse inhibi- tion	-	

6.10.1 Setting Pn000 = $n.\Box\Box X\Box$ (Control Method Selection) to 4, 5, or 6

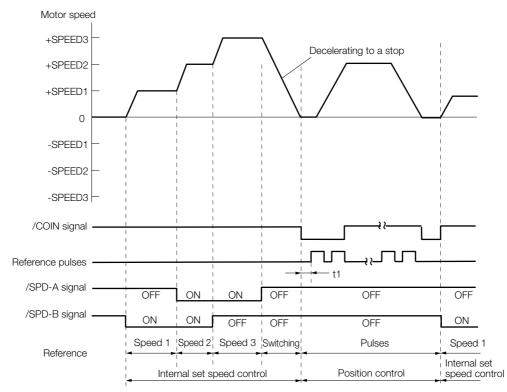
The conditions for switching between internal set speed control and another control method are given below.

When Using the Default Input Signal Allocations (Pn50A = $n.\Box\Box\Box$)

You can use the /SPD-A and /SPD-B (Internal Set Speed Selection) signals to change the control method and select the internal set speed.

You can switch between speed control, position control, or torque control and internal set speed control even while the Servomotor is operating.

· Rotary Servomotors


	Input Pins		Motor	Operation for Setting of Pn000 = n.□□X□		
/SPD-D (CN1-41)	/SPD-A (CN1-45)	/SPD-B (CN1-46)	Direction	n.□□4□	n.□□5□	n.□□6□
	OFF	OFF		Speed control	Position control	Torque control
	OFF	ON		Operates the motor with internal set speed 1, which is set in Pn301.		
OFF	F ON ON	Forward	Operates the motor with internal set speed 2, which is set in Pn302.			
	ON	OFF		Operates the motor in Pn303.	r with internal set sp	eed 3, which is set
	OFF	OFF		Speed control	Position control	Torque control
	OFF	ON		Operates the motor in Pn301.	r with internal set sp	eed 1, which is set
ON	ON	ON	Reverse	Operates the motor in Pn302.	r with internal set sp	eed 2, which is set
	ON	OFF		Operates the motor in Pn303.	r with internal set sp	eed 3, which is set

6.10.1 Setting Pn000 = $n.\Box\Box X\Box$ (Control Method Selection) to 4, 5, or	[.] 6
--	----------------

	Input Pins		Motor	Operation for	or Setting of Pn000	= n.□□X□		
/SPD-D (CN1-41)	/SPD-A (CN1-45)	/SPD-B (CN1-46)	Direction	n.🗆🗆 4🗆	n.□□5□	n.□□6□		
	OFF	OFF		Speed control	Position control	Force control		
	OFF	ON		Operates the moto in Pn380.	Operates the motor with internal set speed 1, which is set in Pn380.			
OFF	ON	ON	Forward	ward Operates the motor with internal set speed 2, which is so in Pn381.				
	ON	OFF		Operates the moto in Pn382.	r with internal set sp	eed 3, which is set		
	OFF	OFF		Speed control	Position control	Force control		
	OFF	ON		Operates the moto in Pn380.	r with internal set sp	eed 1, which is set		
ON	ON	ON	Reverse	Operates the moto in Pn381.	r with internal set sp	eed 2, which is set		
	ON	OFF		Operates the moto in Pn382.	r with internal set sp	eed 3, which is set		

Linear Servomotors

An example of operation for $Pn000 = n.\Box\Box5\Box$ (Switching between internal set speed control and position control) is given below. This example combines speed control with the internal set speeds with the soft start function. The shock that results from speed changes is reduced by using the soft start function.

- Note: 1. Set t1 so that it is greater than 2 ms. The value of t1 is not affected by whether the soft start function is used.
 - 2. A maximum delay of 2 ms occurs in reading the /SPD-A and /SPD-B signals.
 - 3. The speed is decelerated with the deceleration time set in Pn306 (Soft Start Deceleration Time), and internal set speed control is changed to position control after the Servomotor comes to a stop. The pulse train reference is received after the switch to position control. Always wait until after position control is started before you input the pulse train reference from the host computer. After position control is started, the /COIN (Positioning Completion) signal is output. Use the /COIN signal to confirm that the control method has changed.

6.10.1 Setting Pn000 = $n.\Box\Box X\Box$ (Control Method Selection) to 4, 5, or 6

When Changing Input Signal Allocations (Pn50A = $n.\Box\Box\Box$ 1)

The following four signals are assigned to CN1-40 to CN1-46 on the I/O signal connector: /C-SEL (Control Selection), /SPD-A and /SPD-B (Internal Set Speed Selection) signals, and /SPD-D (Motor Direction) signal.

The control method is switched by turning the /C-SEL signal ON and OFF.

Type	Signal Connector Pin No.		Setting	Control Method for Setting of Pn000 = n.□□X□		
туре	Signai	Johnector Finno.	Setting	n.🗆🗆 4 🗆	n.🗆 🗆 5 🗆	n.□□6□
Input		/C-SEL Must be allocated.	ON (closed)	Speed control	Position control	Torque control
input	/U-SLL		OFF (open)	Internal set speed control	Internal set speed control	Internal set speed control

Note: You must allocate the /C-SEL signal to use it. Use Pn50C = n.X III (/C-SEL (Control Selection Input) Signal Allocation) to allocate the signal to a connector pin. Refer to the following section for details.

[☐ 6.1.2 Output Signal Allocations on page 6-6

The operating method for internal set speed control (i.e., the /C-SEL signal is OFF) is given below.

	Input Signals			Motor Speed
/SPD-D	/SPD-A	/SPD-B	Direction	Motor Speed
	OFF	OFF		Stops the motor with an internal speed of 0.
	OFF	ON		Operates the motor with internal set speed 1, which is set in Pn301.
OFF	ON	ON		Operates the motor with internal set speed 2, which is set in Pn302.
	ON	OFF		Operates the motor with internal set speed 3, which is set in Pn303.
	OFF	OFF		Stops the motor with an internal speed of 0.
	OFF	ON		Operates the motor with internal set speed 1, which is set in Pn301.
ON	ON	ON	Reverse	Operates the motor with internal set speed 2, which is set in Pn302.
	ON	OFF		Operates the motor with internal set speed 3, which is set in Pn303.

Rotary Servomotors

Linear Servomotors

Input Signals			Motor	Motor Speed
/SPD-D	/SPD-A	/SPD-B	Direction	Motor Speed
	OFF	OFF		Stops the motor with an internal speed of 0.
	OFF	ON		Operates the motor with internal set speed 1, which is set in Pn380.
OFF	ON	ON	Forward	Operates the motor with internal set speed 2, which is set in Pn381.
	ON	OFF		Operates the motor with internal set speed 3, which is set in Pn382.
	OFF	OFF		Stops the motor with an internal speed of 0.
	OFF	ON		Operates the motor with internal set speed 1, which is set in Pn380.
ON	ON	ON	Reverse	Operates the motor with internal set speed 2, which is set in Pn381.
	ON	OFF		Operates the motor with internal set speed 3, which is set in Pn382.

Note: You must allocate the /SPD-D, /SPD-A, and /SPD-B signals to use them. You can use the following parameters to allocate the signal to a terminal.

Pn50C = n. □□IX (/SPD-D (Motor Direction) Signal Allocation)
Pn50C = n. □IX (/SPD-A (Internal Set Speed Selection Input) Signal Allocation)
Pn50C = n. □X□ (/SPD-B (Internal Set Speed Selection Input) Signal Allocation)

Refer to the following section for details.

6.1.1 Input Signal Allocations on page 6-4

6.10.2 Setting Pn000 = $n.\Box\Box X\Box$ (Control Method Selection) to 7, 8, or 9

You can set $Pn000 = n.\Box\Box X\Box$ (Control Method Selection) to switch between the following control methods.

- Switching between position control and speed control
- · Switching between position control and torque control
- Switching between torque control and speed control

When Using the Default Input Signal Allocations (Pn50A = $n.\Box\Box\Box$)

Туре	vpe Signal Connector		Signal Status	Control Method for Setting of Pn000 = n.□□X□			
туре	Signai	Pin No.	Signal Status	n.0070	n.□□8□	n.□□9□	
Input		ON (closed)	Speed control	Torque control	Speed control		
Input /C-SEL	EL CN1-41	OFF (open)	Position control	Position control	Torque control		

When Changing Input Signal Allocations (Pn50A = $n.\Box\Box\Box1$)

Type	Type Signal Connector		Signal Status	Control Method for Setting of Pn000 = n.□□X□			
Type	Pin No.	Signal Status	n.0070	n.🗆🗆 8🗆	n.□□9□		
Input	Input /C-SEL Must be allo- cated.	Must be allo-	ON (closed)	Speed control	Torque control	Speed control	
input		OFF (open)	Position control	Position control	Torque control		

Note: You must allocate the /C-SEL signal to use it. Use Pn50C = n.X□□□ (/C-SEL (Control Selection Input) Signal Allocation) to allocate the signal to a connector pin.

6.1.2 Output Signal Allocations on page 6-6

6.10.3 Setting Pn000 = $n.\Box\Box X\Box$ (Control Method Selection) to A or B

You can set $Pn000 = n.\Box\Box X\Box$ (Control Method Selection) to switch between the following control methods.

- Switching between speed control with analog references and speed control with zero clamping
- Switching between normal position control and position control with reference pulse inhibition

When Using the Default Input Signal Allocations (Pn50A = $n.\Box\Box\Box$)

Туре	Signal	Connector	Signal Status	Control Method for Setting of Pn000 = $n.\Box\Box X\Box$		
туре	Signal	Pin No.	Signal Status	n.□□A□	n.□□B□	
/ZCLAMP		ON (closed)	Speed control with zero clamping	_		
Input		CN1-41 IT	OFF (open)	Speed control	_	
input	Input /INHIBIT		ON (closed)	_	Position control with refer- ence pulse inhibition	
			OFF (open)	_	Position control	

6.10.3 Setting Pn000 = $n.\Box\Box X\Box$ (Control Method Selection) to A or B

When Changing Input Signal Allocations (Pn50A = $n.\Box\Box\Box$ 1)

Туре	be Signal Connector		Signal Status	Control Method for Setting of Pn000 = n.□□X□		
Type	Signal	Pin No.	Signal Status	n.□□A□	n.🗆 🗆 🗛 🛛	
/ZCLAMP		ON (closed) Speed control with clamping		-		
Input		Must be	OFF (open)	Speed control	_	
Input /INHIBIT	allocated.		ON (closed)	_	Position control with refer- ence pulse inhibition	
			OFF (open) –		Position control	

Note: You must allocate the /ZCLAMP and /INHIBIT signals to use them. You can use the following parameters to Pn50D = n.□□IX (/ZCLAMP (Zero Clamping Input) Signal Allocation)
Pn50D = n.□□IX (/ZCLAMP (Zero Clamping Input) Signal Allocation)
Pn50D = n.□IX (/INHIBIT (Reference Pulse Inhibit Input) Signal Allocation)
Refer to the following section for details.

3 6.1.1 Input Signal Allocations on page 6-4

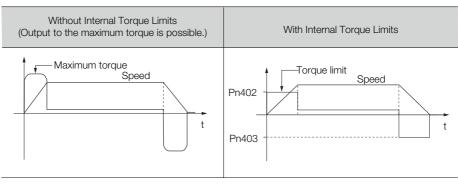
6.11 Selecting Torque Limits

You can limit the torque that is output by the Servomotor. There are four different ways to limit the torque. These are described in the following table.

Limit Method	Outline	Control Method	Reference
Internal Torque Limits	The torque is always limited with the setting of a parameter.	Speed control,	6.11.1
External Torque Limits	The torque is limited with an input signal from the host computer.		6.11.2
Limiting Torque with an Analog Reference	An analog reference is used to set the required torque limits.	Speed control or position control	6.11.3
Limiting Torque with an External Torque Limit and an Analog Reference	The torque is limited by combining torque limits for an external input signal and torque limits for an analog reference.	Speed control or position control	6.11.4

Note: If you set a value that exceeds the maximum torque of the Servomotor, the torque will be limited to the maximum torque of the Servomotor.

6.11.1 Internal Torque Limits

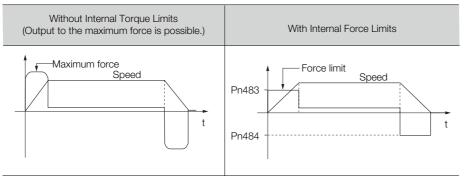

If you use internal torque limits, the maximum output torque will always be limited to the specified forward torque limit (Pn402) and reverse torque limit (Pn403).

· Rotary Servomotors

	Forward Torque Lim	it	Speed Position Torque		
Pn402	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 800	1%*	800	Immediately	Setup
	Reverse Torque Lim	it		Speed Positio	n Torque
Pn403	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 800	1%*	800	Immediately	Setup

* Set a percentage of the rated motor torque.

Note: If the setting of Pn402 or Pn403 is too low, the torque may be insufficient for acceleration or deceleration of the Servomotor.


6.11.2 External Torque Limits

• Linear Servomotors

	Forward Force Limit			Speed Positic	n Force
Pn483	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 800	1%*	30	Immediately	Setup
	Reverse Force Limit			Speed Positio	n Force
Pn484	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 800	1%*	30	Immediately	Setup

* Set a percentage of the rated motor force.

Note: If the setting of Pn483 or Pn484 is too low, the force may be insufficient for acceleration or deceleration of the Servomotor.

6.11.2 External Torque Limits

You can limit the torque only when required by the operating conditions of the machine by turning a signal ON and OFF.

You can use this for applications such as stopping on physical contact, or holding a workpiece with a robot.

External Torque Limit Reference Signals

The /P-CL (Forward External Torque Limit) and /N-CL (Reverse External Torque Limit) signals are used as the external torque limit reference signals. The /P-CL signal is used for the forward torque limit and the /N-CL signal is used for the reverse torque limit.

Туре	Signal	Connector Pin No.	Signal Status	Meaning
Input	Input /P-CL	CN1-45 (default setting)	ON (closed)	Applies the forward external torque limit. The torque is limited to the smaller of the set- tings of Pn402 ^{*1} and Pn404.
-		(delauit setting)	OFF (open)	Cancels the forward external torque limit. The torque is limited to the setting of Pn402 ^{*1} .
Input	Input /N-CL	CN1-46	ON (closed)	Applies the reverse external torque limit. The torque is limited to the smaller of the set- tings of Pn403 ^{*2} and Pn405.
		(default setting)	OFF (open)	Cancels the reverse external torque limit. The torque is limited to the setting of Pn403 ^{*2} .

*1. Pn483 is used for a Linear Servomotor.

*2. Pn484 is used for a Linear Servomotor.

Note: You can use the following parameters to allocate the /P-CL and /N-CL signals to other terminals.

• Pn50B = n. IXIII (/P-CL (Forward External Torque Limit Input) Signal Allocation)

• Pn50B = n.XDDD (/N-CL (Reverse External Torque Limit Input) Signal Allocation)

Refer to the following section for details.

6.1.1 Input Signal Allocations on page 6-4

Setting the Torque Limits

The parameters that are related to setting the torque limits are given below.

Rotary Servomotors

If the setting of Pn402 (Forward Torque Limit), Pn403 (Reverse Torque Limit), Pn404 (Forward External Torque Limit), or Pn405 (Reverse External Torque Limit) is too low, the torque may be insufficient for acceleration or deceleration of the Servomotor.

	Forward Torque Limit			Speed Position Torque	
Pn402	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 800	1%*	800	Immediately	Setup
	Reverse Torque Limit			Speed Position Torque	
Pn403	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 800	1%*	800	Immediately	Setup
	Forward External Torque Limit			Speed Position Torque	
Pn404	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 800	1%*	100	Immediately	Setup
	Reverse External Torque Limit			Speed Position Torque	
Pn405	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 800	1%*	100	Immediately	Setup

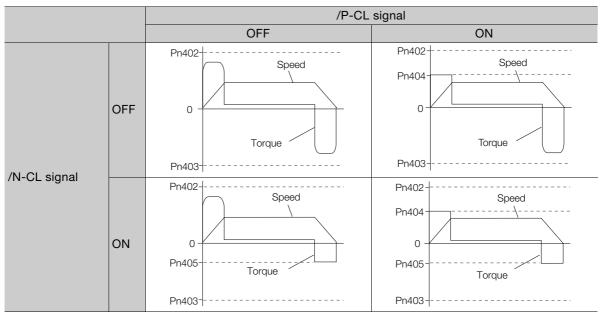
* Set a percentage of the rated motor torque.

Linear Servomotors

If the setting of Pn483 (Forward Force Limit), Pn484 (Reverse Force Limit), Pn404 (Forward External Force Limit), or Pn405 (Reverse External Force Limit) is too low, the force may be insufficient for acceleration or deceleration of the Servomotor.

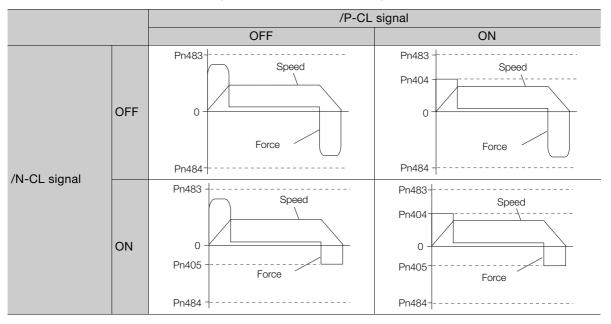
	Forward Force Limit			Speed Position Force	
Pn483	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 800	1%*	30	Immediately	Setup
	Reverse Force Limit			Speed Position Force	
Pn484	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 800	1%*	30	Immediately	Setup
	Forward External Force Limit			Speed Position Force	
Pn404	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 800	1%*	100	Immediately	Setup
	Reverse External Force Limit			Speed Position Force	
Pn405	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 800	1%*	100	Immediately	Setup

* Set a percentage of the rated motor force.


6.11.2 External Torque Limits

Changes in the Output Torque for External Torque Limits

The following table shows the changes in the output torque when the internal torque limit is set to 800%.


Rotary Servomotors

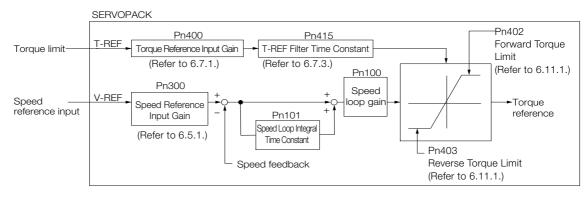
In this example, the Servomotor direction is set to $Pn000 = n.\Box\Box\Box$ (Use CCW as the forward direction).

Linear Servomotors

In this example, the Servomotor direction is set to $Pn000 = n.\Box\Box\Box\Box$ (Use the direction in which the linear encoder counts up as the forward direction).

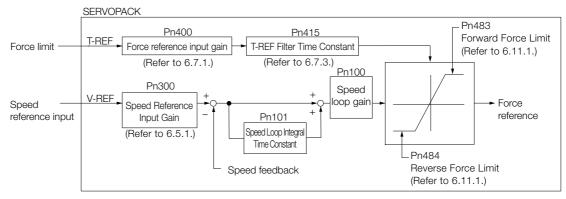
6.11.3 Limiting Torque with an Analog Reference

6.11.3 Limiting Torque with an Analog Reference


The analog voltage on the T-REF terminals (CN1-9 and CN1-10) is used to limit the torque with an analog reference.

The smallest of the analog reference torque reference and the torque limits for Pn402^{*1} and Pn403^{*2} is used.

- *1. Pn483 is used for a Linear Servomotor.
- *2. Pn484 is used for a Linear Servomotor.


The block diagrams for limiting the torque during speed control are provided below.

· Rotary Servomotors

Information There is no polarity for the input voltage of the analog voltage reference for the torque limit. The absolute value of a positive or negative voltage is input, and a torque limit that corresponds to that absolute value is applied in the forward and reverse directions.

Linear Servomotors

Information There is no polarity for the input voltage of the analog voltage reference for the force limit. The absolute value of a positive or negative voltage is input, and a force limit that corresponds to the absolute value of the input voltage is applied in the forward and reverse directions.

T-REF (Torque Reference Input) Signal

The input signal that is used for torque limits with an analog voltage reference is described below.

Туре	Signal	Connector Pin No.	Name	
Input	T-REF	CN1-9	Torque reference input	
	SG	CN1-10	Signal ground for torque reference input	

6.11.3 Limiting Torque with an Analog Reference

Setting the External Torque Limit

You must set Pn002 to n. DDD1 (Use T-REF as an external torque limit input) to use T-REF (CN1-9 and CN1-10) as the torque limit input.

Parameter		Meaning	When Enabled	Classification
Pn002	n.0001	Use T-REF as an external torque limit input.	After restart	Setup

Settings Related to Limiting Torque with an Analog Voltage Reference

The parameters that are related to limiting torque with an analog voltage reference include parameters to set the input gain of the analog voltage reference, a reference filter time constant, and the internal torque limits.

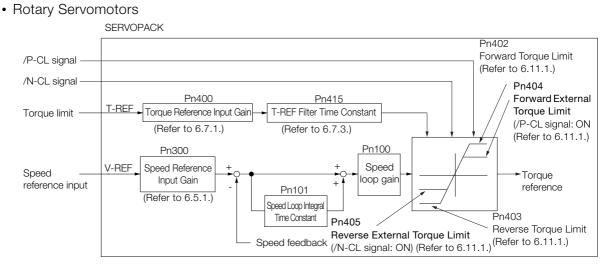
• Rotary Servomotors

Pn400	Torque Reference Input Gain			Speed Positio	n Torque
	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	10 to 100	0.1 V	30 (rated torque at 3.0 V)	Immediately	Setup
	Forward Torque Limit			Speed Positio	n Torque
Pn402	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 800	1%*	800	Immediately	Setup
	Reverse Torque Limit			Speed Positio	n Torque
Pn403	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 800	1%*	800	Immediately	Setup
	T-REF Filter Time Constant			Speed Position Torque	
Pn415	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 65,535	0.01 ms	0	Immediately	Setup

* Set a percentage of the motor rated torque.

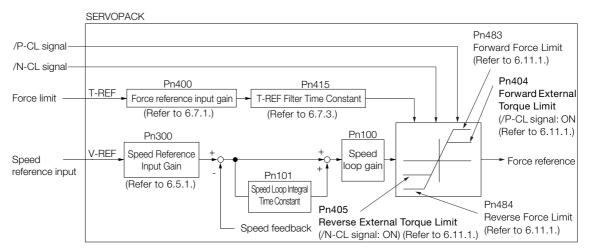
Linear Servomotors

	Force Reference Input Gain			Speed Position Force	
Pn400	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	10 to 100	0.1 V	30 (rated force at 3.0 V)	Immediately	Setup
	Forward Force Limit			Speed Position Force	
Pn483	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 800	1%*	30	Immediately	Setup
	Reverse Force Limit			Speed Position Force	
Pn484	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 800	1%*	30	Immediately	Setup
	T-REF Filter Time Constant			Speed Position Force	
Pn415	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 65,535	0.01 ms	0	Immediately	Setup


* Set a percentage of the rated motor force.

6.11.4 Limiting Torque with an External Torque Limit and an Analog Voltage Reference

The torque is limited by combining torque limits for an external input signal and torque limits for an analog voltage reference.


When the /P-CL (Forward External Torque Limit) or /N-CL (Reverse External Torque Limit) signal is ON, the torque will be limited by the smaller of the torque limit for the analog voltage reference or the setting of Pn404 or Pn405.

The following block diagram shows limiting the torque with an external torque limit and an analog voltage reference.

Note: You cannot use the torque limit of the analog voltage reference during torque control because the analog voltage is input with the T-REF (Torque Reference Input) signal.

Linear Servomotors

Note: You cannot use the force limit of the analog voltage reference during force control because the analog voltage is input with the T-REF (Torque Reference Input) signal.

6.11.4 Limiting Torque with an External Torque Limit and an Analog Voltage Reference

/P-CL (Forward External Torque Limit) Signal, /N-CL (Reverse External Torque Limit) Signal, and T-REF (Torque Reference Input) Signal

The input signals that are used for torque limits with an external torque limit and an analog voltage reference are described below.

◆ T-REF (Torque Reference Input) Signal

Туре	Signal	Connector Pin No.	Name
Input	T-REF	CN1-9	Torque reference input
Input	SG	CN1-10	Signal ground for torque reference input

/P-CL (Forward External Torque Limit) Signal and /N-CL (Reverse External Torque Limit) Signal

Туре	Signal	Connector Pin No.	Signal Status	Meaning
Input /P-CL		CN1-45	ON (closed)	Applies the forward external torque limit. The torque is limited to the smallest of the ana- log reference or the setting of Pn402 or Pn404.
		(default setting)	OFF (open)	Cancels the forward external torque limit. The torque is limited to the setting of Pn402.
Input /N-CL	CN1-46 (default setting)	ON (closed)	Applies the reverse external torque limit. The torque is limited to the smallest of the ana- log reference or the setting of Pn403 or Pn405.	
		OFF (open)	Cancels the reverse external torque limit. The torque is limited to the setting of Pn403.	

/P-CL (Forward External Force Limit) Signal and /N-CL (Reverse External Force Limit) Signal

Туре	Signal	Connector Pin No.	Signal Status	Meaning
Input /P-CL		CN1-45	ON (closed)	Applies the forward external force limit. The force is limited to the smallest of the analog reference or the setting of Pn483 or Pn404.
	(default setting)	OFF (open)	Cancels the forward external force limit. The force is limited to the setting of Pn483.	
Input	Input /N-CL	CN1-46 (default setting)	ON (closed)	Applies the reverse external force limit. The force is limited to the smallest of the analog reference or the setting of Pn484 or Pn405.
			OFF (open)	Cancels the reverse external force limit. The force is limited to the setting of Pn484.

Setting the Torque Limit with the External Torque Limit and an Analog Voltage Reference

To limit the torque with an external input signal and an analog voltage reference, you must set Pn002 to n. DDD3 (Use T-REF or /N_CL as the torque limit when /P_CL or /N_CL is active).

Parameter		Description	When Enabled	Classification
Pn002	n.□□□3	Use T-REF as the torque limit when /P_CL or /N_CL is active.	After restart	Setup

Related Parameters

The parameters that are related to torque limits with an external torque limit and an analog voltage reference are described below.

With the internal torque limits, the torque is always limited. To disable to internal torque limits, you must set the related parameters (Pn402, Pn403, Pn483, and Pn484) to the maximum values.

Rotary Servomotors

	Torque Reference I	nput Gain		Speed Positio	n Torque
Pn400	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
1 11400	10 to 100	0.1 V	30 (rated torque at 3.0 V)	Immediately	Setup
	Forward Torque Lir	nit		Speed Positio	n Torque
Pn402	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 800	1%*	800	Immediately	Setup
	Reverse Torque Lir	nit	Speed Positio	n Torque	
Pn403	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 800	1%*	800	Immediately	Setup
	Forward External T	orque Limit	· · · · ·	Speed Positio	n Torque
Pn404	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 800	1%*	100	Immediately	Setup
	Reverse External T	orque Limit	11	Speed Positio	n Torque
Pn405	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 800	1%*	100	Immediately	Setup
	T-REF Filter Time C	Constant	· · · · ·	Speed Positio	n Torque
Pn415	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 65,535	0.01 ms	0	Immediately	Setup

* Set a percentage of the motor rated torque.

Linear Servomotors

	Force Reference In	put Gain		Speed Positio	n Force
Pn400	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
1 11100	10 to 100	0.1 V	30 (rated force at 3.0 V)	Immediately	Setup
	Forward Force Lim	it		Speed Positio	n Force
Pn483	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 800	1%*	30	Immediately	Setup
	Reverse Force Lim	Speed Positio	n Force		
Pn484	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 800	1%*	30	Immediately	Setup
	Forward External F	orce Limit	Speed Position Force		
Pn404	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 800	1%*	100	Immediately	Setup
	Reverse External F	orce Limit		Speed Positio	n Force
Pn405	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 800	1%*	100	Immediately	Setup
	T-REF Filter Time C	Constant	· · · · · · · · · · · · · · · · · · ·	Speed Positio	n Force
Pn415	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 65,535	0.01 ms	0	Immediately	Setup

* Set a percentage of the rated motor force.

6.11.5 /CLT (Torque Limit Detection) Signal

6.11.5 /CLT (Torque Limit Detection) Signal

This section describes the /CLT signal, which indicates the status of limiting the motor output torque.

Туре	Signal	Connector Pin No.	Signal Status	Meaning
Output /CLT		ON (closed)	The motor output torque is being limited.	
Output		Must be allocated.	OFF (open)	The motor output torque is not being limited.

Note: You must allocate the /CLT signal to use it. Use Pn50F = n. DDX (/CLT (Torque Limit Detection) Signal Allocation) to allocate the signal to a connector pin. Refer to the following section for details.

6.1.2 Output Signal Allocations on page 6-6

6.12 Absolute Encoders

The absolute encoder records the current position of the stop position even when the power supply is OFF.

With a system that uses an absolute encoder, the host controller can monitor the current position. Therefore, it is not necessary to perform an origin return operation when the power supply to the system is turned ON.

There are three types of encoders for Rotary Servomotors. The usage of the encoder is specified in $Pn002 = n.\Box X \Box \Box$.

Refer to the following section for encoder models.

■ Encoder Resolution on page 5-47

· Parameter Settings When Using an Incremental Encoder

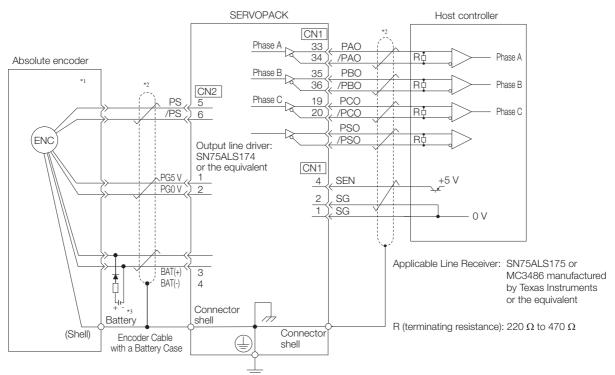
F	Parameter	Meaning	When Enabled	Classification
	n.□0□□ (default setting)	Use the encoder as an incremental encoder. A battery is not required.		
Pn002 n.□1□□		Use the encoder as an incremental encoder. A battery is not required.	After restart	Setup
	n.0200	Use the encoder as a single-turn absolute encoder. A battery is not required.		

· Parameter Settings When Using a Single-Turn Absolute Encoder

F	Parameter Meaning		When Enabled	Classification
	n.□0□□ (default setting)	Use the encoder as a single-turn absolute encoder. A battery is not required.		
Pn002	n.0100	Use the encoder as an incremental encoder. A battery is not required.	After restart	Setup
	n.0200	Use the encoder as a single-turn absolute encoder. A battery is not required.		

· Parameter Settings When Using a Multiturn Absolute Encoder

F	Parameter Meaning		When Enabled	Classification
	n.□0□□ (default setting)	Use the encoder as a multiturn absolute encoder. A battery is required.		
Pn002	n.0100	Use the encoder as an incremental encoder. A battery is not required.	After restart	Setup
n.0200		Use the encoder as a single-turn absolute encoder. A battery is not required.		


NOTICE

• Install a battery at either the host controller or on the Encoder Cable. If you install batteries both at the host controller and on the Encoder Cable at the same time, you will create a loop circuit between the batteries, resulting in a risk of damage or burning.

6.12.1 Connecting an Absolute Encoder

6.12.1 Connecting an Absolute Encoder

The following diagram shows the typical connections between a Servomotor with an absolute encoder, the SERVOPACK, and the host controller.

*1. The absolute encoder pin numbers for wiring the connector depend on the Servomotor that you use.

*2. $\overrightarrow{}$ represents a shielded twisted-pair cable.

*3. If you use an Encoder Cable with a Battery Case, do not install a battery at the host controller.

Refer to the following section for details on the typical connections.

4.4.3 Wiring the SERVOPACK to the Encoder on page 4-23

6.12.2 Structure of the Position Data of the Absolute Encoder

The position data of the absolute encoder is the position coordinate from the origin of the absolute encoder.

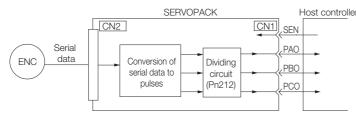
The position data from the absolute encoder contains the following two items.

- The number of rotations from the origin of the encoder coordinate system (called the multiturn data)
- The position (number of pulses) within one rotation

The position data of the absolute encoder is as follows:

Position data of absolute encoder = Multiturn data \times Number of pulses within one encoder rotation (setting of Pn212)+ Position (number of pulses) within one rotation.

For a single-turn absolute encoder, the multiturn data is 0.


6.12.3 Output Ports for the Position Data from the Absolute Encoder

You can read the position data of the absolute encoder from the PAO, PBO, and PCO (Encoder Divided Pulse Output) signals and the PSO (Absolute Encoder Position Output) signal.

The output method and timing for the position data of the absolute encoder are different in each case.

Encoder Divided Pulse Output Port

A conceptual diagram of the connections of the PAO, PBO, and PCO (Encoder Divided Pulse Output) signals to the host controller is provided below.

Signal	Status	Signal Contents When Using an Absolute Encoder	
PAO	First signal	Multiturn data position within one rotation (pulse train)	
	During normal operation	Incremental pulses	
PBO	First signal	Position within one rotation (pulse train)	
FDO	During normal operation	Incremental pulses	
PCO	Always	Origin pulse	

The PAO (Encoder Divided Pulse Output) signal outputs the position data from the absolute encoder after the control power supply is turned ON. There are two methods that you can use to output the position data from the absolute encoder: Using the SEN (Absolute Data Request) signal and not using the SEN signal.

The position data of the absolute encoder is the current stop position. The absolute encoder outputs the multiturn data with the specified protocol. The absolute encoder outputs the position within one rotation as a pulse train. It then outputs pulses as an incremental encoder (incremental operation status).

The host controller must have a reception circuit (e.g., UART) for the position data from the absolute encoder. The pulse counter at the host controller will not count pulses when the multiturn data (communications message) is input because only phase A is input. Counting starts from the position of the absolute encoder within one rotation.

The output circuits for the PAO, PBO, and PCO signals use line drivers. Refer to the following section for details on line drivers.

4.5.4 I/O Circuits on page 4-40

PSO (Absolute Encoder Position Output) Port

The PSO (Absolute Encoder Position Output) signal periodically outputs the position data from the absolute encoder according to the specified protocol after outputting the position data from the absolute encoder with the PAO and PBO signals has been completed. There are two methods that you can use to output the position data from the absolute encoder: Using the SEN (Absolute Data Request) signal and not using the SEN signal.

The host controller must have a reception circuit (e.g., UART) for the position data from the absolute encoder.

The output circuit for the PSO signal uses a line driver. Refer to the following section for details on line drivers.

(3 4.5.4 I/O Circuits on page 4-40

6.12.4 Reading the Position Data from the Absolute Encoder

6.12.4 Reading the Position Data from the Absolute Encoder

There are two methods that you can use to read the position data from the absolute encoder: Using the SEN (Absolute Data Request) signal and not using the SEN signal.

Setting the Parameter to Specify Using or Not Using the SEN (Absolute Data Request) Signal

- Using the SEN Signal to Read the Position Data from the Absolute Encoder
- When Using the Default I/O Signals (Pn50A = n.□□□0) The setting of Pn515 = n.□□□X (SEN (Absolute Data Request Input) Signal Allocation) is ignored.
- Allocating the SEN Signal to CN1-40 to CN1-46 on the I/O Signal Connector (Pn50A = n.□□□1) Set Pn515 = n.□□□X (SEN (Absolute Data Request Input) Signal Allocation) to 0 to 6 or 9 to F.

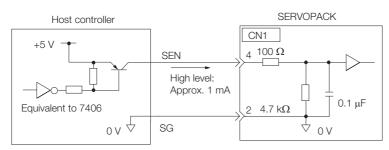
Refer to the following section for the procedure to allocate input signals. $\bigcirc 6.1.1$ Input Signal Allocations on page 6-4

Information

To use the default allocation of the SEN signal and to change the default settings of other I/O signals (Pn50A = $n.\square\square\square1$), set Pn515 to $n.\square\square\square8$ (Active when 5 V is input to CN1-4).

Reading the Position Data from the Absolute Encoder without Using the SEN Signal

Set Pn50A to n. DDD1 and set Pn515 to n. DDD7 (The signal is always active).


Refer to the following sections for details on the parameters. *14.1 List of Parameters* on page 14-2

Connecting the SEN (Absolute Data Request) Signal

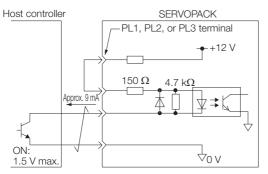
Allocating the SEN Signal to CN1-4

Туре	Signal	Connector Pin No.	Signal Status	Meaning
Input	SEN	CN1-4	OFF (open)	Does not request the position data from the absolute encoder. (This is the status after the power supply is turned ON.)
			ON (closed)	Requests the position data from the absolute encoder.

Circuit Example When the SEN Signal Is Allocated to CN1-4

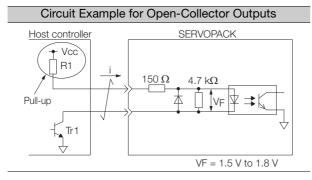
We recommend a PNP transistor.

6.12.4 Reading the Position Data from the Absolute Encoder


◆ Allocating the SEN Signal to a General-Purpose Input

Туре	Signal	Connector Pin No.	Signal Status	Meaning
Input	SEN	CN1-40 to CN1-46	OFF (open)	Does not request the position data from the absolute encoder. (This is the status after the power supply is turned ON.)
_			ON (closed)	Requests the position data from the absolute encoder.

A circuit example for when the SEN signal is allocated to CN1-40 to CN1-46 on the I/O signal connector is provided below.


Refer to the following section for the procedure to allocate input signals. 6.1.1 Input Signal Allocations on page 6-4

Using the Pull-Up Power Supply in the SERVOPACK

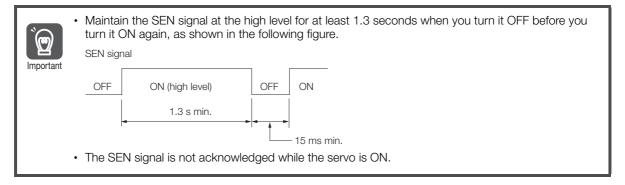
Using an External Pull-Up Power Supply

Pull-Up Voltage (Vcc)	Pull-Up Resistance (R1)
24 V	1.8 k Ω to 2.7 k Ω
12 V max.	820 Ω to 1.5 kΩ
5 V max.	180 Ω to 470 Ω

Sequence for Reading the Position Data from the Absolute Encoder Using the SEN (Absolute Data Request) Signal

The sequence for using the SEN signal to read the position data from the absolute encoder of a Rotary Servomotor is given below.

The multiturn data is sent according to the transmission specifications.

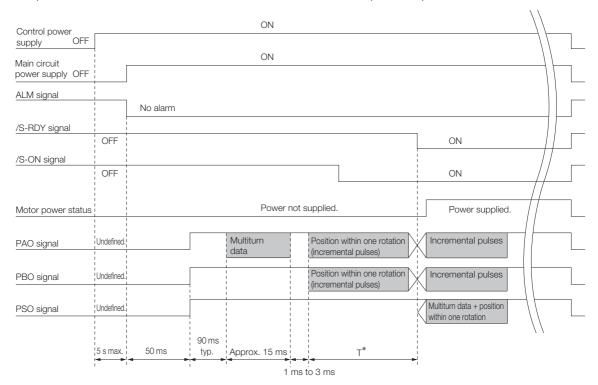

The position of the absolute encoder within one rotation is output as a pulse train.

6.12.4 Reading the Position Data from the Absolute Encoder

Control power						ON						
supply*1	OFF											
						ON					//	
Main circuit power supply	OFF										//	
ALM signal												
			No al	larm								
/S-RDY signal												
		OFF								ON		
/S-ON signal											- 11	
	1	OFF								ON	//	
Motor power :	status					Power	not s	upplied.	1	Power supplied.		
SEN signal*1		OFF				ON					_	
SEN SIGNAL *						ON						
PAO signal		Undefined.				Multiturn data		Position within one rota (incremental pulses)	ation	Incremental pulses		
		į) 					
PBO signal		Undefined.		 		 	1	Position within one rota	ation	Incremental pulses		
				 			1	(incremental pulses)				
PSO signal		Undefined.		 		1	 	1 1 1	ķ	Multiturn data + position within one rotation	//	
					90 ms		 					
		5 s max.		50 ms		Approx. 15 ms		Τ*2				
	1	1		;		: 1	mst	: o 3 ms	'			

- *1. When you turn OFF the control power supply, turn OFF the SEN signal.
- *2. The pulse output time T for the position of the absolute encoder within one rotation depends on the setting of Pn212 (Number of Encoder Output Pulses). Refer to the following table.

Setting of Pn212	Calculation of the Pulse Output Speed for the Position of the Absolute Encoder within One Rotation	Calculation of the Pulse Output Time T for the Position of the Absolute Encoder within One Rotation
16 to 16,384	680 × Pn212/16,384 [kpps]	25 ms max.
16,386 to 32,768	680 × Pn212/32,768 [kpps]	50 ms max.
32,722 to 65,536	680 × Pn212/65,536 [kpps]	100 ms max.
65,544 to 131,072	680 × Pn212/131,072 [kpps]	200 ms max.
131,088 to 262,144	680 × Pn212/262,144 [kpps]	400 ms max.
262,176 to 524,288	680 × Pn212/524,288 [kpps]	800 ms max.
524,352 to 1,048,576	680 × Pn212/1,048,576 [kpps]	1,600 ms max.
1,048,704 to 2,097,152	680 × Pn212/2,097,152 [kpps]	3,200 ms max.
2,097,408 to 4,194,304	680 × Pn212/4,194,304 [kpps]	6,400 ms max.


Sequence for Reading the Position Data from the Absolute Encoder without Using the SEN (Absolute Data Request) Signal

The sequence for reading the position data from the absolute encoder of a Rotary Servomotor without using the SEN signal is given below.

When the specified time has elapsed after the control power supply to the SERVOPACK is turned ON,

6.12.5 Transmission Specifications

the SERVOPACK will automatically read the position data from the absolute encoder. The position data from the absolute encoder is sent according to the transmission specifications. The position of the absolute encoder within one rotation is output as a pulse train.

* The pulse output time T for the position of the absolute encoder within one rotation depends on the setting of Pn212 (Number of Encoder Output Pulses). Refer to the following table.

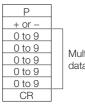
Setting of Pn212	Calculation of the Pulse Output Speed for the Position of the Absolute Encoder within One Rotation	Calculation of the Pulse Output Time T for the Position of the Absolute Encoder within One Rotation
16 to 16,384	680 × Pn212/16,384 [kpps]	25 ms max.
16,386 to 32,768	680 × Pn212/32,768 [kpps]	50 ms max.
32,722 to 65,536	680 × Pn212/65,536 [kpps]	100 ms max.
65,544 to 131,072	680 × Pn212/131,072 [kpps]	200 ms max.
131,088 to 262,144	680 × Pn212/262,144 [kpps]	400 ms max.
262,176 to 524,288	680 × Pn212/524,288 [kpps]	800 ms max.
524,352 to 1,048,576	680 × Pn212/1,048,576 [kpps]	1,600 ms max.
1,048,704 to 2,097,152	680 × Pn212/2,097,152 [kpps]	3,200 ms max.
2,097,408 to 4,194,304	680 × Pn212/4,194,304 [kpps]	6,400 ms max.

6.12.5 Transmission Specifications

The position data transmission specifications for the PAO (Encoder Divided Pulse Output) signal and the PSO (Absolute Encoder Position Output) signal are given in the following table.

The PAO signal sends only the multiturn data. The PSO signal sends the multiturn data plus the position of the absolute encoder within one rotation.

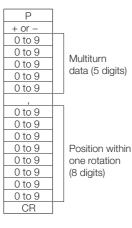
Refer to the following section for the timing of sending the position data from the absolute encoder. Sequence for Reading the Position Data from the Absolute Encoder Using the SEN (Absolute Data Request) Signal on page 6-77


Sequence for Reading the Position Data from the Absolute Encoder without Using the SEN (Absolute Data Request) Signal on page 6-78

6.12.6 Calculating the Current Position in Machine Coordinates

Item	PAO signal	PSO signal				
Synchronization Method	Start-stop synchronization (ASYNC)					
Baud Rate	9,600 bps					
Start Bits	1 bit					
Stop Bits	1 bit					
Parity						
Character Code	ASCII, 7 bits					
Data Format	Refer to Data Format of PAO Signal.	Refer to Data Format of PSO Signal.				
Data Output Period	Using the SEN Signal Each time the SEN signal is input after the control power supply is turned ON	40 ms				
	Not Using the SEN Signal 40 ms Only once after the control power supply is turned ON 40 ms					

Data Format of PAO Signal

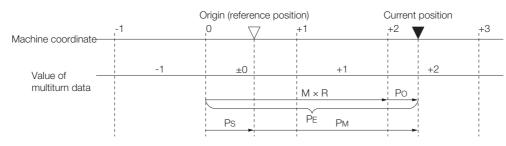

As shown below, the message format consists of eight characters: "P," the sign, the 5-digit multiturn data, and "CR" (which indicates the end of the message).

- Multiturn data (5 digits)

Data Format of PSO Signal

As shown below, the message format for a Rotary Servomotor consists of 17 characters: "P," the sign, the 5-digit multiturn data, a comma delineator, the 8-digit position within one rotation, and "CR" (which indicates the end of the message).

6.12.6 Calculating the Current Position in Machine Coordinates


When you reset the absolute encoder, the reset position becomes the reference position.

The host controller reads the coordinate Ps from the origin of the encoder coordinate system. The host controller must record the value of coordinate Ps.

This section describes the reference position in the machine coordinate system.

The method to calculate the coordinate value of the present position from the origin of the machine coordinate system is given below.

6.12.7 Alarm Output from Output Ports for the Position Data from the Absolute Encoder

The current position P_M in the machine coordinate system is calculated as follows:

$$P_{M} = P_{E} - P_{S}$$

 $P_E = M \times R + P_O$ $P_S = M_S \times R + P_S'$

Symbol	Meaning
Ρ _Ε	Position data for the current position of the absolute encoder
М	Current position of the multiturn data of the absolute encoder
P _O	Position of the current position within one rotation
P _S	Position data of the absolute encoder when absolute encoder was reset
M _S	Multiturn data of the absolute encoder when absolute encoder was reset
P _S '	Position of the absolute encoder within one rotation when absolute encoder was reset
PM	Current position in machine coordinate system
R	Pulses output per encoder rotation (value after dividing; setting of Pn212)

Note: The following formulas apply in reverse rotation mode (Pn000 = $n.\Box\Box\Box$ 1).

$$P_{M} = P_{E} - P_{S}$$
$$P_{E} = -M \times R + P_{O}$$
$$P_{S} = M_{S} \times R + P_{S}'$$

$$P_{S} = M_{S} \times R$$
 -

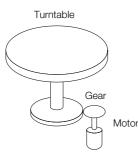
If you are using a Rotary Servomotor, you must reset the absolute encoder. Refer to the following Information section for information on resetting the absolute encoder.

5.17 Resetting the Absolute Encoder on page 5-50

Alarm Output from Output Ports for the Position Data from the Absolute Encoder 6.12.7

Any alarm detected by the SERVOPACK is transmitted as multiturn data to the host controller with the PAO (Encoder Divided Pulse Output) signal when the SEN (Absolute Data Request) turns OFF.

ALM signal		
Motor power status	Servo ON (Power supplied.)	Servo OFF (Power not supplied.)
Main circuit power supply	ON	OFF
Control power supply	ON	
SEN signal	ON	OFF
PAO signal		Alarm information

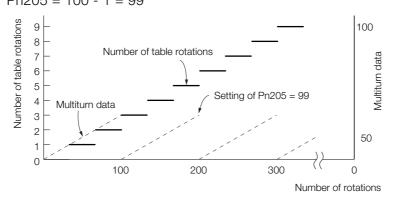

6.12.8 Multiturn Limit Setting

The data format of the alarm information is shown below.

6.12.8 Multiturn Limit Setting

The multiturn limit is used in position control for a turntable or other rotating body. For example, consider a machine that moves the turntable shown in the following diagram in only one direction.

Because the turntable moves in only one direction, the upper limit to the number of revolutions that can be counted by an absolute encoder will eventually be exceeded. The multiturn limit is used in cases like this to prevent fractions from being produced by the

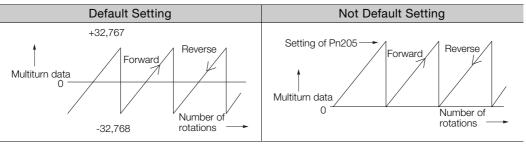

integral ratio of the number motor revolutions and the number of turntable revolutions.

For a machine with a gear ratio of n:m, as shown above, the value of m minus 1 will be the setting for the multiturn limit setting (Pn205).

Multiturn limit (Pn205) = m - 1

The relationship between the number of turntable revolutions and the number of motor revolutions is shown in the following graph for when m is 100 and n is 3.

Set Pn205 to 99. Pn205 = 100 - 1 = 99


	Multiturn Limit		Speed Position Torque		
Pn205	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 65,535	1 Rev	65,535	After restart	Setup

Note: This parameter is enabled when you use an absolute encoder.

The data will change as shown below when this parameter is set to anything other than the default setting.

- If the motor operates in the reverse direction when the multiturn data is 0, the multiturn data will change to the value set in Pn205.
- If the motor operates in the forward direction when the multiturn data is at the value set in Pn205, the multiturn data will change to 0.

Set Pn205 to one less than the desired multiturn data.

- Information The multiturn data will always be 0 in the following cases. It is not necessary to reset the absolute encoder in these cases.
 - · When you use a single-turn absolute encoder
 - When the encoder is set to be used as a single-turn absolute encoder (Pn002 = $n.\Box 2\Box \Box$) Absolute encoder-related alarms (A.810 and A.820) will not occur.

6.12.9 Multiturn Limit Disagreement Alarm (A.CC0)

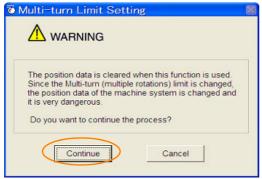
If you change the multiturn limit in Pn205 (Multiturn Limit), an A.CCO alarm (Multiturn Limit Disagreement) will be displayed because the setting disagrees with the value in the encoder.

Display	Name	Name Alarm Co		tput	Meaning
A.CC0	Multiturn Limit Dis-	ALO1	ALO2	ALO3	Different multiturn limits are set in the
A.000	agreement	ON (low)	OFF (high)	ON (low)	encoder and SERVOPACK.

If this alarm is displayed, use the following procedure to change the multiturn limit in the encoder to the same value as the setting of Pn205.

Applicable Tools

The following table lists the tools that you can use to set the multiturn limit and the applicable tool functions.

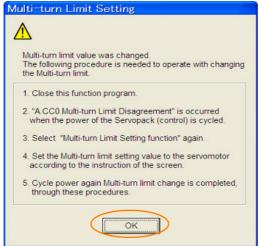

Tool	Function	Operating Procedure Reference		
Panel Operator	Fn013	13.4.18 Multiturn Limit Setting after Multiturn Limit Dis- agreement Alarm (Fn013) on page 13-24		
Digital Operator	Fn013	Characteria Contraction (Manual Manual Manual No.: SIEP S800001 33)		
SigmaWin+	Setup - Multiturn Limit Setting	G Operating Procedure on page 6-83		

Operating Procedure

1. Select *Setup - Multiturn Limit Setting* from the menu bar of the Main Window of the SigmaWin+.

6.12.9 Multiturn Limit Disagreement Alarm (A.CC0)

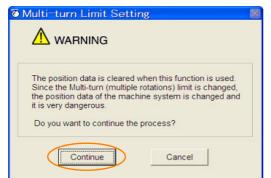
2. Click the Continue Button.



Click the **Cancel** Button to cancel setting the multiturn limit. The Main Window will return.

3. Change the setting.

🖲 Multi-t	urn Limit Se	atting	X
Multi-turn L	imit Setting Chan	ge	
Pn205:Mult	itum Limit Setting	í.	
65535	[Rev]	15555	[Rev]
		(0-65535)	
	Writing the Serv		


4. Click the Writing into the Servopack Button.

- 5. Click the OK Button.
- 6. Turn the power supply to the SERVOPACK OFF and ON again. An A.CC0 alarm (Multiturn Limit Disagreement) will occur because setting the multiturn limit in the Servomotor is not yet completed even though the setting has been changed in the SERVOPACK.
- 7. Select *Setup Multiturn Limit Setting* from the menu bar of the Main Window of the SigmaWin+.

6.12.9 Multiturn Limit Disagreement Alarm (A.CC0)

8. Click the Continue Button.

9. Click the Writing into the Motor Button.

To Multi-ti	urn Limit Sett	ting 🛛 🛛
Set the mult	i-turn limit value to	the servomotor.
Pn205:Multit	urn Limit Setting	
15555	[Rev]	Re-Change
	Writing int the servom	

Click the **Re-change** Button to change the setting.

10. Click the OK Button.

	ulti-turn Limit Setting		
<u> </u>	WARNING		
	Multi-turn limit setting has been completed. Cycle (control) power. The operation can be done with the set multi-turn limit from the next time when the power is turned on.		
	It is very dangerous to operate the machine in this state. Be sure to perform the original point re-setup of a machine system after power is turned on again.		
	ОК		

6.13.1 Connecting an Absolute Linear Encoder

6.13 Absolute Linear Encoders

The absolute linear encoder records the current position of the stop position even when the power supply is OFF.

With a system that uses an absolute linear encoder, the host controller can monitor the current position. Therefore, it is not necessary to perform an origin return operation when the power supply to the system is turned ON.

There are three types of linear encoders for Linear Servomotors. The usage of the linear encoder is specified in Pn002 = $n.\Box X \Box \Box$.

Refer to the following section for linear encoder models.

Feedback Resolution of Linear Encoder on page 5-47

· Parameter Settings When Using an Incremental Linear Encoder

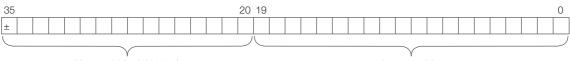
Parameter		Meaning	When Enabled	Classification
Pn002	n.□0□□ (default setting)	Use the encoder as an incremental linear encoder.	After restart	Setup
	n.🗆1🗆 🗆	Use the encoder as an incremental linear encoder.		

· Parameter Settings When Using an Absolute Linear Encoder

Parameter		Meaning	When Enabled	Classification
Pn002	n.□0□□ (default setting)	Use the encoder as an absolute linear encoder.	After restart	Setup
	n.🗆1🗆 🗆	Use the encoder as an incremental linear encoder.		

6.13.1 Connecting an Absolute Linear Encoder

Refer to the following sections for information on the connections between an absolute linear encoder, the SERVOPACK, and the host controller.


4.4.3 Wiring the SERVOPACK to the Encoder on page 4-23

34.5.3 I/O Signal Wiring Examples on page 4-34

6.13.2 Structure of the Position Data of the Absolute Linear Encoder

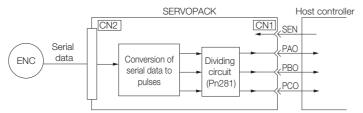
The position data of the absolute linear encoder is the distance (number of pulses) from the origin of the absolute linear encoder.

The position data is signed 36-bit data.

Upper 16 bits (with sign)

Lower 20 bits

When the SERVOPACK sends the position data, it sends the upper 16-bit data (with sign) separately from the lower 20-bit data.


6.13.3 Output Ports for the Position Data from the Absolute Linear Encoder

You can read the position data of the absolute linear encoder from the PAO, PBO, and PCO (Encoder Divided Pulse Output) signals and the PSO (Absolute Encoder Position Output) signal.

The output method and timing for the position data of the absolute linear encoder are different in each case.

Encoder Divided Pulse Output (PAO, PBO, and PCO) Ports

A conceptual diagram of the connections of the PAO, PBO, and PCO (Encoder Divided Pulse Output) ports to the host controller is provided below.

Signal	Status	Signal Contents
Signal	Status	When Using an Absolute Linear Encoder
	First signal	Upper 16-bit data (with sign)
PAO	T list signal	Lower 20-bit data (pulse train)
	During normal operation	Incremental pulses
PBO	First signal	Lower 20-bit data (pulse train)
	During normal operation	Incremental pulses
PCO	Always	Origin pulse

The PAO (Encoder Divided Pulse Output) signal outputs the position data from the absolute linear encoder after the control power supply is turned ON. The SENS_ON (Turn ON Encoder) command is used to output the position data from the absolute linear encoder.

The position data of the absolute linear encoder is the current stop position. The absolute linear encoder outputs the upper 16-bit data (with sign) according to the specified protocol. The absolute encoder outputs the lower 20-bit data as a pulse train. It then outputs pulses as an incremental linear encoder (incremental operation status).

The host controller must have a reception circuit (e.g., UART) for the position data from the absolute linear encoder. The pulse counter at the host controller will not count pulses when the upper 16-bit data (with sign) (communications message) is input because only phase A is input.

The output circuits for the PAO, PBO, and PCO signals use line drivers. Refer to the following section for details on line drivers.

3 4.5.4 I/O Circuits on page 4-40

PSO (Absolute Encoder Position Output) Port

The PSO (Absolute Encoder Position Output) signal periodically outputs the position data from the absolute encoder according to the specified protocol after outputting the position data from the absolute encoder with the PAO and PBO signals has been completed. There are two methods that you can use to output the position data from the absolute encoder: Using the SEN (Absolute Data Request) signal and not using the SEN signal.

The host controller must have a reception circuit (e.g., UART) for the position data from the absolute encoder.

The output circuit for the PSO signal uses a line driver. Refer to the following section for details on line drivers.

3.5.4 I/O Circuits on page 4-40

6.13.4 Reading the Position Data from the Absolute Linear Encoder

6.13.4 Reading the Position Data from the Absolute Linear Encoder

There are two methods that you can use to read the position data from the absolute linear encoder: Using the SEN (Absolute Data Request) signal and not using the SEN signal.

Setting the Parameter to Specify Using or Not Using the SEN (Absolute Data Request) Signal

- Using the SEN Signal to Read the Position Data from the Absolute Linear Encoder
- When Using the Default I/O Signals (Pn50A = n.□□□0) Set Pn515 = n.□□□X (SEN (Absolute Data Request Input) Signal Allocation) to 0 to 6 or 9 to F.
- Allocating the SEN Signal to CN1-40 to CN1-46 on the I/O Signal Connector (Pn50A = n.□□□1) Set Pn515 = n.□□□X (SEN (Absolute Data Request Input) Signal Allocation) to 0 to 6 or 9 to F.

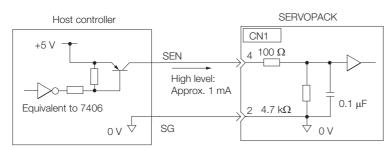
Refer to the following section for the procedure to allocate input signals. (\overrightarrow{g} 6.1.1 Input Signal Allocations on page 6-4

Information

To use the default allocation of the SEN signal and to change the default settings of other I/O signals (Pn50A = $n.\Box\Box\Box\Box$), set Pn515 to $n.\Box\Box\Box\Box$ (Active when 5 V is input to CN1-4).

Reading the Position Data from the Absolute Linear Encoder without Using the SEN Signal

Set Pn50A to n. DDD1 and set Pn515 to n. DDD7 (The signal is always active).


Refer to the following sections for details on the parameters. $\boxed{3}$ 14.1 List of Parameters on page 14-2

Connecting the SEN (Absolute Data Request) Signal

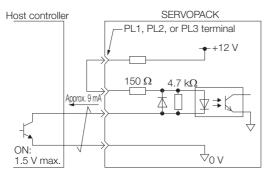
Allocating the SEN Signal to CN1-4

Туре	Signal	Connector Pin No.	Signal Status	Meaning
Input SEN	SEN		OFF (open)	Does not request the position data from the absolute linear encoder. (This is the status after the power sup- ply is turned ON.)
			ON (closed)	Requests the position data from the absolute linear encoder.

Circuit Example When the SEN Signal Is Allocated to CN1-4

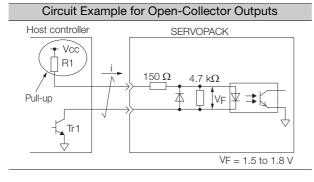
We recommend a PNP transistor.

6.13.4 Reading the Position Data from the Absolute Linear Encoder


•	Allocating the SEN	Signal to a	General-Purpose Input
---	--------------------	-------------	-----------------------

Туре	Signal	Connector Pin No.	Signal Status	Meaning
Input	SEN	N CN1-40 to CN1-46	OFF (open)	Does not request the position data from the absolute linear encoder. (This is the status after the power sup- ply is turned ON.)
			ON (closed)	Requests the position data from the absolute linear encoder.

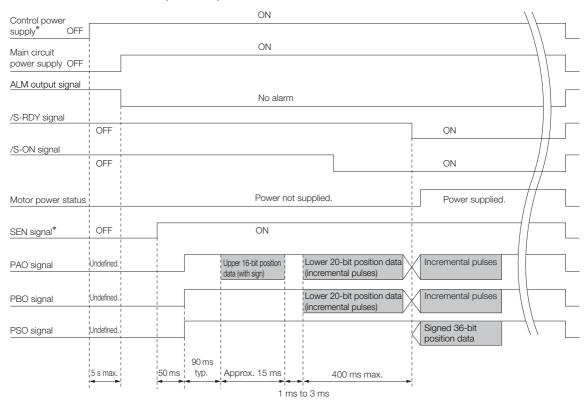
A circuit example for when the SEN signal is allocated to CN1-40 to CN1-46 on the I/O signal connector is provided below.


Refer to the following section for the procedure to allocate input signals. \overrightarrow{s} 6.1.1 Input Signal Allocations on page 6-4

■ Using the Pull-Up Power Supply in the SERVOPACK

Using an External Pull-Up Power Supply

Pull-Up Voltage (Vcc)	Pull-Up Resistance (R1)
24 V	1.8 k Ω to 2.7 k Ω
12 V max.	820 Ω to 1.5 k Ω
5 V max.	180 Ω to 470 Ω


6.13.4 Reading the Position Data from the Absolute Linear Encoder

Sequence for Reading the Position Data from the Absolute Linear Encoder Using the SEN (Absolute Data Request) Signal

The sequence for using the SEN signal to read the position data from the absolute linear encoder of a Linear Servomotor is given below.

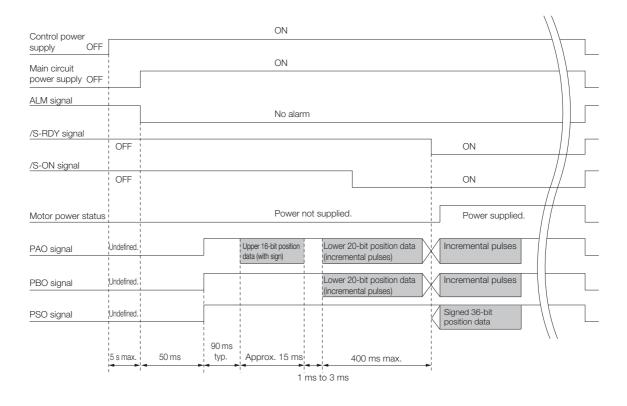
The upper 16-bit position data (with sign) are sent according to the transmission specifications.

The lower 20-bit data is output as a pulse train.

* When you turn OFF the control power supply, turn OFF the SEN signal.

• Maintain the SEN signal at the high level for at least 1.3 seconds when you turn it OFF before you turn it ON again, as shown in the following figure.					
SEN signal					
Important	OFF	ON (high level)	OFF	ON	
	-	1.3 s min.			
15 ms min.					
	 The SEN signal is not acknowledged while the servo is ON. 				

Sequence for Reading the Position Data from the Absolute Encoder without Using the SEN (Absolute Data Request) Signal


The sequence for reading the position data from the absolute linear encoder of a Linear Servomotor without using the SEN signal is given below.

When the specified time has elapsed after the control power supply to the SERVOPACK is turned ON, the SERVOPACK will automatically read the position data from the absolute linear encoder.

The upper 16-bit position data (with sign) are sent according to the transmission specifications.

The lower 20-bit data is output as a pulse train.

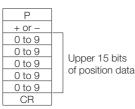
6.13.5 Transmission Specifications

6.13.5 Transmission Specifications

The position data transmission specifications for the PAO (Encoder Divided Pulse Output) signal and the PSO (Absolute Encoder Position Output) signal are given in the following table.

The PAO signal sends only the 16-bit data (with sign). The PSO signal sends the signed 36-bit data.

Refer to the following section for the timing of sending the position data from the absolute encoder.


- Sequence for Reading the Position Data from the Absolute Linear Encoder Using the SEN (Absolute Data Request) Signal on page 6-90
- Sequence for Reading the Position Data from the Absolute Encoder without Using the SEN (Absolute Data Request) Signal on page 6-90

Item	PAO signal	PSO signal			
Synchronization Method	Start-stop synchronization (ASYNC)				
Baud Rate	9,600 bps	9,600 bps			
Start Bits	1 bit				
Stop Bits	1 bit				
Parity	Even				
Character Code	ASCII, 7 bits				
Data FormatRefer to Data Format of PAO Signal on page 6-92.		Refer to <i>Data Format of PSO Signal</i> on page 6-92.			
Data Output Period	Using the SEN Signal Each time the SEN signal is input after the control power supply is turned ON	- 40 ms			
	Not Using the SEN Signal 40 ms Only once after the control power supply is turned ON				

6.13.6 Calculating the Current Position in Machine Coordinates

Data Format of PAO Signal

As shown below, the message format consists of eight characters: "P," the sign, the 5-digit upper 15bit position data, and "CR" (which indicates the end of the message).

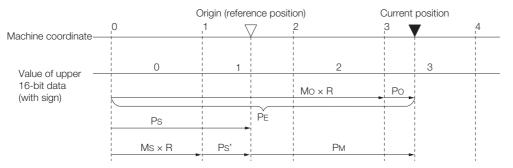
Data Format of PSO Signal

The data format for a Linear Servomotor consists of 17 characters: "P," the sign, the 11-digit 36-bit data, and "CR" (which indicates the end of the message).

Р	
+ or –	
0 to 9	Position data:
0 to 9	36 bits (11 digits)
0 to 9	00 bits (11 digits)
0 to 9	
CR	

6.13.6 Calculating the Current Position in Machine Coordinates

With an absolute linear encoder, you must set the position of the origin (i.e., the origin of the machine coordinate system).


The host controller reads the coordinate from the origin of the encoder coordinate system. The host controller must record the value of this coordinate.

The method to calculate the coordinate value of the present position from the origin of the machine coordinate system is given below.

The position data from the absolute linear encoder is signed 36-bit data, but the upper 16 bits (with sign) and the lower 20 bits are output separately.

For the upper 16-bit data (with sign), the upper bits (16 bits, including the sign) of the current position after dividing by the setting of Pn281 are output with serial communications according to the transmission specifications.

For the lower 20-bit data, the lower bits (20 bits) of the current position after dividing by the setting of Pn281 are output as a pulse train.

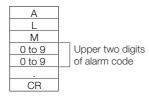
6.13.7 Alarm Output from the Output Ports for the Position Data from the Absolute Linear Encoder

The current position P_M in the machine coordinate system is calculated as follows:

 $P_{M} = P_{E} - P_{S}$ $P_{E} = M_{O} \times R + P_{O}$ $P_{S} = M_{S} \times R + P_{S}'$

$S = MS \times II + IS$		
Symbol	Meaning	
P _E	Position data for the current position of the absolute linear encoder	
M _O	Upper 16 bits (with sign) of the position data for the current position of the absolute linear encoder	
Po	Lower 20 bits of the position data for the current position of the absolute linear encoder	
P _S	Position data of the origin	
M _S	Upper 16 bits (with sign) of the position data of the origin	
P _S '	Lower 20 bits of the position data of the origin	
P _M	Current position in machine coordinate system	
R	1048576 (=2 ²⁰)	

Note: The above formulas also apply in reverse movement mode (Pn000 = $n.\Box\Box\Box$ 1).


Information If you are using a Linear Servomotor, you do not need to reset the absolute linear encoder to define the origin. (Some absolute linear encoders also allow you to set any position as the origin.)

6.13.7 Alarm Output from the Output Ports for the Position Data from the Absolute Linear Encoder

Any alarm detected by the SERVOPACK is transmitted as the upper 16-bit data (with sign) to the host controller with the PAO (Encoder Divided Pulse Output) signal when the SEN (Absolute Data Request) turns OFF.

ALM signal		
Motor power status	Servo ON (Power supplied.)	Servo OFF (Power not supplied.)
Main circuit power supply	ON	OFF
Control power supply	ON	
SEN signal	ON	OFF
PAO signal		Alarm information

The data format of the alarm information is shown below.

6

6-93

6.14.1 Preparations

6.14 Software Reset

You can reset the SERVOPACK internally with the software. A software reset is used when resetting alarms and changing the settings of parameters that normally require turning the power supply to the SERVOPACK OFF and ON again. This can be used to change those parameters without turning the power supply to the SERVOPACK OFF and ON again.

Information 1. Always confirm that the servo is OFF and that the motor is stopped before you start a software reset.

- This function resets the SERVOPACK independently of the host controller. The SERVO-PACK carries out the same processing as when the power supply is turned ON and outputs the ALM (Servo Alarm) signal. The status of other output signals may be forcibly changed.
- 3. When you execute a software reset, the SERVOPACK will not respond for approximately five seconds.

Before you execute a software reset, check the status of the SERVOPACK and Servomotor and make sure that no problems will occur.

6.14.1 Preparations

Confirm that the following conditions are met before you perform a software reset.

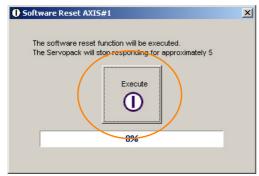
- The servo must be OFF.
- The motor must be stopped.

6.14.2 Applicable Tools

The following table lists the tools that you can use to perform a software reset and the applicable tool functions.

Tool	Function	Operating Procedure Reference
Panel Operator	Fn030	13.4.25 Software Reset (Fn030) on page 13-27
Digital Operator	Fn030	Σ-7-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33)
SigmaWin+	Setup - Software Reset	6.14.3 Operating Procedure on page 6-94

6.14.3 Operating Procedure


Use the following procedure to perform a software reset.

- 1. Select *Setup Software Reset* from the menu bar of the Main Window of the SigmaWin+.
- 2. Click the Execute Button.

Click the **Cancel** Button to cancel the software reset. The Main Window will return.

3. Click the Execute Button.

4. Click the OK Button to end the software reset operation.

All settings including parameters will have been re-calculated. When you finish this operation, disconnect the SigmaWin+ from the SERVOPACK, and then connect it again.

Software Reset	×
The software reset function has been completed. All settings including parameters were re-calculated. Always reconnect the SigmaWin+ to the Servopack after execution of this function.	
ОК	

6.15.1 Preparations

6.15 Initializing the Vibration Detection Level

You can detect machine vibration during operation to automatically adjust the settings of Pn312 or Pn384 (Vibration Detection Level) to detect A.520 alarms (Vibration Alarm) and A.911 warnings (Vibration Warning) more precisely.

This function detects specific vibration components in the Servomotor speed.

Parameter		Meaning	When Enabled	Classification
	n.□□□0 (default setting)	Do not detect vibration.		Q a true
Pn310	n.0001	Output a warning (A.911) if vibration is detected.	Immediately	Setup
	n.□□□2	Output an alarm (A.520) if vibration is detected.		

If the vibration exceeds the detection level calculated with the following formula, an alarm or warning occurs according to Pn310 (Vibration Detection Selection).

Rotary Servomotors

Detection level = Vibration detection level (Pn312 [min-1]) × Vibration detection sensitivity (Pn311 [%])

100

• Linear Servomotors

Detection level = <u>
Vibration detection level (Pn384 [mm/s]) × Vibration detection sensitivity (Pn311 [%])</u> 100

Use this function only if A.520 or A.911 alarms are not output at the correct times when vibration is detected with the default vibration detection level (Pn312 or Pn384).

There will be discrepancies in the detection sensitivity for vibration alarms and warnings depending on the condition of your machine. If there is a discrepancy, use the above formula to adjust Pn311 (Vibration Detection Sensitivity).

	Vibration Detection Sensitivity			Speed Position	on Torque
Pn311	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	50 to 500	1%	100	Immediately	Tuning

Information 1. Vibration may not be detected because of unsuitable servo gains. Also, not all kinds of vibrations can be detected.

2. Set a suitable moment of inertia ratio (Pn103). An unsuitable setting may result in falsely detecting or not detecting vibration alarms or vibration warnings.

3. To use this function, you must input the actual references that will be used to operate your system.

4. Execute this function under the operating conditions for which you want to set the vibration detection level.

5. Execute this function while the motor is operating at 10% of its maximum speed or faster.

6.15.1 Preparations

Check the following settings before you initialize the vibration detection level.

- The parameters must not be write prohibited.
- The test without a motor function must be disabled (Pn00C = $n.\Box\Box\Box$).

6.15.2 Applicable Tools

The following table lists the tools that you can use to initialize the vibration detection level and the applicable tool functions.

Tool	Function	Operating Procedure Reference	
Panel Operator	Fn01B	13.4.20 Initialize Vibration Detection Level (Fn01B) on page 13-25	
Digital Operator	Fn01B	Ω Σ-7-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33)	
SigmaWin+	Setup - Initialize Vibra- tion Detection Level	€ 6.15.3 Operating Procedure on page 6-97	

6.15.3 Operating Procedure

Use the following procedure.

- 1. Select Setup Initialize Vibration Detection Level from the menu bar of the Main Window of the SigmaWin+.
- Select Pn311: Vibration Detection Sensitivity and Pn310: Vibration Detection Selections and then click the Detection Start Button. A setting execution standby mode will be entered.

5
Tinitialize Vibration Detection Level AXIS#0
Setting Condition
Pn311 : Vibration Detection Sensibility (50 - 500)
100 . [%]
Pn310 : Vibration Detection Switch nibble 0 Vibration Detection Selection
0 : No detection.
Setting Result
Pn312 : Vibration Detection Level
50 [min-1]

6.15.3 Operating Procedure

3. Click the Execute setting Button.

Tnitialize Vibration Detection Level AXIS#0
Setting Condition
Pn311 : Vibration Detection Sensibility (50 - 500)
100 [%]
Pn310 : Vibration Detection Switch nibble 0 Vibration Detection Selection
2 : Outputs alarm (A.520) when vibration is detected.
Execute
Setting Result
Pn312 : Vibration Detection Level
50 [min-1]

The newly set vibration detection level will be displayed and the value will be saved in the SERVO-PACK.

Initialize Vibration Detection Level AXIS#0	x		
Setting Condition			
Pn311 : Vibration Detection Sensibility (50 - 500)			
Pn310 : Vibration Detection Switch nibble 0 Vibration Detection Selection			
2 : Outputs alarm (A.520) when vibration is detected.			
Detection Start			
_ Setting Result			
Pn312 : Vibration Detection Level			
50 [min-1] 🕨 24 [min-1]			
When vibration exceeds a detection level 24 [min-1], Alarm(A.520) is detected.			

6.15.4 Related Parameters

6.15.4 Related Parameters

The following three items are given in the following table.

- Parameters Related to this Function
 - These are the parameters that are used or referenced when this function is executed.
- Changes during Function Execution Not allowed: The parameter cannot be changed using the SigmaWin+ or other tool while this function is being executed.

Allowed: The parameter can be changed using the SigmaWin+ or other tool while this function is being executed.

Automatic Changes after Function Execution
 Yes: The parameter is automatically set or adjusted after execution of this function.
 No: The parameter is not automatically set or adjusted after execution of this function.

Parameter	Name	Setting Changes	Automatic Changes
Pn311	Vibration Detection Sensitivity	Allowed	No
Pn312	Vibration Detection Level	Not allowed	Yes
Pn384	Vibration Detection Level	Not allowed	Yes

6.16.1 Automatic Adjustment

6.16 Adjusting the Motor Current Detection Signal Offset

The motor current detection signal offset is used to reduce ripple in the torque. You can adjust the motor current detection signal offset either automatically or manually.

6.16.1 Automatic Adjustment

Perform this adjustment only if highly accurate adjustment is required to reduce torque ripple. It is normally not necessary to adjust this offset.

Execute the automatic offset adjustment if the torque ripple is too large when compared with other SERVOPACKs.

ion The offset does not use a parameter, so it will not change even if the parameter settings are initialized.

Preparations

The following conditions must be met to automatically adjust the motor current detection signal offset.

- The parameters must not be write prohibited.
- The servo must be in ready status.
- The servo must be OFF.

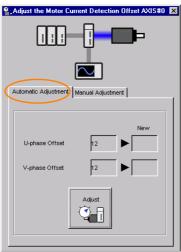
Applicable Tools

The following table lists the tools that you can use to automatically adjust the offset and the applicable tool functions.

Tool	Function	Operating Procedure Reference
Panel Operator	Fn00E	13.4.13 Autotune Motor Current Detection Signal Off- set (Fn00E) on page 13-20
Digital Operator	Fn00E	Ω Σ-7-Series Digital Operator Operating Manual (document No. SIEP S800001 33)
SigmaWin+	Setup - Adjust Offset - Adjust the Motor Current Detection Offset	Operating Procedure on page 6-100

Operating Procedure

Use the following procedure.


- 1. Select Setup Adjust Offset Adjust the Motor Current Detection Offset. from the menu bar of the Main Window of the SigmaWin+.
- 2. Click the Continue Button.

Information

6.16.2 Manual Adjustment

3. Click the **Automatic Adjustment** Tab in the Adjust the Motor Current Detection Offset Dialog Box.

4. Click the Adjust Button.

The values that result from automatic adjustment will be displayed in the New Boxes.

Adjust the Motor Curr	💁 Adjust the Motor Current Detection Offset AXIS#0 🗵					
]						
Automatic Adjustment Manual Adjustment						
-						
U-phase Offset V-phase Offset	New 12 16 12 12					
	Adjust					

6.16.2 Manual Adjustment

Important

You can use this function if you automatically adjust the motor current detection signal offset and the torque ripple is still too large.

If the offset is incorrectly adjusted with this function, the Servomotor characteristics may be adversely affected.

- Observe the following precautions when you manually adjust the offset.
- Operate the Servomotor at a speed of approximately 100 min⁻¹.
- Adjust the offset while monitoring the torque reference with the analog monitor until the ripple is minimized.
- Adjust the offsets for the phase-U current and phase-V current of the Servomotor so that they
 are balanced. Alternately adjust both offsets several times.

Information The offset does not use a parameter, so it will not change even if the parameter settings are initialized.

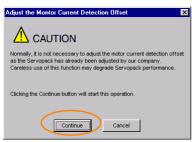
6.16.2 Manual Adjustment

Preparations

The following conditions must be met to manually adjust the motor current detection signal offset.

• The parameters must not be write prohibited.

Applicable Tools


The following table lists the tools that you can use to manually adjust the offset and the applicable tool functions.

Tool	Function	Operating Procedure Reference		
Panel Operator	Fn00F	13.4.14 Manually Adjust Motor Current Detection Sig nal Offset (Fn00F) on page 13-20		
Digital Operator	Fn00F	Ω-7-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33)		
SigmaWin+	Setup - Adjust Offset - Adjust the Motor Current Detection Offset	C Operating Procedure on page 6-102		

Operating Procedure

Use the following procedure.

- 1. Operate the motor at approximately 100 min⁻¹.
- 2. Select Setup Adjust Offset Adjust the Motor Current Detection Offset. from the menu bar of the Main Window of the SigmaWin+.
- 3. Click the Continue Button.

4. Click the Manual Adjustment Tab in the Adjust the Motor Current Detection Offset Dialog Box.

Adjust the Motor Current Detection Offset AXIS#0				
Automatic Adjustment				
Motor Current Detection Offset				
Channel	U-phase			
Offset	-1 Qt			

- 5. Set the Channel Box in the Motor Current Detection Offset Area to U-phase.
- 6. Use the +1 and -1 Buttons to adjust the offset for phase U. Change the offset by about 10 in the direction that reduces the torque ripple. Adjustment range: -512 to +511

6.16.2 Manual Adjustment

- 7. Set the Channel Box in the Motor Current Detection Offset Area to V-phase.
- 8. Use the +1 and -1 Buttons to adjust the offset for phase V. Change the offset by about 10 in the direction that reduces the torque ripple.
- **9.** Repeat steps 4 to 8 until the torque ripple cannot be improved any further regardless of whether you increase or decrease the offsets.
- 10. Reduce the amount by which you change the offsets each time and repeat steps 4 to 8.

6.17.1 FSTP (Forced Stop Input) Signal

6.17 Forcing the Motor to Stop

You can force the Servomotor to stop for a signal from the host controller or an external device.

To force the motor to stop, you must allocate the FSTP (Forced Stop Input) signal in Pn516 = $n.\Box\Box\BoxX$. You can specify one of the following stopping methods: dynamic brake (DB), coasting to a stop, or decelerating to a stop.

Note: Forcing the motor to stop is not designed to comply with any safety standard. In this respect, it is different from the hard wire base block (HWBB).

Information Panel Operator and Digital Operator Displays

When a forced stop is performed, the Panel Operator will display FST and the Digital Operator will display FSTP.

• To prevent accidents that may result from contact faults or disconnections, use a normally closed switch for the Forced Stop Input signal.

6.17.1 FSTP (Forced Stop Input) Signal

Classifica- tion	Signal	Connector Pin No.	Signal Status	Description
Input FSTP	Must be allocated.	ON (closed)	Drive is enabled (normal operation).	
	FOIF	iviust be allocated.	OFF (open)	The motor is stopped.

Note: You must allocate the FSTP signal to use it. Use Pn516 = n.□□□X (FSTP (Forced Stop Input) Signal Allocation) to allocate the FSTP signal to a connector pin. Refer to the following section for details.

G 6.1.1 Input Signal Allocations on page 6-4

6.17.2 Stopping Method Selection for Forced Stops

6.17.2 Stopping Method Selection for Forced Stops

Use $Pn00A = n.\Box\Box X\Box$ (Stopping Method for Forced Stops) to set the stopping method for forced stops.

Par	ameter	Description	When Enabled	Classifi- cation
	n. DD 0D	Apply the dynamic brake or coast the motor to a stop (use the stopping method set in $Pn001 = n.\Box\Box\BoxX$).		
	n.□□1□ (default set- ting)	Decelerate the motor to a stop using the torque set in Pn406 as the maximum torque. Use the setting of Pn001 = $n.\Box\Box\BoxX$ for the status after stopping.		1
Pn00A	n.0020	Decelerate the motor to a stop using the torque set in Pn406 as the maximum torque and then let the motor coast.	After restart	Setup
	n.0030	Decelerate the motor to a stop using the deceleration time set in Pn30A. Use the setting of Pn001 = $n.\Box\Box\BoxX$ for the status after stopping.		
	n.0040	Decelerate the motor to a stop using the deceleration time set in Pn30A and then let the motor coast.		

Note: You cannot decelerate a Servomotor to a stop during torque control. For torque control, the Servomotor will be stopped with the dynamic braking or coast to a stop according to the setting of Pn001 = n. $\Box \Box \Box X$ (Servo OFF or Alarm Group 1 Stopping Method).

Stopping the Servomotor by Setting Emergency Stop Torque (Pn406)

To stop the Servomotor by setting emergency stop torque, set Pn406 (Emergency Stop Torque).

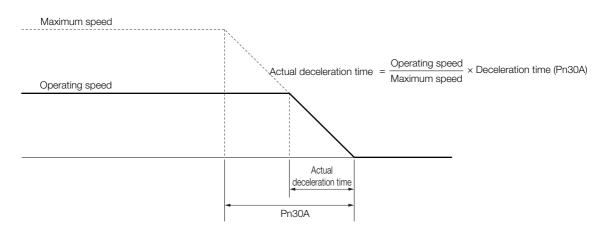
If $Pn001 = n.\Box\BoxX\Box$ is set to 1 or 2, the Servomotor will be decelerated to a stop using the torque set in Pn406 as the maximum torque.

The default setting is 800%. This setting is large enough to allow you to operate the Servomotor at the maximum torque. However, the maximum emergency stop torque that you can actually use is the maximum torque of the Servomotor.

	Emergency Stop Torque			Speed Positio	n Torque
Pn406	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 800	1%*	800	Immediately	Setup

* Set a percentage of the motor rated torque.

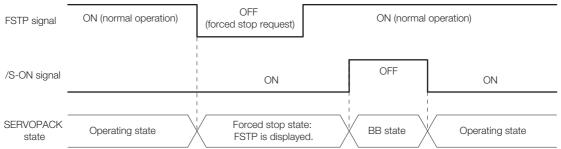
Stopping the Servomotor by Setting the Deceleration Time for Servo OFF and Forced Stops (Pn30A)


To specify the Servomotor deceleration time and use it to stop the Servomotor, set Pn30A (Deceleration Time for Servo OFF and Forced Stops).

	Deceleration Time f	or Servo OFF and Fo	Speed Position	١	
Pn30A	Setting Range Setting Unit Default Setting		Default Setting	When Enabled	Classification
	0 to 10,000	1 ms	0	Immediately	Setup

If you set Pn30A to 0, the Servomotor will be stopped with a zero speed.

The deceleration time that you set in Pn30A is the time to decelerate the motor from the maximum motor speed.


6.17.3 Resetting Method for Forced Stops

6.17.3 Resetting Method for Forced Stops

This section describes the reset methods that can be used after stopping operation for an FSTP (Forced Stop Input) signal.

If the FSTP (Forced Stop Input) signal is OFF and the /S-ON (Servo ON Input) signal is input, the forced stop state will be maintained even after the FSTP signal is turned ON. Turn OFF the /S-ON signal to place the SERVOPACK in the base block (BB) state and then turn ON the /S-ON signal again.

Trial Operation and Actual Operation

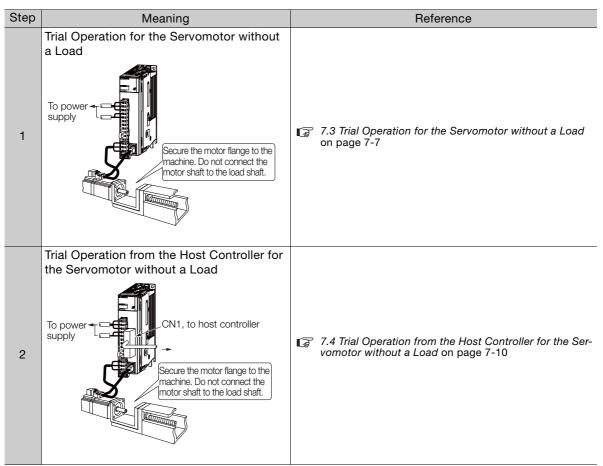
7

This chapter provides information on the flow and procedures for trial operation and convenient functions to use during trial operation.

7.1	Flow	of Trial Operation7-2
	7.1.1 7.1.2	Flow of Trial Operation for Rotary Servomotors 7-2 Flow of Trial Operation for Linear Servomotors 7-4
7.2	Inspec	tions and Confirmations before Trial Operation . 7-6
7.3	Trial O	peration for the Servomotor without a Load 7-7
	7.3.1 7.3.2 7.3.3	Preparations
7.4	Trial Oper	ation from the Host Controller for the Servomotor without a Load 7-10
	7.4.1 7.4.2 7.4.3 7.4.4	Preparing the Servomotor for Trial Operation7-11 Trial Operation for Speed Control7-13 Trial Operation for Position Control from the Host Controller with the SERVOPACK Used for Speed Control
7.5	Trial Ope	eration with the Servomotor Connected to the Machine . 7-17
	7.5.1 7.5.2 7.5.3	Precautions
7.6	Conve	nient Function to Use during Trial Operation 7-20
	7.6.1 7.6.2 7.6.3	Program Jogging

7.1.1 Flow of Trial Operation for Rotary Servomotors

7.1 Flow of Trial Operation


7.1.1 Flow of Trial Operation for Rotary Servomotors

The procedure for trial operation is given below.

• Preparations for Trial Operation

Step	Meaning	Reference
1	Installation Install the Servomotor and SERVOPACK according to the installation conditions. First, operation is checked with no load. Do not connect the Servomotor to the machine.	Chapter 3 SERVOPACK Installation
2	Wiring and Connections Wire and connect the SERVOPACK. First, Servomotor operation is checked without a load. Do not connect the CN1 connector on the SERVOPACK.	Chapter 4 Wiring and Connecting SERVOPACKs
3	Confirmations before Trial Operation	7.2 Inspections and Confirmations before Trial Opera- tion on page 7-6
4	Power ON	-
5	Resetting the Absolute Encoder This step is necessary only for a Servomotor with an Absolute Encoder.	5.17 Resetting the Absolute Encoder on page 5-50

Trial Operation

7.1.1 Flow of Trial Operation for Rotary Servomotors

Step	Meaning	Reference
	Trial Operation with the Servomotor Con- nected to the Machine	
3	supply Secure the motor flange to the machine, and connect the motor shaft to the load shaft with a coupling or other means.	7.5 Trial Operation with the Servomotor Connected to the Machine on page 7-17

7.1.2 Flow of Trial Operation for Linear Servomotors

7.1.2 Flow of Trial Operation for Linear Servomotors

The procedure for trial operation is given below.

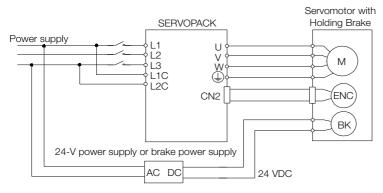
• Preparations for Trial Operation

Step		Meaning			Reference			
1	Installation Install the Servomotor and SERVOPACK according to the installation conditions. First, operation is checked with no load. Do not connect the Servomotor to the machine.			G Chapter 3 SERVOPACK Installation				
2	Wiring and Connections Wire and connect the SERVOPACK. First, Servomotor operation is checked without a load. Do not connect the CN1 connector on the SERVOPACK.				Carter 4 Wiring and Connecting SERVOPACKs			
3	Confirm	ations before Trial Ope	ration		7.2 Inspections and Confirmations ion on page 7-6	before Trial Opera-		
4	Power 0	ON		-				
	Setting	Parameters in the SER	VOPACK					
	Step	No. of Parameter to Set	Descriptio	on	Remarks	Reference		
	5-1	Pn282	Linear Encoder Pitch		Set this parameter only if you are using a Serial Converter Unit.	page 5-18		
	5-2	-	Writing Parameters to the Linear Servo- motor		Set this parameter only if you are not using a Serial Converter Unit.	page 5-19		
5	5-3	Pn080 = n.□□X□	Motor Phase Sequence Selec- tion		_	page 5-23		
	5-4	Pn080 = n.□□□X	Polarity Senso Selection	or	-	page 5-25		
	5-5	-	Polarity Detec	tion	This step is necessary only for a Linear Servomotor with a Polarity Sensor.	page 5-26		
	5-6	Pn50A = n.X□□□ and Pn50B = n.□□□X	Overtravel Sig Allocations	nal	-	page 5-30		
	5-7	Pn483, Pn484	Force Control		-	page 6-63		
6	Setting the Origin of the Absolute Linear Encoder Note: This step is necessary only for an Absolute Linear Servomotor from Mitutoyo Corpora- tion.				5.18.1 Setting the Origin of the Ab Encoder on page 5-53	osolute Linear		

7.1.2 Flow of Trial Operation for Linear Servomotors

• Trial Operation

Step	Meaning	Reference
1	Trial Operation for the Servomotor without a Load	7.3 Trial Operation for the Servomotor without a Load on page 7-7
2	Trial Operation from the Host Controller for the Servomotor without a Load	7.4 Trial Operation from the Host Controller for the Servomotor without a Load on page 7-10
3	Trial Operation with the Servomotor Con- nected to the Machine	7.5 Trial Operation with the Servomotor Connected to the Machine on page 7-17


7.2 Inspections and Confirmations before Trial Operation

To ensure safe and correct trial operation, check the following items before you start trial operation.

- Make sure that the SERVOPACK and Servomotor are installed, wired, and connected correctly.
- Make sure that the correct power supply voltage is supplied to the SERVOPACK.
- Make sure that there are no loose parts in the Servomotor mounting.
- If you are using a Servomotor with an Oil Seal, make sure that the oil seal is not damaged. Also make sure that oil has been applied.
- If you are performing trial operation on a Servomotor that has been stored for a long period of time, make sure that all Servomotor inspection and maintenance procedures have been completed.

Refer to the manual for your Servomotor for Servomotor maintenance and inspection information.

• If you are using a Servomotor with a Holding Brake, make sure that the brake is released in advance. To release the brake, you must apply the specified voltage of 24 VDC to the brake. A circuit example for trial operation is provided below.

7.3.1 Preparations

7.3 Trial Operation for the Servomotor without a Load

You use jogging for trial operation of the Servomotor without a load.

Jogging is used to check the operation of the Servomotor without connecting the SERVOPACK to the host controller. The Servomotor is moved at the preset jogging speed.

• During jogging, the overtravel function is disabled. Consider the range of motion of your machine when you jog the Servomotor.

7.3.1 Preparations

Confirm the following conditions before you jog the Servomotor.

- The parameters must not be write prohibited.
- The main circuit power supply must be ON.
- There must be no alarms.
- There must be no hard wire base block (HWBB).
- The servo must be OFF.
- The jogging speed must be set considering the operating range of the machine. The jogging speed is set with the following parameters.
 - Rotary Servomotors

	Jogging Speed		Speed Position Torque			
Pn304	Setting Range	Setting Unit	Default Setting	When Enabled	Classification	
	0 to 10,000	1 min⁻¹	500	Immediately	Setup	
	Soft Start Acceleration Time			Speed		
Pn305	Setting Range	Setting Unit	Default Setting	When Enabled	Classification	
	0 to 10,000	1 ms	0	Immediately	Setup	
	Soft Start Deceleration Time			Speed		
Pn306	Setting Range	Setting Unit	Default Setting	When Enabled	Classification	
	0 to 10,000	1 ms	0	Immediately	Setup	

Direct Drive Servomotors

	Jogging Speed			Speed Position Torque		
Pn304	Setting Range	Setting Unit	Default Setting	When Enabled	Classification	
	0 to 10,000	0.1 min ⁻¹	500	Immediately	Setup	
	Soft Start Acceleration Time			Speed		
Pn305	Setting Range	Setting Unit	Default Setting	When Enabled	Classification	
	0 to 10,000	1 ms	0	Immediately	Setup	
	Soft Start Deceler	ation Time		Speed		
Pn306	Setting Range	Setting Unit	Default Setting	When Enabled	Classification	
	0 to 10,000	1 ms	0	Immediately	Setup	

· Linear Servomotors

	Jogging Speed		Speed Position Force			
Pn383	Setting Range	Setting Unit	Default Setting	When Enabled	Classification	
	0 to 10,000	1 mm/s	50	Immediately	Setup	
	Soft Start Acceleration Time Speed					
Pn305	Setting Range	Setting Unit	Default Setting	When Enabled	Classification	
	0 to 10,000	1 ms	0	Immediately	Setup	

7.3.2 Applicable Tools

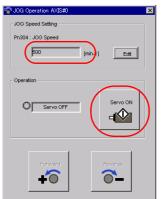
	Soft Start Decele	ration Time	Speed		
Pn306	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 10,000	1 ms	0	Immediately	Setup
Information When an absolute encoder is used, you do not need to input the SEN signal. It is always active.					

7.3.2 Applicable Tools

The following table lists the tools that you can use to perform jogging and the applicable tool functions.

Tool	Function	Operating Procedure Reference
Panel Operator	Fn002	🕞 13.4.2 Jog (Fn002) on page 13-13
Digital Operator	Fn002	Σ-7-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33)
SigmaWin+	Test Run - Jog	Gerating Procedure on page 7-8

7.3.3 Operating Procedure


Use the following procedure.

- 1. Select *Test Run Jog* from the menu bar of the Main Window of the SigmaWin+. The Jog Operation Dialog Box will be displayed.
- 2. Read the warnings and then click the OK Button.

7.3.3 Operating Procedure

3. Check the jogging speed and then click the Servo ON Button.

The display in the **Operation** Area will change to **Servo ON**.

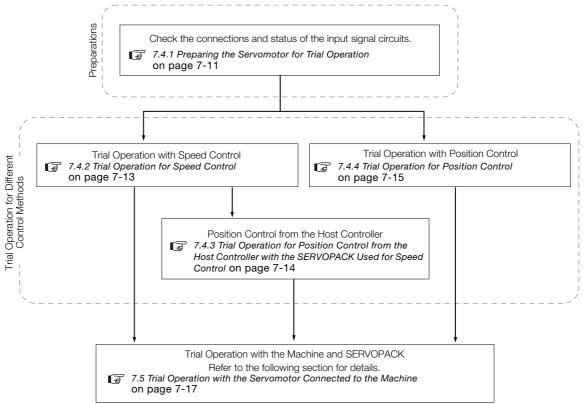
Information To change the speed, click the Edit Button and enter the new speed.

4. Click the Forward Button or the Reverse Button.

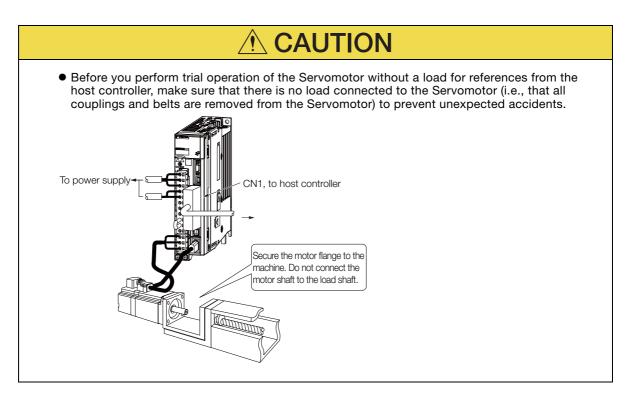
Jogging will be performed only while you hold down the mouse button.

😵 JOG Operation AXIS#0	×
JOG Speed Setting Pn304 : JOG Speed	
500 [min-1] <u>Edit</u>	
- Operation	
Servo ON Servo OFF	
Forward	

5. After you finish jogging, turn the power supply to the SERVOPACK OFF and ON again.


This concludes the jogging procedure.

7.4 Trial Operation from the Host Controller for the Servomotor without a Load


Conform the following items before you start trial operation from the host controller for the Servomotor without a load.

- Make sure that the Servomotor operation reference from the host controller to the SERVO-PACK and the I/O signals are set up properly.
- Make sure that the wiring between the host controller and SERVOPACK and the polarity of the wiring are correct.
- Make sure that all operation settings for the SERVOPACK are correct.

The operation sequence for trial operation from the host controller for the Servomotor without a load is given below.

7.4.1 Preparing the Servomotor for Trial Operation

7.4.1 Preparing the Servomotor for Trial Operation

This section provides the procedure to prepare the Servomotor for trial operation.

Preparations

Confirm the following items before you perform the procedure to prepare the Servomotor for trial operation.

- Make sure that the preparations given in 7.1 Flow of Trial Operation on page 7-2 have been completed.
- Make sure that the trial operation described in 7.3 Trial Operation for the Servomotor without a Load on page 7-7 has been completed.

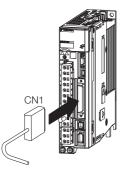
Operating Procedure

The following procedure assumes that the default settings are used for the I/O signals required for trial operation. Refer to the following section for information on the default I/O signal settings.

4.2 Basic Wiring Diagrams on page 4-9

- Wire the I/O signals from the host controller. Refer to the following section for details.
 A2 Basic Wiring Diagrams on page 4-9
- 2. Check the following items.
 - ① Make sure that the /S-ON (Servo ON) signal can be input.
 - @Make sure that the P-OT (Forward Drive Prohibit) and N-OT (Reverse Drive Prohibit) signals are ON (closed). Setting Procedure
 - Input the signal to turn ON CN1-42 and CN1-43 (closed).
 - Set Pn50A to n.8 [] [] (Set the signal to always enable forward drive) and Pn50B to n. [] [] 8 (Set the signal to always enable reverse drive).

^③Make sure that a reference is not being input.


7.4.1 Preparing the Servomotor for Trial Operation

If you are using a safety function, make sure that the safety function device is connected to CN8.

Refer to the following section for the safety function device connection method.

Information You can set Pn002 to n. Use the encoder as an incremental encoder) to temporarily use an absolute encoder as an incremental encoder. This makes it possible to perform trial operation without setting up the absolute encoder or setting the SEN signal.

3. Connect the I/O Signal Cable to the I/O signal connector (CN1).

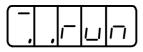
- **4.** Turn ON the power supplies to the SERVOPACK. The control power and main circuit power will be supplied.
- 5. Confirm that the Panel Operator display is as shown below.

$\left[- \right]$			
<u> </u>	,		\Box

6. If you are using an absolute encoder, turn ON the SEN signal. The current position will be read from the absolute encoder. This step is not necessary if you are using an incremental encoder.

7. Check the status of the I/O signals.

• Using the SigmaWin+: Monitor - Wiring Check


• Using the Panel Operator or Digital Operator: Un005 (Input Signal Monitor) The correct states of the input signals are given in the following table. If the actual states do not agree with those given in the following table, correct the I/O signals.

Signal	Correct State
/S-ON (Servo ON) Signal	OFF
/P-CON (Proportional Control) Signal	OFF
P-OT (Forward Drive Prohibit) Signal	ON
N-OT (Reverse Drive Prohibit) Signal	ON
/ALM-RST (Alarm Reset) Signal	OFF
/P-CL (Forward External Torque Limit) Signal	OFF
/N-CL (Reverse External Torque Limit) Signal	OFF
SEN (Absolute Data Request) Signal	When using an absolute encoder: ONWhen not using an absolute encoder: OFF

8. Input the /S-ON (Servo ON) signal. The servo will turn ON.

7.4.2 Trial Operation for Speed Control

9. Confirm that the Panel Operator display is as shown below.

If the above display appears, power is being supplied to the Servomotor and the servo is ON. If an alarm is displayed, the servo is OFF and power is not being supplied to the Servomotor. Refer to the following section, clear the alarm, and repeat the procedure from step 4. \overrightarrow{a} 12.2.3 Resetting Alarms on page 12-39

10. If you changed the settings of Pn50A or Pn50B in step 2, return the settings to their original values.

This concludes the procedure to prepare the Servomotor for trial operation.

Proceed to one of the following sections according to the control method. 7.4.2 Trial Operation for Speed Control on page 7-13

37.4.4 Trial Operation for Position Control on page 7-15

7.4.2 Trial Operation for Speed Control

This section describes trial operation with speed control.

Preparations

Confirm the following item before you perform the procedure for trial operation with speed control.

• Make sure that the procedure to prepare the Servomotor for trial operation described in 7.4.1 *Preparing the Servomotor for Trial Operation* on page 7-11 has been completed.

Operating Procedure

- Adjust the speed reference input gain (Pn300). The default setting of Pn300 is for the rated speed at 6 V. If you want to use this setting, do not adjust Pn300 and proceed to the next step. To change the setting of Pn300, refer to the following section.
 G 6.5 Speed Control on page 6-16
- 2. Set the speed reference (V-REF, SG voltage) to 0 V from the host controller and check the rotation of the Servomotor shaft. If the Servomotor shaft is rotating slightly, refer to the following section and adjust the reference offset so that the shaft does not rotate.

Adjusting the Speed Reference Offset on page 6-19

- **3.** Input a low-speed, constant-speed reference from the host controller to operate the Servomotor and visually check the motor speed.
 - Rotary Servomotor example: For a speed reference of 60 min⁻¹, the shaft should rotate at 1 rotation per second.
 - Linear Servomotor example: For a speed reference of 60 mm/s, the Moving Coil should move at 60 mm/s.
- 4. Gradually increase the speed reference input from the host controller starting from 0 V.
- 5. Confirm that the motor speed agrees with the speed reference value.
 - Using the SigmaWin+: Monitor Monitor Status Monitor and Monitor Monitor Motion Monitor
 - Using the Panel Operator or Digital Operator: Un001 (Speed Reference Monitor) and Un000 (Motor Speed Monitor)

7.4.3 Trial Operation for Position Control from the Host Controller with the SERVOPACK Used for Speed Control

- 6. Confirm that the motor is operating in the correct direction.
 If the motor direction is not correct, refer to the following section and change the motor direction.
 3.6 Motor Direction Setting on page 5-17
- 7. Gradually reduce the speed reference input from the host controller back to 0 V.
- 8. Turn OFF the power supplies to the SERVOPACK.

This concludes the procedure for trial operation with speed control.

Proceed to the following section if you will perform position control on the host controller. *7.4.3 Trial Operation for Position Control from the Host Controller with the SERVOPACK Used for Speed Control* on page 7-14

Proceed to the following section if you will not perform position control on the host controller. 7.5 Trial Operation with the Servomotor Connected to the Machine on page 7-17

7.4.3 Trial Operation for Position Control from the Host Controller with the SERVOPACK Used for Speed Control

This section describes the trial operation procedure to use the SERVOPACK for speed control and perform position control at the host controller.

Preparations

Confirm the following item before you perform the procedure to use the SERVOPACK for speed control and perform position control at the host controller.

• Make sure that the procedure described in *7.4.2 Trial Operation for Speed Control* on page 7-13 has been completed.

Operating Procedure

- 1. Turn ON the power supplies to the SERVOPACK.
- Set Pn212 (Encoder Output Pulses) or Pn281 (Encoder Output Resolution). Refer to the following section for details.
 6.8.2 Setting for the Encoder Divided Pulse Output on page 6-52
- **3.** Execute the following type of simple positioning from the host controller and confirm the motion of the Servomotor.
 - Rotary Servomotors: Input a reference to move the Servomotor one rotation and confirm that the motor shaft moves one rotation.
 - Linear Servomotors: Input a reference to move the Servomotor 100 mm and confirm that the motor moves 100 mm either visually or with a monitor function.
 - To use a monitor function, perform one of the following.
 - Using the SigmaWin+: *Monitor Monitor Motion Monitor*
 - Using the Panel Operator or Digital Operator: Un003 (Rotational Angle 1 [unit: encoder pulses])
 - If the amount of Servomotor rotation (pulses) is not correct, check the setting of Pn212 or Pn281.

4. Gradually reduce the speed reference input from the host controller back to 0 V.

5. Turn OFF the power supplies to the SERVOPACK.

This concludes the trial operation procedure for position control from the host controller with the SERVOPACK used for speed control. Proceed to the following section. **7.5** *Trial Operation with the Servomotor Connected to the Machine* on page 7-17

7.4.4 Trial Operation for Position Control

7.4.4 Trial Operation for Position Control

This section describes the procedure for trial operation for position control.

Preparations

Confirm the following item before you perform the procedure for trial operation with position control.

• Make sure that the procedure to prepare the Servomotor for trial operation described in 7.4.1 *Preparing the Servomotor for Trial Operation* on page 7-11 has been completed.

Operating Procedure

In this procedure, the electronic gear is set in the SERVOPACK and not in the host controller.

- 1. Turn OFF the /S-ON (Servo ON) signal from the host controller. The servo will turn OFF.
- 2. Set Pn200 =n.□□□X (Reference Pulse Form) to the reference pulse form of the host controller.
- **3.** Set the reference unit and set the electronic gear ratio (Pn20E and Pn210) according to the host controller.
- **4.** Turn the power supply to the SERVOPACK OFF and ON again. The new parameter settings will be enabled.
- 5. Input the /S-ON (Servo ON) signal from the host controller. The servo will turn ON.
- 6. Input a low-speed pulse reference from the host controller. Use a travel distance (number of reference pulses) that is easy to check (for example, the number of pulses for one rotation).

For safety, set the number of references pulses for approximately the following motor speeds.

- Rotary Servomotors: 100 min⁻¹
- Linear Servomotors: 100 mm/s
- 7. Check the number of reference pulses that are input to the SERVOPACK from the changes in the input reference pulse counter before and after the reference.
 - Using the SigmaWin+: Monitor Monitor Motion Monitor, Reference Pulse Counter
 - Using the Panel Operator or Digital Operator: Un00C (Input Reference Pulse Counter Monitor)
- 8. Check the actual number of motor rotations from the changes in the feedback pulse counter before and after the reference.
 - Using the SigmaWin+: Monitor Monitor Motion Monitor, Feedback Pulse Counter
 - Using the Panel Operator or Digital Operator: Un00D (Feedback Pulse Counter Monitor)
- **9.** Confirm that the changes in the input reference pulse counter and the feedback pulse counter (i.e., the values from steps 7 and 8) satisfy the following equation. Change in input reference pulse counter = Change in feedback pulse counter x (Pn20E/Pn210)
- **10.** Confirm that the Servomotor shaft is rotating in the direction specified by the reference. If the rotation direction does not agree with the reference direction, refer to the following section and change the rotation direction.

5.6 Motor Direction Setting on page 5-17

11. Input a pulse reference for a comparatively large number of motor rotations from the host controller so that the Servomotor will operate at a constant speed.

7.4.4 Trial Operation for Position Control

- **12.** Check the reference pulse speed input to the SERVOPACK with the input reference pulse speed monitor.
 - Using the SigmaWin+: Monitor Monitor Motion Monitor, Input Reference Pulse Speed
 - Using the Panel Operator or Digital Operator: Un007 (Input Reference Pulse Speed Monitor)
 - The input reference pulse monitor uses the following formula.
 - Rotary Servomotor with a 20-bit Encoder

Input reference pulse speed monitor = Input reference pulse speed [pu	ulses/s] × 60 >	< <u>Pn20E</u> × Pn210 ×	1 2 ²⁰ (=1,048,576)
Reference input pulse spe	ed/min	Electronic gear ratio	Encoder pulse
Linear Servomotors			
Input reference pulse speed monitor = Input reference pulse speed [pulses/s] \times	Electronic gear ratio	Linear encoder p Resolutio Linear encoder re	n × 1,000

13. Check the motor speed monitor.

- Using the SigmaWin+: Monitor Monitor Motion Monitor, Motor Speed
- Using the Panel Operator or Digital Operator: Un008 (Motor Speed Monitor)
- **14.** Confirm that the input reference pulse speed and the motor speed (i.e., the values from steps 12 and 13) are the same.
- 15. Stop the pulse reference from the host controller.
- **16.** Turn OFF the /S-ON (Servo ON) signal from the host controller. The servo will turn OFF.

This concludes the procedure for trial operation with position control. Proceed to the following section.

7.5 Trial Operation with the Servomotor Connected to the Machine on page 7-17

7.5.1 Precautions

7.5 Trial Operation with the Servomotor Connected to the Machine

This section provides the procedure for trial operation with both the machine and Servomotor.

7.5.1 Precautions

🕂 WARNING

• Operating mistakes that occur after the Servomotor is connected to the machine may not only damage the machine, but they may also cause accidents resulting in personal injury.

If you disabled the overtravel function for trial operation of the Servomotor without a load, enable the overtravel function (P-OT and N-OT signal) before you preform trial operation with the Servomotor connected to the machine in order to provide protection.

If you will use a brake, observe the following precautions during trial operation.

- Before you check the operation of the brake, implement measures to prevent vibration from being caused by the machine falling due to gravity or an external force.
- First check the Servomotor operation and brake operation with the Servomotor uncoupled from the machine. If no problems are found, connect the Servomotor to the machine and perform trial operation again.

Control the operation of the brake with the /BK (Brake) signal output from the SERVOPACK.

Refer to the following sections for information on wiring and the related parameter settings. *4.4.4 Wiring the SERVOPACK to the Holding Brake* on page 4-28

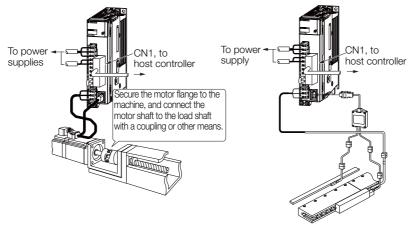
🕞 5.13 Holding Brake on page 5-35

Failures caused by incorrect wiring or incorrect voltage application in the brake circuit may cause the SERVOPACK to fail, damage the SERVOPACK, damage the equipment, or cause an accident resulting in death or injury.

t Observe the precautions and instructions for wiring and trial operation precisely as described in this manual.

7.5.2 Preparations

Confirm the following items before you perform the trial operation procedure for both the machine and Servomotor.


- Make sure that the procedure described in 7.4 Trial Operation from the Host Controller for the Servomotor without a Load on page 7-10 has been completed.
- Make sure that the SERVOPACK is connected correctly to both the host controller and the peripheral devices.
 - Safety Function Wiring
 - If you are not using the safety function, leave the Safety Jumper Connector (provided as an accessory with the SERVOPACK) connected to CN8.
 - If you are using the safety function, remove the Safety Jumper Connector from CN8 and connect the safety function device.
 - Overtravel wiring
 - Brake wiring
 - Allocation of the /BK (Brake) signal to a pin on the I/O signal connector (CN1)

7.5.3 Operating Procedure

- Emergency stop circuit wiring
- Host controller wiring Refer to the following section and change the wiring to match the system configuration.
 15.1 Examples of Connections to Host Controllers on page 15-2

7.5.3 Operating Procedure

- Enable the overtravel signals.
 5.12.2 Setting to Enable/Disable Overtravel on page 5-31
- **2.** Make the settings for the protective functions, such as the safety function, overtravel, and the brake.
 - *I 3 4.6 Connecting Safety Function Signals* on page 4-44
 - 5.12 Overtravel and Related Settings on page 5-30
 - 3.13 Holding Brake on page 5-35
- 3. Set the parameters that are required for the control method you will use.
 - 6.5 Speed Control on page 6-16
 - 6.6 Position Control on page 6-30
 - (3) 6.7 Torque Control on page 6-40
- **4.** Turn OFF the power supplies to the SERVOPACK. The control power supply and main circuit power supply will turn OFF.
- 5. Couple the Servomotor to the machine.

- 6. Turn ON the power supplies to the machine and host controller and turn ON the control power supply and main circuit power supply to the SERVOPACK.
- 7. Check the protective functions, such overtravel and the brake, to confirm that they operate correctly.

Note: Enable activating an emergency stop so that the Servomotor can be stopped safely should an error occur during the remainder of the procedure.

- 8. Input the /S-ON (Servo ON) signal from the host controller. The servo will turn ON.
- **9.** Perform trial operation according to *7.4 Trial Operation from the Host Controller for the Servomotor without a Load* on page 7-10 and confirm that the same results are obtained as when trial operation was performed on the Servomotor without a load.
- **10.** Check the settings of the parameters for the control method and confirm that the Servomotor operates according to machine operating specifications.
- **11.** If necessary, adjust the servo gain to improve the Servomotor response characteristics. The Servomotor and machine may not be broken in completely for the trial operation. Therefore, let the system run for a sufficient amount of time to ensure that it is properly broken in.

7.5.3 Operating Procedure

12. For future maintenance, save the parameter settings with one of the following methods.

- Use the SigmaWin+ to save the parameters as a file.
- Use the Parameter Copy Mode of the Digital Operator.
- Record the settings manually.

This concludes the procedure for trial operation with both the machine and Servomotor.

7.6 Convenient Function to Use during Trial Operation

This section describes some convenient operations that you can use during trial operation. Use them as required.

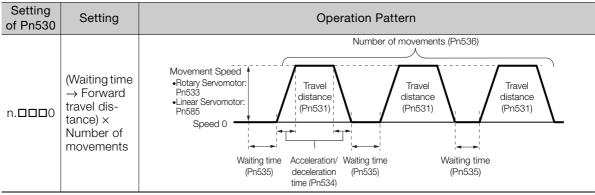
7.6.1 Program Jogging

You can use program jogging to perform continuous operation with a preset operation pattern, travel distance, movement speed, acceleration/deceleration time, waiting time, and number of movements.

You can use this operation when you set up the system in the same way as for normal jogging to move the Servomotor without connecting it to the host controller in order to check Servomotor operation and execute simple positioning operations.

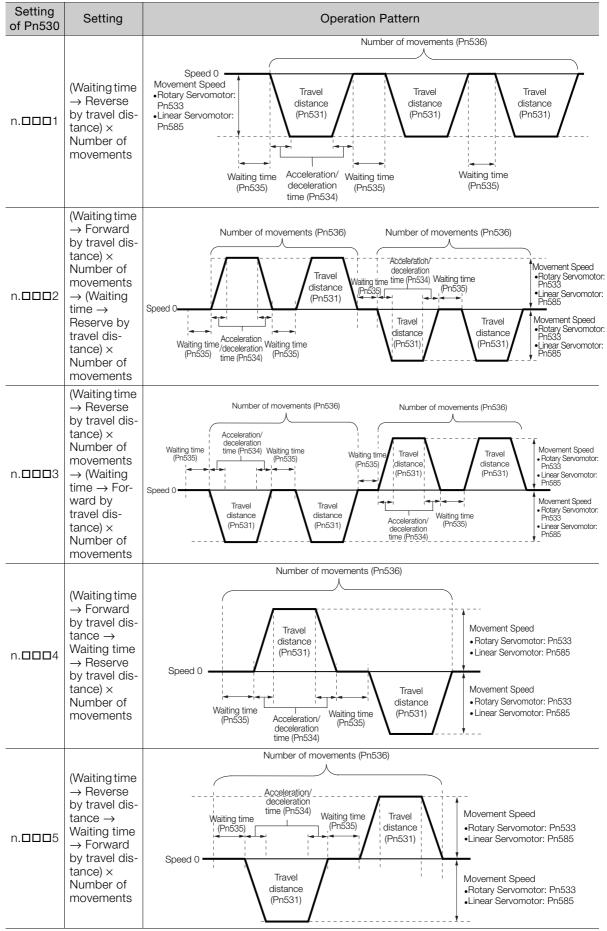
Preparations

Confirm the following conditions before you perform program jogging.


- The parameters must not be write prohibited.
- The main circuit power supply must be ON.
- There must be no alarms.
- There must be no hard wire base block (HWBB).
- The servo must be OFF.
- The range of machine motion and the safe movement speed of your machine must be considered when you set the travel distance and movement speed.
- There must be no overtravel.

Additional Information

- The program jogging operation is performed with position control, but a pulse reference is not input to the SERVOPACK.
- You can use the functions that are applicable to position control, such as the position reference filter.
- The overtravel function is enabled.
- When an absolute encoder is used, you do not need to input the SEN signal. It is always active.
- You cannot use reference pulse input multiplication switching.


Program Jogging Operation Pattern

An example of a program jogging operation pattern is given below. In this example, the Servomotor direction is set to $Pn000 = n.\Box\Box\Box\Box$ (Use CCW as the forward direction).

Continued on next page.

Continued from previous page.

Information If Pn530 is set to n. \Box \Box \Box , n. \Box \Box \Box , n. \Box \Box \Box , or n. \Box \Box \Box , you can set Pn536 (Program Jogging Number of Movements) to 0 to perform infinite time operation. You cannot use infinite time operation if Pn530 is set to n. \Box \Box \Box \Box \Box . If you perform infinite time operation from the Panel Operator or Digital Operator, press the **MODE/SET** Key or **JOG/SVON** Key to turn OFF the servo to end infinite time operation.

Related Parameters

Use the following parameters to set the program jogging operation pattern. Do not change the settings while the program jogging operation is being executed.

Rotary Servomotors

	Program Jogging-R	elated Selections		Speed Posit	ion Torque
Pn530	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0000 to 0005	_	0000	Immediately	Setup
	Program Jogging Tr	avel Distance	Speed Posit	ion Torque	
Pn531	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	1 to 1,073,741,824	1 reference unit	32,768	Immediately	Setup
	Program Jogging M	ovement Speed		Speed Po	sition Torque
Pn533	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	1 to 10,000	1 min⁻¹	500	Immediately	Setup
	Program Jogging A	cceleration/Decele	Speed Posit	ion Torque	
Pn534	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	2 to 10,000	1 ms	100	Immediately	Setup
	Program Jogging W	aiting Time		Speed Posit	ion Torque
Pn535	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 10,000	1 ms	100	Immediately	Setup
	Program Jogging Number of Movements			Speed Po	sition Torque
Pn536	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 1,000	1	1	Immediately	Setup

• Direct Drive Servomotors

	Program Jogging-R	elated Selections		Speed Po	sition Torque
Pn530	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0000 to 0005	-	0000	Immediately	Setup
	Program Jogging Tr	avel Distance		Speed Po	sition Torque
Pn531	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	1 to 1,073,741,824	1 reference unit	32,768	Immediately	Setup
	Program Jogging M	ovement Speed		Speed Po	sition Torque
Pn533	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	1 to 10,000	0.1 min ⁻¹	500	Immediately	Setup
	Program Jogging Ad	cceleration/Deceler	ration Time	Speed Po	sition Torque
Pn534	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	2 to 10,000	1 ms	100	Immediately	Setup
	Program Jogging W	aiting Time		Speed Po	sition Torque
Pn535	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 10,000	1 ms	100	Immediately	Setup
	Program Jogging Number of Movements			Speed Po	sition Torque
Pn536	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 1,000	1	1	Immediately	Setup

• Linear Servomotors

	Program Jogging-R	elated Selections		Speed Pc	sition Force
Pn530	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0000 to 0005	_	0000	Immediately	Setup
	Program Jogging Tr	avel Distance		Speed Pc	sition Force
Pn531	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	1 to 1,073,741,824	1 reference unit	32,768	Immediately	Setup
	Program Jogging M	ovement Speed		Speed Pc	sition Force
Pn585	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	1 to 10,000	1 mm/s	50	Immediately	Setup
	Program Jogging Acceleration/Deceleration Time			Speed Pc	sition Force
Pn534	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	2 to 10,000	1 ms	100	Immediately	Setup
	Program Jogging W	aiting Time		Speed Pc	sition Force
Pn535	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 10,000	1 ms	100	Immediately	Setup
	Program Jogging N	umber of Movemer	nts	Speed Pc	sition Force
Pn536	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 1,000	1	1	Immediately	Setup

Applicable Tools

The following table lists the tools that you can use to perform program jogging and the applicable tool functions.

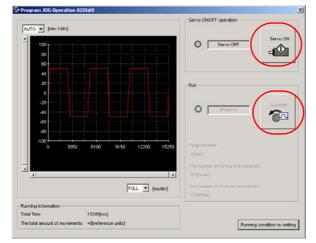
Tool	Function	Reference
Panel Operator	Fn004	🗊 13.4.4 Jog Program (Fn004) on page 13-14
Digital Operator	Fn004	Σ-7-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33)
SigmaWin+	Test Run - Program JOG Operation	Gerating Procedure on page 7-23

Operating Procedure

Use the following procedure.

1. Select *Test Run - Program JOG Operation* from the menu bar of the Main Window of the SigmaWin+.

The Program Jog Operation Dialog Box will be displayed.


2. Read the warnings and then click the OK Button.

is functior	is a dangerous function accompanied by operation of a motor.
	onfirm an operation manual before execution. specially of the following points.
1. Please o	heck the safety near an operation part.
JOG Op	actually operates by the operation program set up when Program eration was executed.Please execute this function after fully g that there is no danger by operation of a motor.
2. Please d	heck the position of a machine.
	carry out a starting position return etc. and be sure to re-set up a , before executing Program JOG Operation.
The caution	is on use
About an i	nstruction waveform display
Operati	played instruction waveform is calculated from the Program JOG on parameter set up and presume it may not be in agreement with al instruction waveform.
About the	current position display under execution
expres: agreem	sor showing the current position displayed during execution may the progress time from an execution start, and may not be in ent with operation of a Servodrive Please refer to this information indard of a position during execution.

3. Set the operating conditions, click the **Apply** Button, and then click the **Run** Button. A graph of the operation pattern will be displayed.

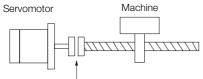
	Running Condition
UTO 💌 [min-1Ativ]	PnS31:Program JOG Movement Distance
	32768 [reference units] (1-1073741824)
	Pr633.Program.200 Movement Speed 500 (en-1) (1-0000) Pr634.Program.200 Acceleration.Deceleration Time 100 (e) (2-10000) Pr635.Program.200 Veloting Time (100) 100 (e) (2-10000) Pr635.Program.200 Veloting Time (100) 100 (e) (2-10000) Pr635.Program.200 Veloting Time (100) 900 (e) (1000) (100) (100) (100) Pr630.Program.200 Operation Related Switch Pr630.Program.200 Operation Related Switch
4000	Proce U Program U/O Operation Headed Switch 4: (Mating PhGE > ForwardPhGH > Walky Apply
nning Information	

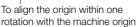
4. Click the Servo ON Button and then the Execute Button. The program jogging operation will be executed.

- Be aware of the following points if you cancel the program jogging operation while the motor is operating.
 If you cancel operation with the Servo OFF Button, the motor will stop according to setting of the Servo OFF stopping method (Pn001 = n.□□□X).
 - If you cancel operation with the Cancel Button, the motor will decelerate to a stop and then enter a zero-clamped state.

This concludes the program jogging procedure.

7.6.2 Origin Search


The origin search operation positions the motor to the origin within one rotation and the clamps it there.



• Make sure that the load is not coupled when you execute an origin search. The Forward Drive Prohibit (P-OT) signal and Reverse Drive Prohibit (N-OT) signal are disabled during an origin search.

Use an origin search when it is necessary to align the origin within one rotation with the machine origin. The following speeds are used for origin searches.

- Rotary Servomotors: 60 min⁻¹
- Direct Drive Servomotors: 6 min⁻¹
- Linear Servomotors: 15 mm/s

Preparations

Confirm the following conditions before you start an origin search.

- The parameters must not be write prohibited.
- The main circuit power supply must be ON.
- There must be no alarms.
- There must be no hard wire base block (HWBB).
- The servo must be OFF.

Applicable Tools

The following table lists the tools that you can use to perform an origin search and the applicable tool functions.

Tool	Function	Reference
Panel Operator	Fn003	🕼 13.4.3 Origin Search (Fn003) on page 13-13
Digital Operator	Fn003	Ω Σ-7-Series Digital Operator Operating Man- ual (Manual No.: SIEP S800001 33)
SigmaWin+	Setup - Origin Search	Gerating Procedure on page 7-25

Operating Procedure

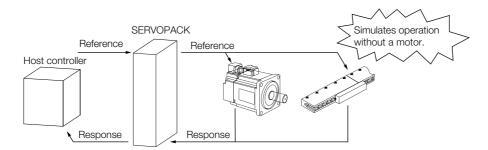
Use the following procedure.

1. Select Setup - Origin Search from the menu bar of the Main Window of the SigmaWin+. The Origin Search Dialog Box will be displayed.

2. Read the warnings and then click the OK Button.

3. Click the Servo ON Button.

😽 Origin Search Axis #0 🛛 🔊 🔊	<
Status Origin Search Not Executed	
Operation Servo OFF)
Forward	


4. Click the Forward Button or the Reverse Button. An origin search will be performed only while you hold down the mouse button. The motor will stop when the origin search has been completed.

This concludes the origin search procedure.

7.6.3 Test without a Motor

A test without a motor is used to check the operation of the host controller and peripheral devices by simulating the operation of the Servomotor in the SERVOPACK, i.e., without actually operating a Servomotor. This test allows you to check wiring, debug the system, and verify parameters to shorten the time required for setup work and to prevent damage to the machine that may result from possible malfunctions. The operation of the motor can be checked with this test regardless of whether the motor is actually connected or not.

Use $PnOOC = n.\Box\Box\BoxX$ to enable or disable the test without a motor.

Paramete		arameter	Meaning	When Enabled	Classification
		n.ロロロ0 (default setting)	Disable tests without a motor.	After restart Setur	Setup
		n.□□□1	Enable tests without a motor.		

Information • While the test without a motor is being executed, the display on the Panel Operate will alternate between **tSt** and the status of the SERVOPACK. Refer to the following section for information SERVOPACK status displays.

3.1.3 Status Displays on page 13-4

• An asterisk is displayed on the status display of the Digital Operator while a test without a motor is being executed.

Motor Information and Encoder Information

The motor and encoder information is used during tests without a motor. The source of the information depends on the device connection status.

Motor Connection Status	Information That Is Used	Source of Information	
	Motor information		
Connected	Encoder information Encoder resolution Encoder type 	Information in the motor that is connected	
	Motor information	Setting of Pn000 = n.XDDD (Rotary/Linear Startup Selection When Encoder Is Not Connected)	
Not connected	Encoder information Encoder resolution Encoder type 	 Encoder resolution: Setting of Pn00C = n. \[\]X\[\]X\[(Encoder Resolution for Tests without a Motor) Encoder type: Setting of Pn00C = n. \[\]X\[\]\[(Encoder Type Selection for Tests without a Motor) 	

Rotary Servomotor

If you use fully-closed loop control, the external encoder information is also used.

External Encoder Connection Status	Information That Is Used	Source of Information
Connected	External encoder infor- mation	Information in the external encoder that is con- nected
Not connected	ResolutionEncoder type	Resolution: 256Encoder type: Incremental encoder

Linear Servomotors

Motor Connection Status	Information That Is Used	Source of Information
	Motor information	Information in the motor that is connected
Connected	Linear encoder informa- tion • Resolution • Encoder pitch • Encoder type	Information in the linear encoder that is connected
	Motor information	Setting of Pn000 = n.X□□□ (Rotary/Linear Startup Selection When Encoder Is Not Connected)
Not connected	Linear encoder informa- tion • Resolution • Encoder pitch • Encoder type	 Resolution: 256 Encoder pitch: Setting of Pn282 (Linear Encoder Pitch) Encoder type: Setting of Pn00C = n. IXIII (Encoder Type Selection for Tests without a Motor)

Related Parameters

Parameter		Meaning	When Enabled	Classification	
Pn000	n.0□□□ (default setting)	When an encoder is not connected, start as SERVOPACK for Rotary Servomotor.	- After restart	Setup	
FIIOOO	n.1000	When an encoder is not connected, start as SERVOPACK for Linear Servomotor.			
	Linear Encoder F	Speed Posi	tion Force		

	Linear Encoder Pitch			Speed	Position Force
Pn282	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 6,553,600	0.01 µm	0	After restart	Setup

Parameter		Meaning	When Enabled	Classification
	n.□□0□ (default setting)	Use 13 bits as encoder resolution for tests without a motor.		Setup
	n.0010	Use 20 bits as encoder resolution for tests without a motor.	- After restart	
Pn00C	n.□□2□	Use 22 bits as encoder resolution for tests without a motor.		
FILLOC	n.□□3□	Use 24 bits as encoder resolution for tests without a motor.		
	n.□0□□ (default setting)	Use an incremental encoder for tests without a motor.		
	n.0100	Use an absolute encoder for tests without a motor.		

Motor Position and Speed Responses

For a test without a motor, the following responses are simulated for references from the host controller according to the gain settings for position or speed control.

- Servomotor position
- Motor speed
- External encoder position

The load model will be for a rigid system with the moment of inertia ratio that is set in Pn103.

Restrictions

The following functions cannot be used during the test without a motor.

- Regeneration and dynamic brake operation
- Brake output signal

Refer to the following section for information on confirming the brake output signal. 9.2.3 I/O Signal Monitor on page 9-5

• Items marked with "x" in the following utility function table

;	SigmaWin+	Panel O	perator or Digital Operator	Execu	table?	
Menu Bar Button	SigmaWin+ Function Name	Fn No.	Utility Function Name	Motor Not Connected	Motor Connected	Reference
	Origin Search	Fn003	Origin Search	0	0	page 7-25
	Resetting the Abso- lute Encoder	Fn008	Reset Absolute Encoder	×	0	page 5-51
		Fn009	Autotune Analog (Speed/Torque) Refer- ence Offset	0	0	page 6-23, page 6-41
	Speed/Torque Refer- ence Offset Adjust- ment	Fn00A	Manually Adjust Speed Reference Offset	0	0	page 6-23
	ment	Fn00B	Manually Adjusting the Torque Reference Off- set	0	0	page 6-41
	Analog Monitor Out-	Fn00C	Adjust Analog Monitor Output Offset	0	0	page 9-8
	put Adjustment	Fn00D	Adjust Analog Monitor Output Gain	0	0	page 9-8
	Motor Current Detec- tion Offset Adjust- ment	Fn00E	Autotune Motor Cur- rent Detection Signal Offset	×	0	page 6-100
Setup		Fn00F	Manually Adjust Motor Current Detection Sig- nal Offset	×	0	page 6-100
ootup	Parameter Write Pro- hibition Setting	Fn010	Write Prohibition Set- ting	0	0	page 5-6
	Multiturn Limit Setting	Fn013	Multiturn Limit Setting after Multiturn Limit Disagreement Alarm	×	0	page 6-83
	Reset Configuration Error of Option Mod- ule	Fn014	Reset Option Module Configuration Error	0	0	page 12-42
	Initializing the Vibra- tion Detection Level	Fn01B	Initialize Vibration Detection Level	×	×	page 6-96
	Setting the Origin of the Absolute Linear Encoder	Fn020	Set Absolute Linear Encoder Origin	×	0	page 5-53
	Reset Motor Type Alarm	Fn021	Reset Motor Type Alarm	0	0	-
	Software Reset	Fn030	Software Reset	0	0	page 6-94
	Polarity Detection	Fn080	Polarity Detection	×	×	page 5-26
	Tuning-less Level Setting	Fn200	Tuning-less Level Set- ting	×	×	page 8-15
	Easy FFT	Fn206	Easy FFT	×	×	page 8-92
Parameter	Initialize Servo*	Fn005	Initialize Parameters	0	0	page 5-9

Ś	SigmaWin+	Panel O	perator or Digital Operator	Execu	table?					
Menu Bar Button	SigmaWin+ Function Name	Fn No.	Utility Function Name	Motor Not Connected	Motor Connected	Reference				
	Autotuning without Host Reference	Fn201	Advanced Autotuning without Reference	×	×	page 8-23				
	Autotuning with Host Reference	Fn202	Advanced Autotuning with Reference	×	×	page 8-35				
Tuning	Custom Tuning	Fn203	One-Parameter Tuning	×	×	page 8-42				
	Adjust Anti-reso- nance Control	Fn204	Adjust Anti-resonance Control	×	х	page 8-51				
	Vibration Suppres- sion	Fn205	Vibration Suppression	×	×	page 8-56				
	Product Information		Fn011	Display Servomotor Model	0	0	page 9-2			
		Fn012	Display Software Ver- sion	0	0	page 9-2				
Monitoring		Fn01E	Display SERVOPACK and Servomotor IDs	0	0					
							Fn01F	Display Servomotor ID from Feedback Option Module	0	0
Test Oper-	Jogging	Fn002	Jogging	0	0	page 7-7				
ation	Program Jogging	Fn004	Program Jogging	0	0	page 7-20				
	Alarm History Display	Fn000	Display Alarm History	0	0	page 12-40				
Alarms	Clearing the Alarm History	Fn006	Clear Alarm History	0	0	page 12-41				

* The Initialize Button will be displayed when you select Parameters - Edit Parameters from the menu bar.

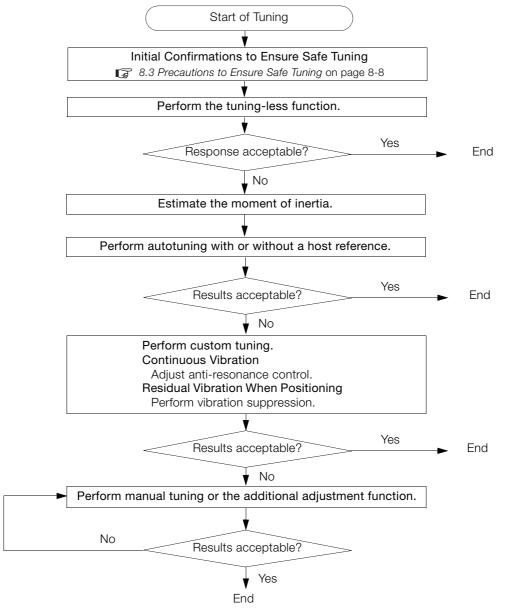
Tuning

This chapter provides information on the flow of tuning, details on tuning functions, and related operating procedures.

8.1	Overv	iew and Flow of Tuning8-4
	8.1.1 8.1.2	Tuning Functions8-5Diagnostic Tool8-6
8.2	Monit	oring Methods8-7
8.3	Preca	utions to Ensure Safe Tuning8-8
	8.3.1 8.3.2 8.3.3	Overtravel Settings8-8Torque Limit Settings8-8Setting the Position Deviation Overflow8-8Alarm Level8-8
	8.3.4 8.3.5	Vibration Detection Level Setting
0.4	- ·	
8.4	Tuning	g-less Function8-11
	8.4.1 8.4.2 8.4.3 8.4.4 8.4.5 8.4.6	Application Restrictions8-11Operating Procedure8-12Troubleshooting Alarms8-13Parameters Disabled by Tuning-less Function8-14Automatically Adjusted Function Setting8-14Related Parameters8-14
8.5	Estim	ating the Moment of Inertia8-15
	8.5.1 8.5.2 8.5.3 8.5.4	Outline8-15Restrictions8-15Applicable Tools8-16Operating Procedure8-16

8.6	Autot	uning without Host Reference	8-23
	8.6.1 8.6.2 8.6.3 8.6.4 8.6.5	Outline Restrictions Restrictions Applicable Tools Operating Procedure Troubleshooting Problems in Autotuning without a Host Reference Sector	.8-24 .8-25 .8-25
	8.6.6 8.6.7	Automatically Adjusted Function Settings Related Parameters	.8-31
8.7	Autot	uning with a Host Reference	8-35
	8.7.1 8.7.2 8.7.3 8.7.4 8.7.5 8.7.6 8.7.7	OutlineRestrictionsApplicable ToolsOperating ProcedureTroubleshooting Problems in Autotuningwith a Host ReferenceAutomatically Adjusted Function SettingsRelated Parameters	.8-35 .8-36 .8-36 .8-40 .8-40
8.8	Custo	m Tuning	8-42
	8.8.1 8.8.2 8.8.3 8.8.4 8.8.5 8.8.6 8.8.6 8.8.7	Outline Preparations Applicable Tools Operating Procedure Automatically Adjusted Function Settings Tuning Example for Tuning Mode 2 or 3 Related Parameters	.8-42 .8-43 .8-43 .8-48 .8-49
8.9	Anti-F	Resonance Control Adjustment	8-51
	8.9.1 8.9.2 8.9.3 8.9.4 8.9.5 8.9.6	Outline Preparations Applicable Tools Operating Procedure Related Parameters Suppressing Different Vibration Frequencies with Anti-resonance Control	.8-51 .8-52 .8-52 .8-54
8.10	Vibrat	ion Suppression	8-56
	8.10.1 8.10.2 8.10.3 8.10.4 8.10.5 8.10.6	OutlinePreparationsApplicable ToolsOperating ProcedureSetting Combined FunctionsRelated Parameters	.8-57 .8-57 .8-57 .8-59
8.11	Speed	d Ripple Compensation	8-60
	8.11.1 8.11.2 8.11.3	Outline Setting Up Speed Ripple Compensation Setting Parameters Setting Parameters	.8-60

8.12	Additional Adjustment Functions8-66		
	8.12.1 8.12.2 8.12.3 8.12.4 8.12.5 8.12.6 8.12.7	Gain Switching8-66Friction Compensation8-69Current Control Mode Selection8-71Current Gain Level Setting8-71Speed Detection Method Selection8-72Speed Feedback Filter8-72Proportional Control (P Control)8-72	
8.13	Manu	Manual Tuning8-74	
	8.13.1 8.13.2	Tuning the Servo Gains8-74Compatible Adjustment Functions8-84	
8.14	Diagn	ostic Tools8-90	
	8.14.1 8.14.2	Mechanical Analysis	


8.1 Overview and Flow of Tuning

Tuning is performed to optimize response by adjusting the servo gains in the SERVOPACK.

The servo gains are set using a combination of parameters, such as parameters for the speed loop gain, position loop gain, filters, friction compensation, and moment of inertia ratio. These parameters influence each other, so you must consider the balance between them.

The servo gains are set to stable settings by default. Use the various tuning functions to increase the response even further for the conditions of your machine.

The basic tuning procedure is shown in the following flowchart. Make suitable adjustments considering the conditions and operating requirements of your machine.

8.1.1 Tuning Functions

8.1.1 Tuning Functions

Tuning Function	Outline	Applicable Con- trol Methods	Reference
Tuning-less Function	This automatic adjustment function is designed to enable stable operation without servo tuning. This function can be used to obtain a stable response regardless of the type of machine or changes in the load. You can use it with the default settings.	Speed control or position control	page 8-11
Moment of Inertia Estimation	The moment of inertia ratio is calculated by operat- ing the Servomotor a few times. The moment of inertia ratio that is calculated here is used in other tuning functions.	Speed control, position control, or torque control	page 8-15
Autotuning without Host Reference	 The following parameters are automatically adjusted in the internal references in the SERVO-PACK during automatic operation. Gains (e.g., position loop gain and speed loop gain) Filters (torque reference filter and notch filters) Friction compensation Anti-resonance control Vibration suppression 	Speed control or position control	page 8-23
Autotuning with Host Reference	 The following parameters are automatically adjusted with the position reference input from the host controller while the machine is in operation. You can use this function for fine-tuning after you perform autotuning without a host reference. Gains (e.g., position loop gain and speed loop gain) Filters (torque reference filter and notch filters) Friction compensation Anti-resonance control Vibration suppression 	Position control	page 8-35
Custom Tuning	 The following parameters are adjusted with the position reference or speed reference input from the host controller while the machine is in operation. Gains (e.g., position loop gain and speed loop gain) Filters (torque reference filter and notch filters) Friction compensation Anti-resonance control 	Speed control or position control	page 8-42
Anti-resonance Control Adjustment	This function effectively suppresses continuous vibration.	Speed control or position control	page 8-51
Vibration Suppression	This function effectively suppresses residual vibra- tion if it occurs when positioning.	Position control	page 8-56
Speed Ripple Com- pensation	This function reduces the ripple in the motor speed.	Speed control, position control, or torque control	page 8-60
Additional Adjustment Function	This function combines autotuning with custom tuning. You can use it to improve adjustment results.	Depends on the functions that you use.	page 8-66
Manual Tuning	You can manually adjust the servo gains to adjust the response.	Speed control, position control, or torque control	page 8-74

The following table provides an overview of the tuning functions.

8.1.2 Diagnostic Tool

8.1.2 Diagnostic Tool

You can use the following tools to measure the frequency characteristics of the machine and set notch filters.

Diagnostic Tool	Outline	Applicable Control Methods	Reference
Mechanical Analysis	The machine is subjected to vibration to detect resonance frequencies. The measurement results are displayed as waveforms or numeric data.	Speed control, position control, or torque control	page 8-90
Easy FFT	The machine is subjected to vibration to detect resonance frequencies. The measurement results are displayed only as numeric data.	Speed control, position control, or torque control	page 8-92

8.2 Monitoring Methods

You can use the data tracing function of the SigmaWin+ or the analog monitor signals of the SERVOPACK for monitoring. If you perform custom tuning or manual tuning, always use the above functions to monitor the machine operating status and SERVOPACK signal waveform while you adjust the servo gains.

Check the adjustment results with the following response waveforms.

Position Control

Item	Unit		
item	Rotary Servomotor	Linear Servomotor	
Torque reference	%		
Feedback speed	min ⁻¹ mm/s		
Position reference speed	min⁻¹	mm/s	
Position deviation	Reference units		

• Speed Control

Item	Unit		
ILEITI	Rotary Servomotor	Linear Servomotor	
Torque reference	%		
Feedback speed	min ⁻¹ mm/s		
Reference speed	min ⁻¹	mm/s	

• Torque Control

ltem	Unit		
	Rotary Servomotor	Linear Servomotor	
Torque reference	%		
Feedback speed	min ⁻¹ mm/s		

8.3.1 Overtravel Settings

Precautions to Ensure Safe Tuning

CAUTION

- Observe the following precautions when you perform tuning.
 - Do not touch the rotating parts of the motor when the servo is ON.
 - · Before starting the Servomotor, make sure that an emergency stop can be performed at any time.
 - Make sure that trial operation has been successfully performed without any problems.
 - · Provide an appropriate stopping device on the machine to ensure safety.

Perform the following settings in a way that is suitable for tuning.

8.3.1 **Overtravel Settings**

Overtravel settings are made to force the Servomotor to stop for a signal input from a limit switch when a moving part of the machine exceeds the safe movement range.

Refer to the following section for details.

5.12 Overtravel and Related Settings on page 5-30

8.3.2 **Torque Limit Settings**

You can limit the torque that is output by the Servomotor based on calculations of the torque required for machine operation. You can use torque limits to reduce the amount of shock applied to the machine when problems occur, such as collisions or interference. If the torque limit is lower than the torgue that is required for operation, overshooting or vibration may occur. Refer to the following section for details.

3 6.11 Selecting Torque Limits on page 6-63

Setting the Position Deviation Overflow Alarm Level 8.3.3

The position deviation overflow alarm is a protective function that is enabled when the SERVO-PACK is used in position control.

If the alarm level is set to a suitable value, the SERVOPACK will detect excessive position deviation and will stop the Servomotor if the Servomotor operation does not agree with the reference.

The position deviation is the difference between the position reference value and the actual position.

You can calculate the position deviation from the position loop gain (Pn102) and the motor speed with the following formula.

Rotary Servomotors

Motor speed [min⁻¹] Encoder resolution^{*1} Pn210 Position deviation [reference units] 60 Pn102 [0.1/s]/10^{*2, *3} × Pn20E

Linear Servomotors

Destition de faiter factories en stat	Motor speed [mm/s]	Resolution	Pn210
Position deviation [reference units] =	= Pn102 [0.1/s]/10 ^{*2, *3}	× Linear encoder pitch $[\mu m]/1,000$	× Pn20E

8.3.3 Setting the Position Deviation Overflow Alarm Level

Position Deviation Overflow Alarm Level (Pn520) [setting unit: reference units]

Rotary Servomotors

 $Pn520 > \frac{Maximum motor speed [min⁻¹]}{60} \times \frac{Encoder resolution^{*1}}{Pn102 [0.1/s]/10^{*2, *3}} \times \frac{Pn210}{Pn20E} \times \frac{(1.2 \text{ to } 2)^{*4}}{Encoder model}$

· Linear Servomotors

D-500	Maximum motor speed [mm/s]	Resolution	$\times \frac{\text{Pn210}}{\text{max}} \times (1.2 \text{ to } 2)^{*4}$
Pn520 >	Pn102 [0.1/s]/10 ^{*2, *3}	Linear encoder pitch [µm]/1,000	Pn20E (1.2 to 2)

*1. Refer to the following section for details.

5.16 Electronic Gear Settings on page 5-45

- *2. When model following control (Pn140 = n.
 DDD1) is enabled, use the setting of Pn141 (Model Following Control Gain) instead of the setting of Pn102 (Position Loop Gain).
- *3. To check the setting of Pn102 on the Digital Operator, change the parameter display setting to display all parameters (Pn00B = n.□□□1).
- *4. The underlined coefficient "× (1.2 to 2)" adds a margin to prevent an A.d00 alarm (Position Deviation Overflow) from occurring too frequently.

If you set a value that satisfies the formula, an A.d00 alarm (Position Deviation Overflow) should not occur during normal operation.

If the Servomotor operation does not agree with the reference, position deviation will occur, an error will be detected, and the motor will stop.

The following calculation example uses a Rotary Servomotor with a maximum motor speed of

6,000 and an encoder resolution of 16,777,216 (24 bits). Pn102 is set to 400. $\frac{Pn210}{Pn20E} = \frac{1}{1}$

$$Pn520 = \frac{6,000}{60} \times \frac{16,777,216}{400/10} \times \frac{1}{16} \times 2$$
$$= 2,621,440 \times 2$$

= 5,242,880 (default setting of Pn520)

If the acceleration/deceleration rate required for the position reference exceeds the tracking capacity of the Servomotor, the tracking delay will increase and the position deviation will no longer satisfy the above formulas. If this occurs, lower the acceleration/deceleration rate so that the Servomotor can follow the position reference or increase the position deviation overflow alarm level.

Related Parameters

	Position Deviation Overflow Alarm Level			Posit	on
Pn520	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	1 to 1,073,741,823	1 reference unit	5,242,880	Immediately	Setup

Related Alarms

Alarm Number	Alarm Name	Alarm Meaning
A.d00	Position Deviation Overflow Alarm	This alarm is displayed when the position deviation exceeds the set- ting of Pn520 (Position Deviation Overflow Alarm Level).

8.3.4 Vibration Detection Level Setting

8.3.4 Vibration Detection Level Setting

You can set the vibration detection level (Pn312) to more accurately detect A.520 alarms (Vibration Alarm) and A.911 warnings (Vibration Warning) when vibration is detected during machine operation.

Set the initial vibration detection level to an appropriate value. Refer to the following section for details.

3 6.15 Initializing the Vibration Detection Level on page 6-96

8.3.5 Setting the Position Deviation Overflow Alarm Level at Servo ON

If the servo is turned ON when there is a large position deviation, the Servomotor will attempt to return to the original position to bring the position deviation to 0, which may create a hazardous situation. To prevent this, you can set a position deviation overflow alarm level at servo ON to restrict operation.

The related parameters and alarms are given in the following tables.

Related Parameters

	Position Deviation C	Overflow Alarm Level	at Servo ON	Posit	ion
Pn526	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	1 to 1,073,741,823	1 reference unit	5,242,880	Immediately	Setup
	Position Deviation C	sition Deviation Overflow Warning Level at Servo ON			ion
Pn528	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	10 to 100	1%	100	Immediately	Setup

Rotary Servomotors

	Speed Limit Level at Servo ON			Positi	on
Pn529	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 10,000	1 min ⁻¹	10,000	Immediately	Setup

· Linear Servomotors

	Speed Limit Level at Servo ON			Positi	on
Pn584	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 10,000	1 mm/s	10,000	Immediately	Setup

Related Alarms

Alarm Number	Alarm Name	Alarm Meaning
A.d01	Servo ON Alarm Level at Servo ON) while the servo was OFF.	
A.d02	Position Deviation Overflow Alarm for Speed Limit at Servo ON	If position deviation remains in the deviation counter, the setting of Pn529 or Pn584 (Speed Limit Level at Servo ON) will limit the speed when the servo is turned ON. This alarm occurs if reference pulses are input and the setting of Pn520 (Excessive Position Deviation Alarm Level) is exceeded.

Refer to the following section for information on troubleshooting alarms. *12.2.3 Resetting Alarms* on page 12-39

8.4 Tuning-less Function

The tuning-less function performs autotuning to obtain a stable response regardless of the type of machine or changes in the load. Autotuning is started when the servo is turned ON.

- The tuning-less function is disabled during torque control.
- The Servomotor may momentarily emit a sound the first time the servo is turned ON after the Servomotor is connected to the machine. This sound is caused by setting the automatic notch filter. It does not indicate a problem. The sound will not be emitted from the next time the servo is turned ON.
- The Servomotor may vibrate if it exceeds the allowable load moment of inertia. If that occurs, set the tuning-less load level to 2 (Pn170 = n.2□□□) or reduce the Tuning-less Rigidity Level (Pn170 = n.□X□□).
- To ensure safety, make sure that you can perform an emergency stop at any time when you execute the tuning-less function.

8.4.1 Application Restrictions

The following application restrictions apply to the tuning-less function.

Function	Executable?	Remarks
Vibration Detection Level Initialization	0	_
Moment of Inertia Estimation	×	Disable the tuning-less function ($Pn170 = n.\Box\Box\Box0$) before you execute moment of inertia estimation.
Autotuning without Host Reference	×	Disable the tuning-less function ($Pn170 = n.\Box\Box\Box0$) before you execute autotuning without a host reference.
Autotuning with Host Reference	×	_
Custom Tuning	×	_
Anti-Resonance Control Adjustment	×	_
Vibration Suppression	×	_
Easy FFT	0	The tuning-less function is disabled while you execute Easy FFT and then it is enabled when Easy FFT has been completed.
Friction Compensation	×	_
Gain Selection	×	_
Mechanical Analysis	0	The tuning-less function is disabled while you execute mechanical analysis and then it is enabled when mechan- ical analysis has been completed.

* O: Yes ×: No

8.4.2 Operating Procedure

The tuning-less function is enabled in the default settings. No specific procedure is required. You can use the following parameter to enable or disable the tuning-less function.

Parameter		Meaning	WhenEnabled	Classification
	n.🗆 🗆 🗆 0	Disable tuning-less function.		
	n.□□□1 (default setting)	Enable tuning-less function.		
Pn170	n.□□0□ (default setting)	Use for speed control.	After restart	Setup
	n.0010	Use for speed control and use host controller for position control.		

When you enable the tuning-less function, you can select the tuning-less type. Normally, set Pn14F to $n.\square\square2\square$ (Use tuning-less type 3) (default setting). If compatibility with previous models is required, set Pn14F to $n.\square\square0\square$ (Use tuning-less type 1) or $n.\square\square1\square$ (Use tuning-less type 2).

Parameter		Meaning	When Enabled	Classification
	n.□□0□	Use tuning-less type 1.		
Pn14F	n.0010	Use tuning-less type 2. (The noise level is improved more than with tuning-less type 1.)	After restart	Tuning
	n.0020 (default setting)	Use tuning-less type 3.		

Tuning-less Level Settings

If vibration or other problems occur, change the tuning-less levels. To change the tuning-less levels, use the SigmaWin+.

Preparations

Check the following settings before you set the tuning-less levels.

- The tuning-less function must be enabled (Pn170 = $n.\Box\Box\Box$ 1).
- The test without a motor function must be disabled (Pn00C = $n.\Box\Box\Box$).

♦ Step

Use the following procedure to set the tuning-less levels.

In addition to the following procedure, you can also set the parameters directly. Refer to *Related Parameters*, below, for the parameters to set.

1. Select *Setup - Response Level Setting* from the menu bar of the Main Window of the SigmaWin+.

The Response Level Setting Dialog Box will be displayed.

Click the ▲ or ▼ Button to adjust the response level setting. Increase the response level setting to increase the response. Decrease the response level setting to suppress vibration.

The default response	level setting is 4.
----------------------	---------------------

Response Level Setting	Description	Remarks
7	Response level: High	
6		You cannot select these levels if tuning-less type 1 or 2 (Pn14F = $n.\Box\Box\Box\Box$ or $n.\Box\Box\Box\Box$) is used.
5		
4 (default setting)		
3		
2		-
1		
0	Response level: Low	

3. Click the Completed Button.

The adjustment results will be saved in the SERVOPACK.

Related Parameters

Tuning-less Rigidity Level

If you use tuning-less type 1 or 2 (Pn14F = $n.\square\square\square\square$ or $n.\square\square\square\square$), set the tuning-less level to between 0 and 4 (Pn170 = $n.\square\square\square\square$ to $n.\square4\square\square$). Do not set the tuning-less level to between 5 and 7 (Pn170 = $n.\square5\square\square$ to $n.\square7\square\square$).

Parameter		Description	When Enabled	Classification
	n.🗆0🗆 🗆	Tuning-less rigidity level 0 (low rigidity)		
	n.🗆 1 🗆 🗆	Tuning-less rigidity level 1		
	n.🗆2🗆 🗆	Tuning-less rigidity level 2		
	n.¤3¤¤	Tuning-less rigidity level 3		
Pn170	n.□4□□ (default setting)	Tuning-less rigidity level 4	Immediately	Setup
	n.¤5¤¤	Tuning-less rigidity level 5		
	n.□6□□	Tuning-less rigidity level 6		
	n.0700	Tuning-less rigidity level 7 (high rigidity)		

Tuning-less Load Level

Parameter		Description	When Enabled	Classification
	n.0000	Tuning-less load level 0		
Pn170	n.1□□□ (default setting)	Tuning-less load level 1	Immediately	Setup
	n.2000	Tuning-less load level 2		

8.4.3 Troubleshooting Alarms

An A.521 alarm (Autotuning Alarm) will occur if a resonant sound occurs or if excessive vibration occurs during position control. If an alarm occurs, implement the following measures.

- Resonant Sound
- Decrease the setting of Pn170 = $n.X\square\square\square$ or the setting of Pn170 = $n.\squareX\square\square$.
- Excessive Vibration during Position Control Increase the setting of Pn170 = n.□X□□ or decrease the setting of Pn170 = n.□X□□.

8.4.4 Parameters Disabled by Tuning-less Function

8.4.4 Parameters Disabled by Tuning-less Function

When the tuning-less function is enabled (Pn170 = $n.\Box\Box\Box$ 1) (default setting), the parameters in the following table are disabled.

Item	Parameter Name	Parameter Number
	Speed Loop Gain Second Speed Loop Gain	Pn100 Pn104
Gain-Related Parameters	Speed Loop Integral Time Constant Second Speed Loop Integral Time Constant	Pn101 Pn105
	Position Loop Gain Second Position Loop Gain	Pn102 Pn106
	Moment of Inertia Ratio	Pn103
Advanced Control-Related	Friction Compensation Function Selection	Pn408 = n.X□□□
Parameters	Anti-Resonance Control Selection	Pn160= n.□□□X
Gain Selection-Related Parameters	Gain Switching Selection	Pn139= n.□□□X

The tuning-less function is disabled during torque control, Easy FFT, and mechanical analysis for a vertical axis. The gain-related parameters in the above table are enabled for torque control, Easy FFT, and mechanical analysis. Of these, Pn100, Pn103, and Pn104 are enabled for torque control.

8.4.5 Automatically Adjusted Function Setting

You can also automatically adjust notch filters.

Normally, set Pn460 to n. 11 (Adjust automatically) (default setting). Vibration is automatically detected and a notch filter is set.

Set Pn460 to n. $\Box 0 \Box \Box$ (Do not adjust automatically) only if you do not change the setting of the notch filter before you execute the tuning-less function.

Р	arameter	Meaning	When Enabled	Classification
Pn460	n. Do not adjust the second stage notch filter automatically during execution of autotunin without a host reference, autotuning with a host reference, and custom tuning.		Immediately	Tuning
F11400	n.□1□□ (default setting)	Adjust the second stage notch filter automati- cally during execution of autotuning without a host reference, autotuning with a host refer- ence, and custom tuning.	inimediately	Turning

8.4.6 Related Parameters

The following parameters are automatically adjusted when you execute the tuning-less function.

Do not manually change the settings of these parameters after you have enabled the tuningless function.

Parameter	Name	
Pn401	First Stage First Torque Reference Filter Time Constant	
Pn40C	Second Stage Notch Filter Frequency	
Pn40D	Second Stage Notch Filter Q Value	

8.5.1 Outline

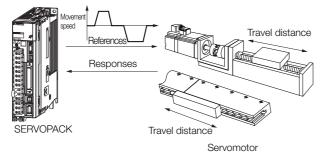
8.5 Estimating the Moment of Inertia

This section describes how the moment of inertia is calculated.

The moment of inertia ratio that is calculated here is used in other tuning functions. You can also estimate the moment of inertia during autotuning without a host reference. Refer to the following section for the procedure.

8.6.4 Operating Procedure on page 8-25

8.5.1 Outline


The moment of inertia during operation is automatically calculated by the SERVOPACK for round-trip (forward and reverse) operation. A reference from the host controller is not used.

The moment of inertia ratio (i.e., the ratio of the load moment of inertia to the motor moment of inertia) is a basic parameter for adjusting gains. It must be set as accurately as possible.

Although the load moment of inertia can be calculated from the weight and structure of the mechanisms, doing so is very troublesome and calculating it accurately can be very difficult with the complex mechanical structures that are used these days. With moment of inertia estimation, you can get an accurate load moment of inertia simply by operating the motor in the actual system in forward and reverse a few times.

The motor is operated with the following specifications.

- Maximum speed: ±1,000 min⁻¹ (can be changed)
- Acceleration rate: ±20,000 min⁻¹/s (can be changed)
- Travel distance: ±2.5 rotations max. (can be changed)

Note: Execute moment of inertia estimation after jogging to a position that ensures a suitable range of motion.

8.5.2 Restrictions

The following restrictions apply to estimating the moment of inertia.

Systems for which Execution Cannot Be Performed

- When the machine system can move only in one direction
- When the range of motion is 0.5 rotations or less

Systems for Which Adjustments Cannot Be Made Accurately

- When a suitable range of motion is not possible
- · When the moment of inertia changes within the set operating range
- When the machine has high dynamic friction
- When the rigidity of the machine is low and vibration occurs when positioning is performed
- When the position integration function is used

8.5 Estimating the Moment of Inertia

8.5.3 Applicable Tools

• When proportional control is used

Note: If you specify calculating the moment of inertia, an error will occur if the /P-CON (Proportional Control) signal changes to specify the proportional action during moment of inertia estimation.

- When mode switching is used
 - Note: If you specify moment of inertia estimation, mode switching will be disabled and PI control will be used while the moment of inertia is being calculated. Mode switching will be enabled after moment of inertia estimation has been completed.
- · When speed feedforward or torque feedforward is input

Preparations

Check the following settings before you execute moment of inertia estimation.

- The main circuit power supply must be ON.
- There must be no overtravel.
- The servo must be OFF.
- The control method must not be set to torque control.
- The gain selection switch must be set to manual gain selection (Pn139 = $n.\Box\Box\Box$).
- The first gains must be selected.
- The test without a motor function must be disabled (Pn00C = $n.\Box\Box\Box$).
- There must be no alarms or warnings.
- There must be no hard wire base block (HWBB).
- The parameters must not be write prohibited.
- The tuning-less function must be disabled (Pn170 = $n.\Box\Box\Box$ 0).

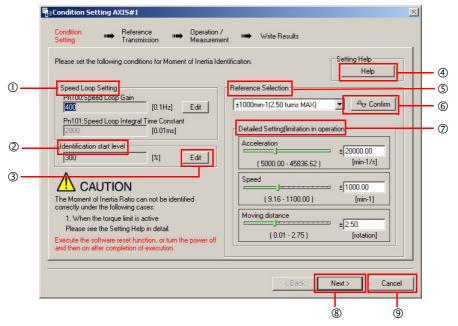
8.5.3 Applicable Tools

The following table lists the tools that you can use to estimate the moment of inertia and the applicable tool functions.

Tool	Function	Operating Procedure Reference	
Panel Operator	You cannot estimate the moment of inertia from the Panel Operator.		
SigmaWin+	Tuning - TuningI 38.5.4 Operating Procedure on page 8-16		

8.5.4 Operating Procedure

Use the following procedure to set the moment of inertia ratio.


- Select *Tuning Tuning* from the menu bar of the Main Window of the SigmaWin+. The Tuning Dialog Box will be displayed. Click the Cancel Button to cancel tuning.
- 2. Click the Execute Button.

Tuning
This function executes tuning for the Servopack. Using this function while the motor is running is dangerous. Be sure to carefully read the SigmaWin+ Operation Manual before executing this function. Special care must be taken for the following.
<safety precautions=""></safety>
1. Before executing this function, make sure that the emergency stop (power off) can be activated when needed.
The response speed may change considerably during tuning.
Before executing this function, make sure that the emergency stop (power off) can be activated when needed.
2. Confirm the safety of the area adjoining the drive unit.
Before executing this function, always confirm that the area within the motor motion range
and direction is clear for safe operation. Provide protective devices to ensure safety in
the event of overtraveling or other unexpected movement.
3. Always confirm that there is no position error before running the motor.
Be sure to return to the origin and reset the position prior to normal operation.
Running the motor without resetting the origin can lead to an overrun and is extremely dangerous.
4. When the moment of inertia (mass) identification function is used for a vertical axis, check the safety of the system.
When the moment of inertia (mass) identification function is used for a vertical axis,
confirm that the axis level does not drop when the servo is turned off.
<tuning precautions=""></tuning>
5. Set the moment of inertia (mass) ratio first.
The moment of intertia (mass) ratio must be set to achieve correct tuning.
Be sure to set the ratio. The setting can be performed from the Tuning window.
6. If vibration is generated, execute custom tuning
Execute Cancel
Caller

3. Click the Execute Button.

- i uning	
Set the moment of inertia (mass) ratio before Precautions	
Moment of inertia (mass) ratio identification	
Pn103 : Moment of Inertia Ratio	
Execute.	
Autotuning	
Reference input from host controller	
Position reference input	
No reference input	
Advanced adjustment Finish	

4. Set the conditions as required.

① Speed Loop Setting Area

Make the speed loop settings in this area.

If the speed loop response is too bad, it will not be possible to measure the moment of inertia ratio accurately.

The values for the speed loop response that are required for moment of inertia estimation are set for the default settings. It is normally not necessary to change these settings. If the default speed loop gain is too high for the machine (i.e., if vibration occurs), lower the setting. It is not necessary to increase the setting any farther.

2 Identification Start Level Group

This is the setting of the moment of inertia calculation starting level.

If the load is large or the machine has low rigidity, the torque limit may be applied, causing moment of inertia estimation to fail.

If that occurs, estimation may be possible if you double the setting of the start level. ③ Edit Buttons

Click the button to display a dialog box to change the settings related to the speed loop or estimation start level.

④ Help Button

Click this button to display guidelines for setting the reference conditions. Make the following settings as required.

- Operate the motor to measure the load moment of inertia of the machine in comparison with the rotor moment of inertia.
- Set the operation mode, reference pattern (maximum acceleration rate, maximum speed, and maximum travel distance), and speed loop-related parameters.
- Correct measurement of the moment of inertia ratio may not be possible depending on the settings. Set suitable settings using the measurement results as reference.

S Reference Selection Area

Either select the reference pattern for estimation processing from the box, or set the values in the **Detailed Setting** Group. Generally speaking, the larger the maximum acceleration rate is, the more accurate the moment of inertia estimation will be.

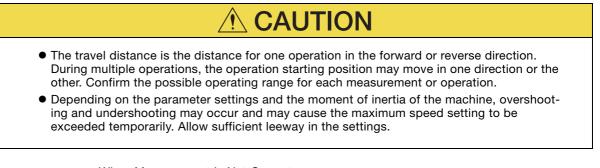
Set the maximum acceleration range within the possible range of movement considering the gear ratio, e.g., the pulley diameters or ball screw pitch.

6 Confirm Button

Click this button to display the Reference Confirmation Dialog Box.

loving distance 1.00	[rotation]	
Driving pattern		
V:Speed	400.00	[min-1]
	400.00	(min-1) [ms]
V:Speed		

⑦ Detailed Setting Area

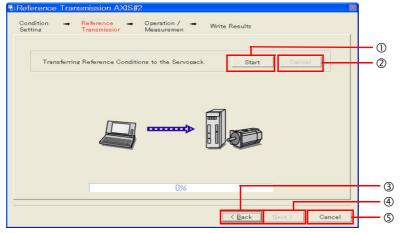

You can change the settings by moving the bars or directly inputting the settings to create the required reference pattern.

Next Button

Click this button to display the Reference Transmission Dialog Box.

O Cancel Button
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O

Click this button to return to the Tuning Dialog Box.


Information When Measurement Is Not Correct

Estimating the moment of inertia ratio cannot be performed correctly if the torque limit is activated. Adjust the limits or reduce the acceleration rate in the reference selection so that the torque limit is not activated.

5. Click the Next Button.

The Reference Transmission Dialog Box will be displayed.

6. Click the Start Button.

① Start Button

The reference conditions will be transferred to the SERVOPACK. A progress bar will show the progress of the transfer.

② Cancel Button

The **Cancel** Button is enabled only while data is being transferred to the SERVOPACK. You cannot use it after the transfer has been completed.

3 Back Button

This button returns you to the Condition Setting Dialog Box. It is disabled while data is being transferred.

④ Next Button

This button is enabled only when the data has been transferred correctly. You cannot use it if an error occurs or if you cancel the transfer before it is completed.

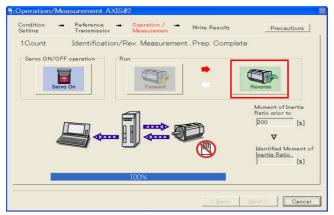
Click the Next Button to display the Operation/Measurement Dialog Box.

S Cancel Button

This button cancels processing and returns you to the Tuning Dialog Box.

7. Click the Next Button.

The Operation/Measurement Dialog Box will be displayed.


8. Click the Servo On Button.


9. Click the Forward Button.

The shaft will rotate in the forward direction and the measurement will start. After the measurement and data transfer have been completed, the **Reverse** Button will be displayed in color.

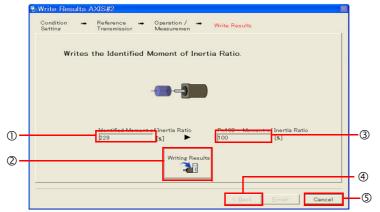
10. Click the Reverse Button.

The shaft will rotate in the reverse direction and the measurement will start. After the measurement and data transfer have been completed, the **Forward** Button will be displayed in color.

11. Repeat steps 8 to 9 until the Next Button is enabled.

Measurements are performed from 2 to 7 times and then verified. The number of measurements is displayed in upper left corner of the dialog box. A progress bar at the bottom of the dialog box will show the progress of the transfer each time.

12. When the measurements have been completed, click the Servo On Button to turn OFF the servo.


13. Click the Next Button.

The Write Results Dialog Box will be displayed.

Information If you click the **Next** Button before you turn OFF the servo, the following Dialog Box will be displayed. Click the **OK** Button to turn OFF the servo.

14. Click the Writing Results Button.

① Identified Moment of Inertia Ratio Box

The moment of inertia ratio that was found with operation and measurements is displayed here.

2 Writing Results Button

If you click this button, Pn103 (Moment of Inertia Ratio) in the SERVOPACK is set to the value that is displayed for the identified moment of inertia ratio.

③ Pn103: Moment of Inertia Ratio Box

The value that is set for the parameter is displayed here.

After you click the **Writing Results** Button, the value that was found with operation and measurements will be displayed as the new setting.

④ Back Button

This button is disabled.

- S Cancel Button This button will return you to the Tuning Dialog Box.
- 15. Confirm that the Identified Moment of Inertia Ratio Box and the Pn103: Moment of Inertia Ratio Box show the same value and then click the Finish Button.
- 16. Click the OK Button.

17. Click the Execute Button.

Software Re	set AXIS#2	
The Servopac	reset function will be executed. k will stop responding for approximately 5 the fuction begins.	
	Execute	
	0%	

If the setting of the moment of inertia ratio (Pn103) was changed, the new value will be saved and the Tuning Dialog Box will be displayed again.

This concludes the procedure.

8.6.1 Outline

8.6 Autotuning without Host Reference

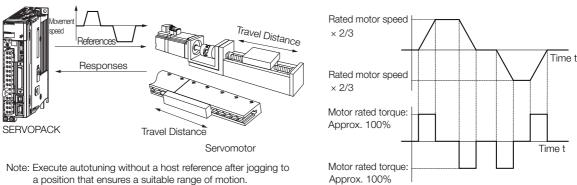
This section describes autotuning without a host reference.

Autotuning without a host reference performs adjustments based on the setting of the speed loop gain (Pn100). Therefore, precise adjustments cannot be made if there is vibration when ()adjustments are started. Make adjustments after lowering the speed loop gain (Pn100) until Important vibration is eliminated. You cannot execute autotuning without a host reference if the tuning-less function is enabled $(Pn170 = n.\Box\Box\Box1$ (default setting)). Disable the tuning-less function (Pn170 = n.\Box\Box\Box0) before you execute autotuning without a host reference. • If you change the machine load conditions or drive system after you execute autotuning without a host reference and then you execute autotuning without a host reference with moment of inertia estimation specified, use the following parameter settings. If you execute autotuning without a host reference for any other conditions, the machine may vibrate and may be damaged. $Pn140 = n.\Box\Box\Box$ (Do not use model following control.) $Pn160 = n.\Box\Box\Box$ (Do not use anti-resonance control.) $Pn408 = n.00\Box0$ (Disable friction compensation, first stage notch filter, and second stage notch filter.) Note: If you are using the Digital Operator and the above parameters are not displayed, change the parameter display setting to display all parameters (Pn00B = $n.\Box\Box\Box$ 1) and then turn the power supply OFF and ON again.

8.6.1 Outline

For autotuning without a host reference, operation is automatically performed by the SERVO-PACK for round-trip (forward and reverse) operation to adjust for machine characteristics during operation. A reference from the host controller is not used.

The following items are adjusted automatically.


- Moment of inertia ratio
- Gains (e.g., speed loop gain and position loop gain)
- Filters (torque reference filter and notch filters)
- Friction compensation
- Anti-resonance control
- Vibration suppression (only for mode 2 or 3)

Refer to the following section for details on the parameters that are adjusted. **8.6.7** *Related Parameters* on page 8-33

The motor is operated with the following specifications.

Maximum speed	Rated motor speed × $\frac{2}{3}$	
Acceleration Torque		x. 100% depends on the setting of the influence of the moment of inertia ratio a, and external disturbance.
	Rotary Servomotors	You can set the desired travel distance. The default setting is for a value equivalent to 3 motor shaft rotations.
Travel Distance	Direct Drive Servomotors	You can set the desired travel distance. The default setting is for a value equivalent to 0.3 rotations.
	Linear Servomotors	You can set the desired travel distance in increments of 1,000 reference units. (The default setting is for 90 mm.)

8.6.2 Restrictions

Example of Automatic Operation Pattern

WARNING

- Autotuning without a host reference requires operating the motor and therefore presents hazards. Observe the following precaution.
 - · Confirm safety around moving parts.

This function involves automatic operation with vibration. Make sure that you can perform an emergency stop (to turn OFF the power supply) at any time. There will be movement in both directions within the set range of movement. Check the range of movement and the directions and implement protective controls for safety, such as the overtravel functions.

8.6.2 Restrictions

The following restrictions apply to autotuning without a host reference.

If you cannot use autotuning without a host reference because of these restrictions, use autotuning with a host reference or custom tuning. Refer to the following sections for details. 8.7 Autotuning with a Host Reference on page 8-35

3.8 Custom Tuning on page 8-42

Systems for Which Execution Cannot Be Performed

- · When the machine system can move only in one direction
- When the range of motion is 0.5 rotations or less

Systems for Which Adjustments Cannot Be Made Accurately

- When a suitable range of motion is not possible
- When the moment of inertia changes within the set operating range
- When the machine has high friction
- When the rigidity of the machine is low and vibration occurs when positioning is performed
- When the position integration function is used
- When proportional control is used

Note: If you specify calculating the moment of inertia, an error will occur if the /P-CON (Proportional Control) signal changes to specify the proportional action during moment of inertia estimation.

When mode switching is used

Note: If you specify moment of inertia estimation, mode switching will be disabled and PI control will be used while the moment of inertia is being calculated. Mode switching will be enabled after moment of inertia estimation has been completed.

- When speed feedforward or torque feedforward is input
- When the positioning completed width (Pn522) is too narrow

Preparations

Check the following settings before you execute autotuning without a host reference.

- The main circuit power supply must be ON.
- There must be no overtravel.
- The servo must be OFF.
- The control method must not be set to torque control.
- The gain selection switch must be set to manual gain selection (Pn139 = $n.\Box\Box\Box$).
- The first gains must be selected.
- The test without a motor function must be disabled (Pn00C = $n.\square\square\square$).
- There must be no alarms or warnings.
- There must be no hard wire base block (HWBB).
- The parameters must not be write prohibited.
- The tuning-less function must be disabled (Pn170 = n.□□□0), or the tuning-less function must be enabled (Pn170 = n.□□□1) and moment of inertia estimation must be specified.
- If you execute autotuning without a host reference during speed control, set the mode to 1.

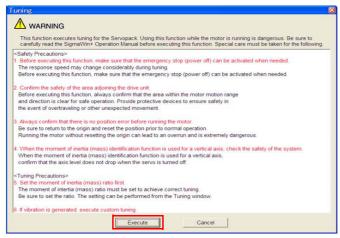
Information • If you start autotuning without a host reference while the SERVOPACK is in speed control for mode 2 or 3, the SERVOPACK will change to position control automatically to perform autotuning without a host reference. The SERVOPACK will return to speed control after autotuning has been completed.

• Reference pulse input multiplication switching is disabled during autotuning without a host reference.

8.6.3 Applicable Tools

The following table lists the tools that you can use to perform autotuning without a host reference and the applicable tool functions.

Tool	Function	Operating Procedure Reference
Panel Operator	-	You cannot perform autotuning without a host reference from the Panel Operator.
Digital Operator	Fn201	Σ-7-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33)
SigmaWin+	Tuning - Tuning	€ 8.6.4 Operating Procedure on page 8-25


8.6.4 Operating Procedure

Use the following procedure to perform autotuning without a host reference.

- If you specify not estimating the moment of inertia, set the moment of inertia ratio (Pn103) correctly. If the setting greatly differs from the actual moment of inertia ratio, normal control of the machine may not be possible, and vibration may result.
- If you are using an MP3000-series Controller for phase control, set the mode selection to 1. If 2 or 3 is selected for the mode, correct phase control may not be possible.
- 1. Confirm that the moment of inertia ratio (Pn103) is set correctly.
- Select Tuning Tuning from the menu bar of the Main Window of the SigmaWin+. The Tuning Dialog Box will be displayed. Click the Cancel Button to cancel tuning.

3. Click the Execute Button.

4. Click the OK Button.

Funing	
The moment of inertia (mass) ratio has never been changed from the defau setting. Set a correct moment of inertia (mass) ratio in the Moment of Inertia (Mass) Setting window before starting tuning. If an incorrect moment of inertia (mass) ratio is set, vibration may be genera during tuning. Do you want to continue tuning?	
OK Cancel	

5. Select the No Reference Input Option in the Autotuning Area and then click the Autotuning Button.

Tuning AXIS#00	×
Set the moment of inertia (mass) ratio before executing autotuning.	Precautions
Moment of inertia (mass) ratio identification Pn103: Moment of Inertia Ratio Execute.	
Autotuning Reference input from host controller © Position Reference input © No Reference input © No Reference input]-
Advanced adjustment	Finish

6. Set the conditions in the Switching the load moment of inertia (load mass) identification Box, the Mode selection Box, the Mechanism selection Box, and the Distance Box, and then click the Next Button.

Image: Autotuning - Setting Conditions AXIS#1 Set conditions. Switching the load moment of intertia (load mass) identification 1:A moment of inertia is not presumed. Mode selection	•	identification Box Specify whether to 0: A moment of ine	d moment of inertia (load mass) estimate the moment of inertia. ertia is presumed. (default setting) ertia is not presumed.
2.For positioning A gain adjustment specialized for positioning will be executed. In addition, the following automatic adjustments can be executed: Model following control, notch filter, anti-regonance control, and vibration suppression.	•	Mode selection B Set the mode.	lox
		Mode Selection	Description
Mechanism selection 2:Ball screw mechanism or linear motor Executes adjustment suitable for relatively high-rigidity mechanism, such as a ball screw or linear motor. Select this type if there is no applicable mechanism.	1	1: Standard	Standard gain adjustment is per- formed. In addition to gain adjust- ment, notch filters and anti-resonance control are automatically adjusted.
Distance The moving range from the current value is specified. 98 x 1000 = (-99990 - 99990) 2.9 (Rotation)		2: For positioning	Tuning is performed for positioning applications. In addition to gain adjustment, model following control, notch filters, anti-resonance control, and vibration suppression are auto- matically adjusted.
(Setting invalid range : -31 - 31) Tuning parameters Start tuning using the default settings. Next > Cancel		3: For positioning especially to pre- vent overshooting	Tuning is performed for positioning applications with emphasis on elimi- nating overshooting. In addition to gain adjustment, notch filters, anti- resonance control, and vibration sup- pression are automatically adjusted.
Distance Box Set the travel distance. Movement range: -99,990,000 to +99,990,000 [reference units] Minimum setting increment for travel dis- tance: 1,000 [reference units] Negative values are for reverse operation	•	drive. If there is noise or results may be obt	tion Box cording to the machine element to if the gain does not increase, better tained by changing the rigidity type. cording to the following guidelines.
and positive values are for forward opera- tion from the current position.		Mechanism Selection	Description
Default settings: Rotary Servomotors: Approx. 3 rotations Direct Drive Servomotors: Approx. 0.3		1: Belt mechanism	Tuning is performed for a mecha- nism with relatively low rigidity, e.g., a belt.
rotations Linear Servomotors: Approx 90 mm Set the distance to the following values or higher. To ensure tuning precision, we rec- ommend that you use approximately the		2: Ball screw mech- anism or linear motor	Tuning is performed for a mecha- nism with relatively high rigidity, e.g., a ball screw or Linear Servomotor. Use this setting if there is no other appropriate setting.
default distance setting. Rotary Servomotors: 0.5 rotations Direct Drive Servomotors: 0.05 rotations		3: Rigid model	Tuning is performed for a mecha- nism with high rigidity, e.g., a rigid body system.
Linear Servomotors: 5 mm	•	If you select the St tings Check Box, t	rs Box eters to use for tuning. tart tuning using the default set- the tuning parameters will be returned ngs before tuning is started.

7. Click the Servo ON Button.

utotuning - Automatic se		
Waiting for execution	Servo ON/OFF op	rvo OFF
Oscillation level measurement	- Tuning	
Gain search behaviour evaluation		
Tuning completed	Mode selection	
	2:For positioni	ng
	Mechanism se	ection
	2:Ball screw n	echanism or linear motor
	Distance	
Notch filter	98000	[reference units]
	2.9	[Rotation]
Anti-res Adj Vib Suppress	2.0	

8. Click the Start tuning Button.

Waiting for execution	Servo ON/OFF operation	Servo OFF
	Servo ON	
Oscillation level		4
	- Tuning	
		Oberthusian
Gain search		Start tuning
behaviour evaluation		-Q
Tuning completed	Mark and Pro-	
running completed	Mode selection 2:For positioning	
	Mechanism selection	
	2:Ball screw mechanism or linear Distance	motor
	98000 (reference u	nitsl
	, poood	
Notch filter Anti-res Adj	2.9 [Rotation]	

9. Confirm safety around moving parts and click the Yes Button.

The motor will start operating and tuning will be executed.

Vibration that occurs during tuning will be detected automatically and suitable settings will be made for that vibration. When the settings have been completed, the indicators for the functions that were used will light at the lower left of the dialog box. 8.6.5 Troubleshooting Problems in Autotuning without a Host Reference

Waiting for execution	Servo ON/OFF operation Servo OFF
	Servo ON
Oscillation level measurement	
	Tuning
Gain search behaviour evaluation	Cancel
	1:Standard
	Mechanism selection
	Mechanism selection 2:Ball screw mechanism or linear motor
Notch filter Anti-res Adj	2:Ball screw mechanism or linear motor

10. When tuning has been completed, click the **Finish** Button.

The results of tuning will be set in the parameters and you will return to the Tuning Dialog Box.

This concludes the procedure.

8.6.5 Troubleshooting Problems in Autotuning without a Host Reference

The following tables give the causes of and corrections for problems that may occur in autotuning without a host reference.

Autotuning without a Host Reference Was Not Performed

Possible Cause	Corrective Action
Main circuit power supply is OFF.	Turn ON the main circuit power supply.
An alarm or warning occurred.	Remove the cause of the alarm or warning.
Overtraveling occurred.	Remove the cause of overtraveling.
The second gains were selected with the gain selection.	Disable automatic gain switching.
The HWBB was activated.	Release the HWBB.
The setting of the travel distance is too small.	Set the travel distance again in step 6 of the proce- dure.
The settings for the tuning-less function are not correct.	 Disable the tuning-less function (Pn170 = n.□□□0). Enable the tuning-less function (Pn170 = n.□□□1) and specify moment of inertia estimation.

8.6.5 Troubleshooting Problems in Autotuning without a Host Reference

When an Error Occurs during Execution of Autotuning without a Host Reference

Error	Possible Cause	Corrective Action	
The gain adjustments were not successfully completed.	 Increase the setting of the position completed width (Pn522). Change the mode from 2 to 3. If machine vibration occurs, support the vibration with the anti-resonan control function and the vibration spression function. 		
An error occurred during calculation of the moment of inertia.	Refer to the following section for trouble	eshooting information. Iation of Moment of Inertia on page 8-30	
Positioning was not completed within approximately 10 sec- onds after position adjustment was com- pleted.	The positioning completed width is too narrow or proportional control is being used.	COMPLETER WIRTH (Ph522)	

When an Error Occurs during Calculation of Moment of Inertia

Possible Cause	Corrective Action
The SERVOPACK started calculating the moment of inertia but the calculation was not completed.	Increase the setting of the speed loop gain (Pn100).Increase the stroke (travel distance).
The moment of inertia fluctuated greatly and did not converge within 10 tries.	Set Pn103 (Moment of Inertia Ratio) from the machine specifications and specify not estimating the moment of inertia.
Low-frequency vibration was detected.	Double the setting of moment of inertia calculation starting level (Pn324).
The torque limit was reached.	 If you are using the torque limit, increase the torque limit. Double the setting of moment of inertia calculation starting level (Pn324).
The speed control section changed to proportional control during calculation of the moment of inertia, e.g., the /P-CON (Proportional Control) signal was input.	Use PI control when calculating the moment of inertia.

◆ Adjustment Results Are Not Satisfactory for Position Control

You may be able to improve the adjustment results by changing the settings of the positioning completed width (Pn522) and the electronic gear (Pn20E/Pn210).

If satisfactory results are still not possible, adjust the overshoot detection level (Pn561). That may improve the adjustment results.

- Pn561 = 100% (default setting)
- This will allow tuning with overshooting that is equivalent to the positioning completed width. • Pn561 = 0%
 - This will allow tuning to be performed without overshooting within the positioning completed width, but the positioning completed width may be extended.

	Overshoot Detection Level			Speed Posit	ion Torque
Pn561	Setting Range	Setting Unit	Default Setting	When Enabled Classification	
	0 to 100	1%	100	Immediately	Setup

8.6.6 Automatically Adjusted Function Settings

8.6.6 Automatically Adjusted Function Settings

You can specify whether to automatically adjust the following functions during autotuning.

Automatic Notch Filters

Normally, set Pn460 to n. D1DD (Adjust automatically) (default setting).

Vibration will be detected during autotuning without a host reference and a notch filter will be adjusted.

Set Pn460 to n. $\Box 0 \Box \Box$ (Do not adjust automatically) only if you do not change the setting of the notch filter before you execute this function.

F	Parameter	Function	When Enabled	Classification
	n.□□□0	Do not adjust the first stage notch filter auto- matically during execution of autotuning with- out a host reference, autotuning with a host reference, and custom tuning.	execution of autotuning with- nce, autotuning with a host ustom tuning. age notch filter automatically of autotuning without a host ining with a host reference, ng. execution of autotuning ference, autotuning with a nd custom tuning. d stage notch filter automati- ution of autotuning without a utotuning with a host refer-	Tuning
Pn460	n.□□□1 (default setting)	Adjust the first stage notch filter automatically during execution of autotuning without a host reference, autotuning with a host reference, and custom tuning.		
F11400	n.0000	Do not adjust the second stage notch filter automatically during execution of autotuning without a host reference, autotuning with a host reference, and custom tuning.		
	n.□1□□ (default setting)	Adjust the second stage notch filter automati- cally during execution of autotuning without a host reference, autotuning with a host refer- ence, and custom tuning.		

◆ Anti-Resonance Control Adjustment

This function reduces low vibration frequencies, for which the notch filters cannot be used.

Normally, set Pn160 to n. DD1D (Adjust automatically) (default setting).

Vibration will be detected during autotuning without a host reference and anti-resonance control will be automatically adjusted.

F	Parameter	Function	When Enabled	Classification
Pn160	n.□□0□	Do not adjust anti-resonance control automat- ically during execution of autotuning without a host reference, autotuning with a host refer- ence, and custom tuning.	Immediately	Tuning
FIIIO	n.□□1□ (default setting)	Adjust anti-resonance control automatically during execution of autotuning without a host reference, autotuning with a host reference, and custom tuning.		

8.6.6 Automatically Adjusted Function Settings

Vibration Suppression

You can use vibration suppression to suppress transitional vibration at a low frequency from 1 Hz to 100 Hz, which is generated mainly when the machine vibrates during positioning.

Normally, set Pn140 to n. D1DD (Adjust automatically) (default setting).

Vibration will be detected during autotuning without a host reference and vibration suppression control will be automatically set.

Set $Pn140 = n.\Box 0 \Box \Box$ (Do not adjust automatically) only if you do not change the settings for vibration suppression before you execute autotuning without a host reference.

Note: Autotuning without a host reference uses model following control. Therefore, it can be executed only if the mode is set to 2 or 3.

P	arameter	Function	When Enabled	Classification
Pn140	n.□0□□	Do not adjust vibration suppression automati- cally during execution of autotuning without a host reference, autotuning with a host refer- ence, and custom tuning.	Immediately	Tuning
F11140	n.□1□□ (default setting)	Adjust vibration suppression automatically during execution of autotuning without a host reference, autotuning with a host reference, and custom tuning.		

Friction Compensation

Friction compensation compensates for changes in the following conditions.

- Changes in the viscous resistance of the lubricant, such as grease, on the sliding parts of the machine
- · Changes in the friction resistance resulting from variations in the machine assembly
- Changes in the friction resistance due to aging

The conditions for applying friction compensation depend on the mode selection.

Mode Selection Settings	Friction Compensation	
1: Standard	Based on the setting of Pn408 = n.XDDD (Friction Compensation Function Selection)*	
2: For position control	Adjusted with friction compensation.	
3: For position control (emphasis on overshooting)	Aujusted with metion compensation.	

Parameter		Function	When Enabled	Classification
Pn408	n. 0□□□ (default setting)	Disable friction compensation.	Immediately	Setup
	n. 1000	Enable friction compensation.		

* Refer to the following section for details.

Required Parameter Settings on page 8-69

Feedforward

If Pn140 is set to n.0 [1] (Do not use model following control and speed/torque feedforward together (default setting)) and tuning is performed with the mode selection set to 2 or 3, feed-forward (Pn109), the speed feedforward input (V-REF), and the torque feedforward input (T-REF) will be disabled.

To use the speed feedforward input (V-REF), the torque feedforward input (T-REF), and model following control from the host controller in the system, set Pn140 to n.1 (Use model following control and speed/torque feedforward together).

P	arameter	Function	When Enabled	Classification
	n.0□□□ (default setting)	Do not use model following control and speed/torque feedforward together.	Immediately	Tupipa
	n.1000	Use model following control and speed/torque feedforward together.	Immediately	Tuning

Refer to the following section for information on the torque feedforward input (T-REF) and the speed feedforward input (V-REF).

Torque Feedforward and Speed Feedforward on page 8-84, ■ Speed Feedforward on page 8-86

When model following control is used with the feedforward function, it is used to make optimum feedforward settings in the SERVOPACK. Therefore, model following control is not normally used together with either the speed feedforward input (V-REF) or torque feedforward input (T-REF) from the host controller. However, model following control can be used with the speed feedforward input (V-REF) or torque feedforward input (V-REF) or torque feedforward input may result in overshooting.

8.6.7 Related Parameters

The following parameters are automatically adjusted or used as reference when you execute autotuning without a host reference.

Do not change the settings while autotuning without a host reference is being executed.

Parameter	Name	Automatic Changes
Pn100	Speed Loop Gain	Yes
Pn101	Speed Loop Integral Time Constant	Yes
Pn102	Position Loop Gain	Yes
Pn103	Moment of Inertia Ratio	Yes
Pn121	Friction Compensation Gain	Yes
Pn123	Friction Compensation Coefficient	Yes
Pn124	Friction Compensation Frequency Correction	No
Pn125	Friction Compensation Gain Correction	Yes
Pn401	First Stage First Torque Reference Filter Time Constant	Yes
Pn408	Torque-Related Function Selections	Yes
Pn409	First Stage Notch Filter Frequency	Yes
Pn40A	First Stage Notch Filter Q Value	Yes
Pn40C	Second Stage Notch Filter Frequency	Yes
Pn40D	Second Stage Notch Filter Q Value	Yes
Pn140	Model Following Control-Related Selections	Yes
Pn141	Model Following Control Gain	Yes
Pn142	Model Following Control Gain Correction	Yes
Pn143	Model Following Control Bias in the Forward Direction	Yes
Pn144	Model Following Control Bias in the Reverse Direction	Yes
Pn145	Vibration Suppression 1 Frequency A	Yes
Pn146	Vibration Suppression 1 Frequency B	Yes

8.6 Autotuning without Host Reference

8.6.7 Related Parameters

Parameter	Name	Automatic Changes
Pn147	Model Following Control Speed Feedforward Compensation	Yes
Pn160	Anti-Resonance Control-Related Selections	Yes
Pn161	Anti-Resonance Frequency	Yes
Pn163	Anti-Resonance Damping Gain	Yes
Pn531	Program Jogging Travel Distance	No
Pn533	Program Jogging Movement Speed for Rotary Servomotor	No
Pn585	Program Jogging Movement Speed for Linear Servomotor	No
Pn534	Program Jogging Acceleration/Deceleration Time	No
Pn535	Program Jogging Waiting Time	No
Pn536	Program Jogging Number of Movements	No

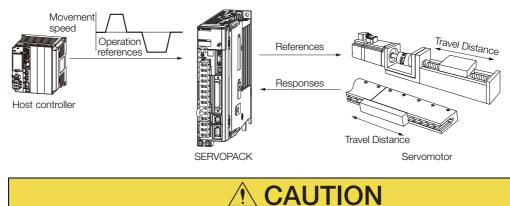
Yes: The parameter is automatically set.

No: The parameter is not automatically set, but the setting is read during execution.

8.7.1 Outline

8.7 Autotuning with a Host Reference

This section describes autotuning with a host reference.


Autotuning with a host reference makes adjustments based on the set speed loop gain (Pn100). Therefore, precise adjustments cannot be made if there is vibration when adjustments are started. Make adjustments after lowering the speed loop gain (Pn100) until vibration is eliminated.

8.7.1 Outline

Autotuning with a host reference automatically makes optimum adjustments for operation references from the host controller.

The following items are adjusted automatically.

- Gains (e.g., speed loop gain and position loop gain)
- Filters (torque reference filter and notch filters)
- Friction compensation
- Anti-resonance control
- Vibration suppression

• Because autotuning with a host reference adjusts the SERVOPACK during automatic operation, vibration or overshooting may occur. To ensure safety, make sure that you can perform an emergency stop at any time.

8

8.7.2 Restrictions

Systems for Which Adjustments Cannot Be Made Accurately

Adjustments will not be made correctly for autotuning with a host reference in the following cases. Use custom tuning.

- When the travel distance for the reference from the host controller is equal to or lower than the setting of the positioning completed width (Pn522)
- Rotary Servomotors: When the movement speed for the reference from the host controller is equal to or lower than the setting of the rotation detection level (Pn502)
- Linear Servomotors: When the movement speed for the reference from the host controller is equal to or lower than the setting of the zero speed level (Pn581)
- When the time required to stop is 10 ms or less

8.7.3 Applicable Tools

- When the rigidity of the machine is low and vibration occurs when positioning is performed
- When the position integration function is used
- When proportional control is used
- When mode switching is used
- When the positioning completed width (Pn522) is too narrow

Refer to the following sections for details on custom tuning.

3.8 Custom Tuning on page 8-42

Preparations

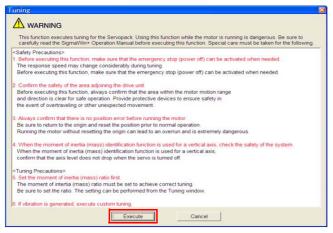
Check the following settings before you execute autotuning with a host reference.

- The servo must be in ready status.
- There must be no overtravel.
- The servo must be OFF.
- Position control must be selected if power is supplied to the motor (i.e., when the servo is ON).
- The gain selection switch must be set to manual gain selection (Pn139 = $n.\Box\Box\Box$).
- The first gains must be selected.
- The test without a motor function must be disabled (Pn00C = $n.\Box\Box\Box$).
- There must be no warnings.
- The tuning-less function must be disabled (Pn170 = $n.\Box\Box\Box$).
- The parameters must not be write prohibited.

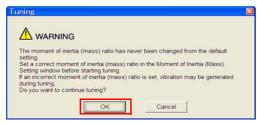
8.7.3 Applicable Tools

The following table lists the tools that you can use to perform autotuning with a host reference and the applicable tool functions.

Tool	Function	Operating Procedure Reference
Panel Operator	-	You cannot perform autotuning with a host reference from the Panel Operator.
Digital Operator	Fn202	Ω Σ-7-Series Digital Operator Operating Man- ual (Manual No.: SIEP S800001 33)
SigmaWin+	Tuning - Tuning	8.7.4 Operating Procedure on page 8-36


8.7.4 Operating Procedure

Use the following procedure to perform autotuning with a host reference.



- If you are using an MP3000-Series Controller for phase control, set the mode selection to 1. If 2 or 3 is selected for the mode, correct phase control may not be possible.
- 1. Confirm that the moment of inertia ratio (Pn103) is set correctly.
- 2. Select *Tuning Tuning* from the menu bar of the Main Window of the SigmaWin+. The Tuning Dialog Box will be displayed. Click the **Cancel** Button to cancel tuning.

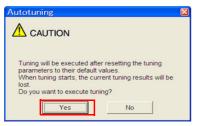
3. Click the Execute Button.

4. Click the OK Button.

5. Select the **Position reference input** Option in the **Autotuning** Area and then click the **Autotuning** Button.

Tuning	
Set the moment of inertia (mass) ratio before executing autotuning.	Precautions
Moment of inertia (mass) ratio identification Pn103 : Moment of Inertia Ratio	
Autotuning Reference input from host controller Position reference input III-III No reference input No reference input	
Advanced adjustment	Finish

6. Set the conditions in the Mode selection Box and the Mechanism selection Box, and then click the Next Button.


If you select the **Start tuning using the default settings** Check Box in the **Tuning parameters** Area, the tuning parameters will be returned to the default settings before tuning is started.

8.7 Autotuning with a Host Reference

8.7.4 Operating Procedure

Set conditions.	Set the mode.	
Mode selection	Mode Selection	Description
2:For positioning A gain adjustment specialized for positioning will be executed. In addition, the following automatic adjustments can be executed: Model following control, notch filter, anti-resonance control, and wibration suppression.	1: Standard	Standard gain adjustment is per- formed. In addition to gain adjust- ment, notch filters and anti- resonance control are automatically adjusted.
Iechanism selection 2:Ball screw mechanism or linear motor Executes adjustment suitable for relatively high-rigidity mechanism, such as a ball screw or linear motor. Select this type if there is no applicable mechanism.	2: For positioning	Tuning is performed for positioning applications. In addition to gain adjustment, model following control, notch filters, anti-resonance control, and vibration suppression are auto- matically adjusted.
Start tuning using the default settings.	3: For positioning especially to pre- vent overshooting	Tuning is performed for positioning applications with emphasis on elimi- nating overshooting. In addition to gain adjustment, notch filters, anti- resonance control, and vibration sup pression are automatically adjusted.
ing parameters Box acify the parameters to use for tuning. bu select the Start tuning using the ault settings Check Box, the tuning ameters will be returned to the default ings before tuning is started.	drive. If there is noise or i results may be obta	ording to the machine element to f the gain does not increase, bette ained by changing the rigidity type ording to the following guidelines
	Mechanism Selection	Description
	1: Belt mechanism	Tuning is performed for a mecha- nism with relatively low rigidity, e.g. a belt.
	2: Ball screw mechanism or linear motor	Tuning is performed for a mecha- nism with relatively high rigidity, e.g. a ball screw or Linear Servomotor. Use this setting if there is no other appropriate setting.

7. Click the Yes Button.

8. Input the correct moment of inertia ratio and click the Next Button.

l¶ Autotu	ining – Mome	ent of Inertia R	atio Setting	
	UTION			
If Moment generated		not correctly set, vibra	ation may be	
Is Moment	of Inertia Ratio co	prrectly set?		
Pn103	: Moment of Inertia	a Ratio (0 - 20000)		
100		[%]		
	< <u>B</u> ack	<u>N</u> ext >	Cancel	

9. Turn ON the servo, enter a reference from the host controller, and then click the **Start tuning** Button.

Waiting for execution	Tuning Turn the servo on, input the reference from the host
Oscillation level measurement	controller, and then click the Start button.
Gain search behaviour evaluation	٩
Tuning completed	Mode selection
	2:For positioning
Notch filter	Mechanism selection
Anti-res Adj	2:Ball screw mechanism or linear motor

10. Confirm safety around moving parts and click the Yes Button.

Autotu	ning 🛛 🛛
⚠	WARNING
Pleas Execu	e check the safety near an operation part. te?
[Yes No

The motor will start operating and tuning will be executed.

Vibration that occurs during tuning will be detected automatically and suitable settings will be made for that vibration. When the settings have been completed, the indicators for the functions that were used will light at the lower left of the dialog box.

Waiting for execution	Tuning Executing tuning (Input the reference.)
Oscillation level measurement	Cancel
Gain search behaviour evaluation	
501	
Tuning completed	
Tuning completed	Mode selection
Tuning completed	Mode selection 1:Standard
Tuning completed	
	1:Standard

11. When tuning has been completed, click the **Finish** Button.

The results of tuning will be set in the parameters and you will return to the Tuning Dialog Box.

This concludes the procedure.

8.7.5 Troubleshooting Problems in Autotuning with a Host Reference

8.7.5 Troubleshooting Problems in Autotuning with a Host Reference

The following tables give the causes of and corrections for problems that may occur in autotuning with a host reference.

◆ Autotuning with a Host Reference Was Not Performed

Possible Cause	Corrective Action	
Main circuit power supply is OFF.	Turn ON the main circuit power supply.	
An alarm or warning occurred.	Remove the cause of the alarm or warning.	
Overtraveling occurred.	Remove the cause of overtraveling.	
The second gains were selected with the gain selection.	Disable automatic gain switching.	
The HWBB was activated.	Release the HWBB.	

Troubleshooting Errors

Error	Possible Cause	Corrective Action
The gain adjustments were not successfully completed.	Machine vibration occurs or positioning completion is not stable when the Servomotor stops.	 Increase the setting of the positioning completed width (Pn522). Change the mode from 2 to 3. If machine vibration occurs, suppress the vibration with the anti-resonance control function and the vibration suppression function.
Positioning was not completed within approximately 10 seconds after posi- tion adjustment was completed.	The positioning com- pleted width is too nar- row or proportional control is being used.	 Increase the setting of the positioning completed width (Pn522). Turn OFF the /P-CON (Proportional Control) signal.

◆ Adjustment Results Are Not Satisfactory for Position Control

You may be able to improve the adjustment results by changing the settings of the positioning completed width (Pn522) and the electronic gear (Pn20E/Pn210).

If satisfactory results are still not possible, adjust the overshoot detection level (Pn561). That may improve the adjustment results.

- Pn561 = 100% (default setting)
- This will allow tuning with overshooting that is equivalent to the positioning completed width. • Pn561 = 0%

This will allow tuning to be performed without overshooting within the positioning completed width, but the positioning completed width may be extended.

	Overshoot Detection Level			Speed Posit	ion Torque
Pn561	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 100	1%	100	Immediately	Setup

8.7.6 Automatically Adjusted Function Settings

These function settings are the same as for autotuning without a host reference. Refer to the following section.

3.6.6 Automatically Adjusted Function Settings on page 8-31

8.7.7 Related Parameters

8.7.7 Related Parameters

The following parameters are automatically adjusted or used as reference when you execute autotuning with a host reference.

Do not change the settings while autotuning with a host reference is being executed.

Parameter	Name	Automatic Changes
Pn100	Speed Loop Gain	Yes
Pn101	Speed Loop Integral Time Constant	Yes
Pn102	Position Loop Gain	Yes
Pn103	Moment of Inertia Ratio	No
Pn121	Friction Compensation Gain	Yes
Pn123	Friction Compensation Coefficient	Yes
Pn124	Friction Compensation Frequency Correction	No
Pn125	Friction Compensation Gain Correction	Yes
Pn401	First Stage First Torque Reference Filter Time Constant	Yes
Pn408	Torque-Related Function Selections	Yes
Pn409	First Stage Notch Filter Frequency	Yes
Pn40A	First Stage Notch Filter Q Value	Yes
Pn40C	Second Stage Notch Filter Frequency	Yes
Pn40D	Second Stage Notch Filter Q Value	Yes
Pn140	Model Following Control-Related Selections	Yes
Pn141	Model Following Control Gain	Yes
Pn142	Model Following Control Gain Correction	Yes
Pn143	Model Following Control Bias in the Forward Direction	Yes
Pn144	Model Following Control Bias in the Reverse Direction	Yes
Pn145	Vibration Suppression 1 Frequency A	Yes
Pn146	Vibration Suppression 1 Frequency B	Yes
Pn147	Model Following Control Speed Feedforward Compensation	Yes
Pn160	Anti-Resonance Control-Related Selections	Yes
Pn161	Anti-Resonance Frequency	Yes
Pn163	Anti-Resonance Damping Gain	Yes

Yes: The parameter is automatically set.

No: The parameter is not automatically set, but the setting is read during execution.

8.8.1 Outline

8.8 Custom Tuning

This section describes custom tuning.

8.8.1 Outline

You can use custom tuning to manually adjust the servo during operation using a speed or position reference input from the host controller. You can use it to fine-tune adjustments that were made with autotuning.

The following items are adjusted automatically.

- · Gains (e.g., speed loop gain and position loop gain)
- Filters (torque reference filter and notch filters)
- Friction compensation
- Anti-resonance control

Refer to the following section for details on the parameters that are adjusted. **8.8.7** *Related Parameters* on page 8-50

There are two adjustment methods that you can use for custom tuning.

 Tuning Mode 0 (Setting Servo Gains Giving Priority to Stability) or 1 (Setting Servo Gains Giving Priority to Good Response)

These modes allow you to set stable control conditions for multiple servo gains by manipulating only one tuning level. Automatic setting of notch filters and anti-resonance control is provided if vibration is detected. Manual anti-resonance control adjustment is also possible during custom tuning.

 Tuning Mode 2 (Setting Servo Gains Giving Priority to Position Control Applications) or 3 (Setting Servo Gains Giving Priority to Preventing Overshooting in Position Control Applications)

Two tuning levels are manipulated to reduce positioning time even further and set multiple servo gains.

Model following control is used to reduce the positioning time. If vibration is detected, notch filters and anti-resonance control are automatically adjusted, and friction compensation is automatically set. Manual anti-resonance control adjustment and vibration suppression are also possible during custom tuning.

• Vibration or overshooting may occur during custom tuning. To ensure safety, make sure that you can perform an emergency stop at any time.

8.8.2 Preparations

Check the following settings before you execute custom tuning.

- The test without a motor function must be disabled (Pn00C = $n.\Box\Box\Box$).
- The tuning-less function must be disabled (Pn170 = $n.\Box\Box\Box$ 0).
- If speed control is used, tuning mode 0 or 1 must be set.
- The parameters must not be write prohibited.

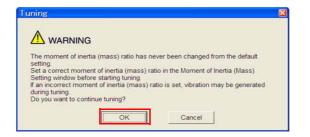
8.8.3 Applicable Tools

The following table lists the tools that you can use to perform custom tuning and the applicable tool functions.

Tool	Function	Operating Procedure Reference
Panel Operator	-	You cannot perform custom tuning from the Panel Operator.
Digital Operator	Fn203	Σ-7-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33)
SigmaWin+	Tuning – Tuning	🕼 8.8.4 Operating Procedure on page 8-43

8.8.4 Operating Procedure

Use the following procedure to perform custom tuning.


- Before you execute custom tuning, check the information provided in the SigmaWin+ operating manual.
- Observe the following precautions.
- Make sure that you can perform an emergency stop at any time. When custom tuning is started, several parameters will be overwritten with the recommended settings, which may greatly affect the response before and after execution. Make sure that you can perform an emergency stop at any time.
- Set the moment of inertia correctly before you execute custom tuning.

 If the patting graph difference the pattern process of inertia vibration
- If the setting greatly differs from the actual moment of inertia, vibration may occur.
- If you change the feedforward level, the new setting will not be used immediately. It will be used after positioning is completed.
- If you are using an MP3000-series Controller for phase control, set the tuning mode to 0 or 1. If 2 or 3 is selected for the tuning mode, correct phase control may not be possible.
- 1. Confirm that the moment of inertia ratio (Pn103) is set correctly.
- 2. Select *Tuning Tuning* from the menu bar of the Main Window of the SigmaWin+. Click the **Cancel** Button to cancel tuning.
- 3. Click the Execute Button.

Tuning 🛛
This function executes tuning for the Servopack. Using this function while the motor is running is dangerous. Be sure to carefully read the SigmaWin+ Operation Manual before executing this function. Special care must be taken for the following.
<safety precautions=""></safety>
1. Before executing this function, make sure that the emergency stop (power off) can be activated when needed.
The response speed may change considerably during tuning.
Before executing this function, make sure that the emergency stop (power off) can be activated when needed.
2. Confirm the safety of the area adjoining the drive unit.
Before executing this function, always confirm that the area within the motor motion range
and direction is clear for safe operation. Provide protective devices to ensure safety in
the event of overtraveling or other unexpected movement.
3. Always confirm that there is no position error before running the motor.
Be sure to return to the origin and reset the position prior to normal operation.
Running the motor without resetting the origin can lead to an overrun and is extremely dangerous.
4. When the moment of inertia (mass) identification function is used for a vertical axis, check the safety of the system.
When the moment of inertia (mass) identification function is used for a vertical axis,
confirm that the axis level does not drop when the servo is turned off.
<tuning precautions=""></tuning>
5. Set the moment of inertia (mass) ratio first.
The moment of intertia (mass) ratio must be set to achieve correct tuning.
Be sure to set the ratio. The setting can be performed from the Tuning window.
6. If vibration is generated, execute custom tuning
Execute

Information When the following dialog box is displayed, click the **OK** Button and then confirm that the correct moment of inertia ratio is set in Pn103 (Moment of Inertia Ratio).

8.8.4 Operating Procedure

4. Click the Advanced adjustment Button.

Tuning	\mathbf{X}
Set the moment of inertia (mass) ratio before Precautions Precautions	
Moment of inertia (mass) ratio identification	
Pn103 : Moment of Inertia Ratio	
Execute.	
100 % Edit	
Autotuning	
Reference input from host controller	
Position reference input	
○ No reference input	
Advanced adjustment Finish	

5. Click the Custom tuning Button.

Funing		X
Click the button of the function to be executed.		
Manually adjust gain and vibration.	∎¢	Custom tuning
Suppress vibration by decreasing gain when stopped.		Gain switching

6. Set the Tuning mode Box and Mechanism selection Box, and then click the Next Button.

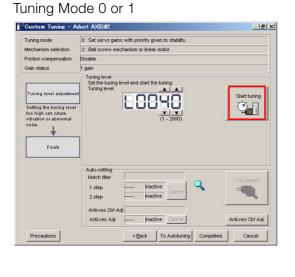
	Tuning mode Box	
Custom Tuning - Mode selection AXIS#2	Mode Selection	Description
Tuning mode O:Set servo gains with priority given to stability. O:Set servo gains with priority given to stability. O:Vershoot will rarely occur since priority is given to stability. In addition to gain adjustments, the notch filter and anti-resonance control (except for torque (force) control) can be adjusted. I:Set servo gains with priority given to response. Overshoot may occur since priority is given to responsiveness. In addition to gain adjustments, the notch filter and anti-resonance control	0: Set servo gains with priority given to stability.	This setting gives priority to stability and preventing overshooting. In addi- tion to gain adjustment, notch filters and anti-resonance control (except during torque control) are automatically adjusted.
(except for torque (force) control) can be adjusted. Mechanism selection 2:Ball screw mechanism or linear motor Executes adjustment suitable for relatively high-rigidity mechanism, such as a ball screw or linear motor. Select this type if there is no applicable	1: Set servo gains with priority given to response.	Overshooting may occur because pri- ority is given to response. In addition to gain adjustment, notch filters and anti- resonance control (except during torque control) are automatically adjusted.
Option Friction compensation C Enable C Disable <u>Next > Cancel</u>	2: Set servo gains for positioning application.	Tuning is performed for positioning applications. In addition to gain adjust- ment, notch filters, anti-resonance control, and vibration suppression are adjusted.
	3: Set servo gains especially to pre- vent overshooting during positioning application.	Tuning is performed for positioning applications with emphasis on elimi- nating overshooting. In addition to gain adjustment, notch filters, anti-reso- nance control, and vibration suppres- sion are adjusted.

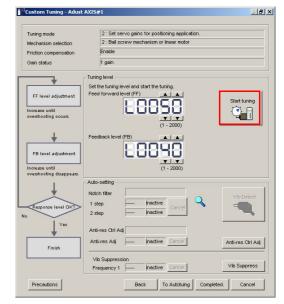
Mechanism Selection Box

Select the type according to the machine element to drive.

If there is noise or if the gain does not increase, better results may be obtained by changing the rigidity type. Select the type according to the following guidelines.

Mechanism Selection	Description
1: Belt mechanism	Tuning is performed for a mechanism with relatively low rigidity, e.g., a belt.
2: Ball screw mechanism or Linear motor	Tuning is performed for a mechanism with relatively high rigidity, e.g., a ball screw or Linear Servomotor. Use this setting if there is no other appropriate setting.
3: Rigid body system	Tuning is performed for a mechanism with high rigidity, e.g., a rigid body system.


Information The tuning modes that you can select depend on the SERVOPACK setting.


7. If the moment of inertia ratio is not set correctly, correct the setting and then click the Next Button.

Custom	Funing – Mor	nent of Iner	tia Ratio S 🔀
🛆 CAUT	ION		
When Momen generated.	t of Inertia Ratio is	not correctly set	t, vibration may be
Is Moment of I	nertia Ratio correc	ctly set?	
Pn103 : Mo	ment of Inertia Ra	tio (0 - 20000)	
100	C	%]	
	< <u>B</u> ack	<u>N</u> ext >	Cancel

8.8.4 Operating Procedure

8. Turn ON the servo, enter a reference from the host controller, and then click the Start tuning Button.

9. Use the \blacktriangle and \blacktriangledown Buttons to change the tuning level.

Click the **Back** Button during tuning to restore the setting to its original value. The tuning level will return to the value from before when custom tuning was started.

_ 8 ×

•

-0

Anti-res Ctrl Adj

Cancel

Tuning Mode 0 or 1

Custom Tuning - Adust AXIS#2

Disable

1 gai

Tuning mode

Gain status

Mechanism selection

Friction compensation

Setting the tuning level too high can cause vibration or

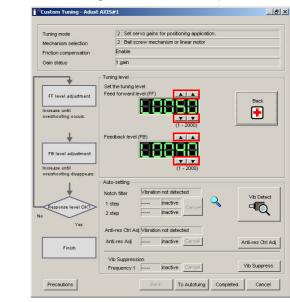
t

Finish

Precautions

Increase the tuning level until overshooting

inactive


inactive

inactive

To Autotuning Completed.

Tuning	Mode	2	to	З
--------	------	---	----	---

Increase the feedforward level until overshooting occurs and then increase the feedback level until overshooting is eliminated. Repeat these changes to make the adjustment.

Information

The new feedforward level will not be used until the positioning completed signal is output.

10. You can set the functions to suppress vibration (notch filters, automatic anti-resonance setting, vibration suppression, and autotuning with a host reference) as required. Refer to the following section for details.

Vibration Suppression Functions on page 8-47

occurs.

0 : Set servo gains with priority given to stabilit

Vibrat

2 : Ball screw mechanism or linear motor

Tuning level Set the tuning level Tuning level

Auto-setting

Notch filte 1 step

2 ster

Anti-res Adj

Tuning Mode 2 to 3

8.8.4 Operating Procedure

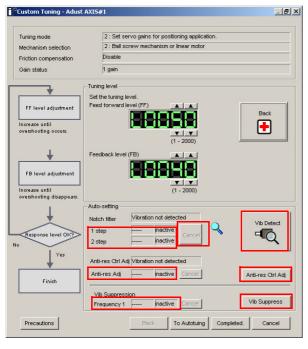
11. When tuning has been completed, click the **Completed** Button.

The values that were changed will be saved in the SERVOPACK and you will return to the Tuning Dialog Box.

Tuning mode	0 : Set servo gains	with prid	ority given to	o stability.		
Mechanism selection	2 : Ball screw mech	hanism	or linear mo	otor		
Friction compensation	Disable					
Gain status	1 gain					
Tuning level adjustment Setting the tuning level too high can cause	Tuning level	B				Back
vibration or abnormal noise]		(1	- 2000)		<u></u>
noise	Auto-setting	Vibratio				
noise	Notch filter	Vibratio	on not detec		0	Vib Detect
noise	Notch filter 1 step		on not detec		Q	Vib Detect
noise	Notch filter	Vibratio	on not detec	ted	Q	Vib Detect
noise	Notch filter 1 step	 	on not detec inactive inactive	ted Cancel	Q	Vib Detect

This concludes the procedure.

Vibration Suppression Functions


Notch Filters and Automatic Anti-resonance Setting

If the vibration frequency that occurs when you increase the servo gains is at 1,000 Hz or higher, notch filters are effective to suppress vibration. If the vibration is between 100 Hz and 1,000 Hz, anti-resonance control is effective.

♦ Automatic Setting

To set vibration suppression automatically, use the parameters to enable notch filters and automatic anti-resonance control setting.

The notch filter frequency (stage 1 or 2) or anti-resonance control frequency that is effective for the vibration that was detected during tuning will be automatically set.

8.8.5 Automatically Adjusted Function Settings

• Auto-setting Cancel Buttons

The automatically set notch filter frequencies or the anti-resonance control frequencies may not always suppress vibration. Click the **Cancel** Button to reset the notch filter frequencies or the anti-resonance control frequencies to the values from just before these frequencies were set automatically.

When they are reset, vibration detection will start again.

Vib Detect Button

While the notch filter or anti-resonance control adjustment automatic setting function is enabled, you can click the **Vib Detect** Button to manually detect vibration. When you click the **Vib Detect** Button, the SERVOPACK will detect vibration at that time, and set the notch filter frequency (stage 1 or 2) or anti-resonance control frequency that is effective for the detected vibration. You can also perform manual vibration detection even when the SERVOPACK does not detect vibration.

Anti-res Ctrl Adj Button

You can use the **Anti-res Ctrl Adj** Button to execute the anti-resonance control function if fine-tuning is required. Refer to the following section.

• Vib Suppress Button

Click the **Vib Suppress** Button to suppress low and transient vibration (oscillation) of approximately 1 Hz to 100 Hz that occurs during positioning. Refer to the following section.

8.10 Vibration Suppression on page 8-56

Autotuning with a Host Reference

You can perform autotuning with a host reference. Refer to the following section for details. 8.7 Autotuning with a Host Reference on page 8-35

8.8.5 Automatically Adjusted Function Settings

You cannot use vibration suppression functions at the same time. Other automatic function settings are the same as for autotuning without a host reference. Refer to the following section. \Im 8.6.6 Automatically Adjusted Function Settings on page 8-31

8.8.6 Tuning Example for Tuning Mode 2 or 3

Step	Measurement Display Examples	Operation
1	Position deviation Reference speed Positioning completion signal	The positioning time is measured after the moment of inertia ratio (Pn103) is set correctly. Tuning is completed if the specifications are met. The tuning results are saved in the SERVOPACK.
2		The positioning time will be reduced if the feedforward level is increased. Tuning is completed if the specifications are met. The tuning results are saved in the SERVOPACK. If overshooting occurs before the specifications are met, pro- ceed to step 3.
3		Overshooting will be reduced if the feedback level is increased. If the overshooting is eliminated, proceed to step 4.
4		The graph shows overshooting that occurred when the feed- forward level was increased even more after step 3. In this state, overshooting occurs, but the positioning settling time is shorter. Tuning is completed if the specifications are met. The tuning results are saved in the SERVOPACK. If over- shooting occurs before the specifications are met, repeat steps 3 and 4. If vibration occurs before the overshooting is eliminated, the vibration is suppressed with the notch filters and anti-reso- nance control.
5	_	The tuning results are saved in the SERVOPACK.

8.8.7 Related Parameters

8.8.7 Related Parameters

The following parameters are automatically adjusted or used as reference when you execute custom tuning.

Parameter	Name	Automatic Changes
Pn100	Speed Loop Gain	Yes
Pn101	Speed Loop Integral Time Constant	Yes
Pn102	Position Loop Gain	Yes
Pn103	Moment of Inertia Ratio	No
Pn121	Friction Compensation Gain	Yes
Pn123	Friction Compensation Coefficient	Yes
Pn124	Friction Compensation Frequency Correction	No
Pn125	Friction Compensation Gain Correction	Yes
Pn401	First Stage First Torque Reference Filter Time Constant	Yes
Pn408	Torque-Related Function Selections	Yes
Pn409	First Stage Notch Filter Frequency	Yes
Pn40A	First Stage Notch Filter Q Value	Yes
Pn40C	Second Stage Notch Filter Frequency	Yes
Pn40D	Second Stage Notch Filter Q Value	Yes
Pn140	Model Following Control-Related Selections	Yes
Pn141	Model Following Control Gain	Yes
Pn142	Model Following Control Gain Correction	Yes
Pn143	Model Following Control Bias in the Forward Direction	Yes
Pn144	Model Following Control Bias in the Reverse Direction	Yes
Pn145	Vibration Suppression 1 Frequency A	No
Pn146	Vibration Suppression 1 Frequency B	No
Pn147	Model Following Control Speed Feedforward Compensation	Yes
Pn160	Anti-Resonance Control-Related Selections	Yes
Pn161	Anti-Resonance Frequency	Yes
Pn163	Anti-Resonance Damping Gain	Yes

Do not change the settings while custom tuning is being executed.

Yes: The parameter is automatically set.

No: The parameter is not automatically set, but the setting is read during execution.

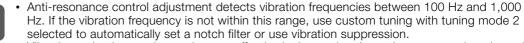
8.9.1 Outline

8.9 Anti-Resonance Control Adjustment

This section describes anti-resonance control.

8.9.1 Outline

Anti-resonance control increases the effectiveness of vibration suppression after custom tuning.


Anti-resonance control is effective for suppression of continuous vibration frequencies from 100 to 1,000 Hz that occur when the control gain is increased. Vibration can be eliminated by setting vibration frequencies through automatic detection or by manually setting them to adjust the damping gain. Input an operation reference and execute this anti-resonance control adjustment when there is vibration.

Anti-resonance control is automatically set by autotuning without a host reference or autotuning with a host reference. Use anti-resonance control adjustment only if fine-tuning is required or readjustment is required as a result of a failure to detect vibration.

Perform custom tuning if required to increase the response after performing anti-resonance control adjustment. If the control gain is increased, e.g., when custom tuning is performed, vibration may occur again. If that occurs, perform anti-resonance control adjustment again to fine-tune the parameters.

- Related parameters will be set automatically when anti-resonance control adjustment is executed. This may greatly affect the response before and after execution. Make sure that you can perform an emergency stop at any time.
- Before you execute anti-resonance control adjustment, set the correct moment of inertia ratio (Pn103). If the setting greatly differs from the actual moment of inertia ratio, normal control of the machine may not be possible, and vibration may occur.

Vibration reduction can be made more effective by increasing the anti-resonance damping gain (Pn163), but the vibration may become larger if the damping gain is too high. Increase the damping gain by approximately 0% to 200% in 10% increments while checking the effect on vibration. If vibration reduction is still insufficient at a gain of 200%, cancel the setting, and lower the control gain by using a different method, such as custom tuning.

8.9.2 Preparations

0

Check the following settings before you execute anti-resonance control adjustment.

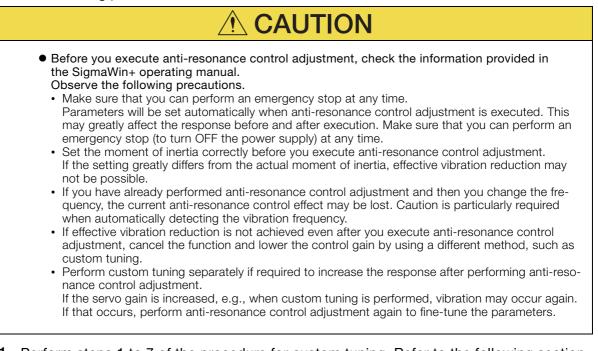
- The tuning-less function must be disabled (Pn170 = $n.\Box\Box\Box$ 0).
- The test without a motor function must be disabled (Pn00C = $n.\Box\Box\Box$).
- The control method must not be set to torque control.
- The parameters must not be write prohibited.

8.9.3 Applicable Tools

8.9.3 Applicable Tools

The following table lists the tools that you can use to perform anti-resonance control adjustment and the applicable tool functions.

Tool	Function	Operating Procedure Reference
Panel Operator	You cannot execute anti-resonance co	ontrol adjustment from the Panel Operator.
Digital Operator	Fn204	Ω Σ-7-Series Digital Operator Operating Man- ual (Manual No.: SIEP S800001 33)
SigmaWin+	Tuning - Tuning	8.9.4 Operating Procedure on page 8-52


8.9.4 Operating Procedure

To execute anti-resonance control adjustment, an operation reference is input, and the adjustment is executed while vibration is occurring.

The following methods can be used to execute anti-resonance control adjustment.

- To automatically detect the vibration frequency
- To manually set the vibration frequency

Use the following procedure.

1. Perform steps 1 to 7 of the procedure for custom tuning. Refer to the following section for details.

8.8.4 Operating Procedure on page 8-43

8.9.4 Operating Procedure

2. Click the Anti-res Ctrl Adj Button.

The rest of the procedure depends on whether you know the vibration frequency.

Tuning mode	0 : Set servo gains with priority given to stability.
Mechanism selection	2: Ball screw mechanism or linear motor
riction compensation	Disable
9ain status	1 gain
Tuning level adjustment Setting the tuning level too high can cause vibration or abnormal noise.	Tuning level
Finish	
Finish	Auto-setting Notch filter Vib Detect
Finish	Notch filter Vib Detect
Finish	Notch filter Vio Detect

3. If you do not know the vibration frequency, click the **Auto Detect** Button. If you know the vibration frequency, click the **Manual Set** Button.

To Automatically Detect the Vibration Frequency

To Manually Set the Vibration Frequency

The frequency will be set.

Determine frequency Click the Auto Detect button to automatically set the Tequency	Adjustment Free-series Telling Media Auto Detect	Manual Set	Anti-res Adj Inactive
Set frequency		Before adjustment [Hz]	
Click the Start adjustment button	<< Frequency >>		
Adjust damping gain		(1-2000)	«Caution» If a frequency significantly
screase (Damping Gain)	< <damping gain="">></damping>		different from the value before adjustment is set, the current anti-resonance control effect may be lost. Once the vibration
Finish		(0-300)	problem is solved, do not increase damping gain.
	Precautions		Finish Cancel

Determine frequency	Adjustment Frequency Setting Metho	ds	Anti-res	Adj Inactive
k the Auto Detect button to omatically set the frequency.	Auto Detect	Manual Set		
Set frequency	•	efore adjustment [Hz]		
k the Start adjustment button	<< Frequency >>	DEBERR M	Start adjuste	vent.
+		V V V V V	C	
Adjust damping gain		(1-2000)	«Caution» # a frequency sig	nticantly
ease (Damping Gain)	< <damping gain="">></damping>		different from the adjustment is set	The current
+	<-Damping Gain>>		anti-resonance c may be lost. Onc problem is solver	e the vibration
Finish	4	(0-300)	increase dampin	
	Precautions		Einsh	Cancel

- 4. Click the Start adjustment Button.
- 5. Use the ▲ and ▼ Buttons in the Adjustment Area to change the settings. Click the **Reset** Button during tuning to restore the setting to its original value. The tuning level will return to the value from before when custom tuning was started.

To Automatically Detect the Vibration Frequency

To Manually Set the Vibration Frequency Change the settings of the frequency and damping gain.

Change the setting of the damping gain.

 What resonance Control Adjustment Function Addisf
 Marrier space

 Determine frequency
 Adjustment Function Addisf
 Marrier space

 Out the Add State Date many Subtract Date many Cost the State Space
 Adjustment Function Addisf
 Marrier space

 Out the Add State Date many Subtract Date many Cost the State Space
 Adjustment Function Addisf
 Marrier space

 Adjust darrong gan mouses Darway Gain
 Company Gain
 Cost of the State Space
 Freighter Space

 Preside
 Cost of Cost of Adjustment Function Addisf
 Marrier space

 Preside
 Cost of State Space
 Cost of State Space
 Freighter Space

 Cost of State Space
 Cost of State Space
 Freighter Space
 Freighter Space

 Preside
 Cost of State Space
 Freighter Space
 Freighter Space

 Preside
 Freighter Space
 Freighter Space

8.9.5 Related Parameters

6. When the adjustment has been completed, click the Finish Button.

The values that were changed will be saved in the SERVOPACK and you will return to the Tuning Dialog Box.

Determine frequency	Adjustment Frequency Setting Me	thods		Anti-res Adj: Active
Click the Auto Detect button to automatically set the frequency.	Auto Detect	Manual Set		
Set frequency	ר	Before adjustment	720 [Hz]	
Click the Start adjustment button.	<< Frequency >>		Hz]	Reset
Adjust damping gain	<damping gain="">></damping>) [96]	<caution> If a frequency significantly different from the value before adjustment is set, the current anti-resonance control effect</caution>
Finish		▼ ▼ (0-300		may be lost. Once the vibration problem is solved, do not increase damping gain.

This concludes the procedure.

8.9.5 Related Parameters

The following parameters are automatically adjusted or used as reference when you execute anti-resonance control adjustment.

Do not change the settings while anti-resonance control adjustment is being executed.

Parameter	Name	Automatic Changes
Pn160	Anti-Resonance Control-Related Selections	Yes
Pn161	Anti-Resonance Frequency	Yes
Pn162	Anti-Resonance Gain Correction	No
Pn163	Anti-Resonance Damping Gain	Yes
Pn164	Anti-Resonance Filter Time Constant 1 Correction	No
Pn165	Anti-Resonance Filter Time Constant 2 Correction	No

Yes: The parameter is automatically set.

No: The parameter is not automatically set, but the setting is read during execution.

8.9.6 Suppressing Different Vibration Frequencies with Anti-resonance Control

When you use anti-resonance control and increase the control gain, for some mechanism, vibration can occur at a higher frequency than the frequency for which vibration was suppressed. If this occurs, you can suppress vibration for more than one frequency by adjusting Pn166 (Anti-Resonance Damping Gain 2).

Information Guidelines for Vibration That Can Be Suppressed

Anti-resonance frequency (Pn161): fa [Hz], Another vibration frequency that occurs when the control gain is increased: fb [Hz]

- Vibration frequencies: 100 Hz to 1,000 Hz
- Range of different vibration frequencies: $1 < (fb/fa) \le 3$ to 4

Required Parameter Settings

The following parameter settings are required to use anti-resonance control for more than one vibration frequency.

	Parameter	I	Description		Wher Enable	
n.□□□0 (default setting)		Do not use anti-resonance control.		After restar	Setun	
	n.🗆 🗆 🗆 1	Use anti-resonance control.			Testal	L
	Anti-Resonance Fr	equency		Speed	Positic	n Torque
Pn161	Setting Range	Setting Unit	Default Setting	When Ena	abled	Classification
	10 to 20,000	0.1 Hz	1000	Immedia	ately	Tuning
	Anti-Resonance Ga	ain Correction		Speed	Positic	n Torque
Pn162	Setting Range	Setting Unit	Default Setting	When Ena	abled	Classification
	1 to 1,000	1%	100	Immediately		Tuning
	Anti-Resonance Da	amping Gain		Speed	Positic	n Torque
Pn163	Setting Range	Setting Unit	Default Setting	When Ena	abled	Classification
	0 to 300	1%	0	Immedia	ately	Tuning
	Anti-Resonance Fi	ter Time Constant 1 C	orrection	Speed	Positic	n Torque
Pn164	Setting Range	Setting Unit	Default Setting	When Ena	abled	Classification
	-1,000 to 1,000	0.01 ms	0	Immedia	ately	Tuning
	Anti-Resonance Fi	ter Time Constant 2 C	orrection	Speed	Positic	n Torque
Pn165	Setting Range	Setting Unit	Default Setting	When Ena	abled	Classification
	-1,000 to 1,000	0.01 ms	0	Immedia	ately	Tuning
	Anti-Resonance Da	amping Gain 2		Speed	Positic	n Torque
Pn166	Setting Range	Setting Unit	Default Setting	When Ena	abled	Classification
	0 to 1,000	1%	0	Immedia	ately	Tuning

Adjustment Procedure for Suppressing Different Vibration Frequencies with Anti-resonance Control

Use the following procedure to make adjustments to suppress different vibration frequencies with anti-resonance control.

Step	Operation
1	Use the gain adjustment and anti-resonance control. Refer to the following section for details. 3.9.4 Operating Procedure on page 8-52
2	If there is vibration at a higher frequency than the vibration suppressed with anti-resonance control in step 1, adjust Pn166 (Anti-Resonance Damping Gain 2).
3	Adjust Pn166 (Anti-Resonance Damping Gain 2) while checking to see if vibration reduction is effective. To adjust Pn166 (Anti-Resonance Damping Gain 2), increase the setting by 10% at a time starting from the value that resulted in Pn163 (Anti-Resonance Damping Gain) from the adjustment in step 1.
4	If the vibration disappears, the adjustment is completed. However, if the vibration does not disappear even when you adjust Pn166 (Anti-Resonance Damping Gain 2), reduce the tuning level or feedback level until vibration does not occur.

8.10.1 Outline

8.10 Vibration Suppression

This section describes vibration suppression.

8.10.1 Outline

Important

You can use vibration suppression to suppress transient vibration at a low frequency from 1 Hz to 100 Hz, which is generated mainly when the machine vibrates during positioning. This is effective for vibration frequencies for which notch filters and anti-resonance control adjustment are not effective.

Vibration suppression is automatically set by autotuning without a host reference or autotuning with a host reference. Use vibration suppression only if fine-tuning is required or readjustment is required as a result of a failure to detect vibration. To execute vibration suppression, input an operation reference and execute the function when there is vibration.

Perform custom tuning if required to increase the response after performing vibration suppression.

 Related parameters will be set automatically when vibration suppression is executed. This may greatly affect the response before and after execution. Make sure that you can perform an emergency stop at any time.
 Before you execute vibration suppression, set the correct moment of inertia ratio (Pn103) with autotuning without a host reference or another method. If the setting greatly differs from the actual moment of inertia ratio, normal control of the machine may not be possible, and vibration may occur.
 Vibration suppression detects vibration frequencies between 1 Hz and 100 Hz. Frequency detection will not be performed if there is no vibration in the position deviation or if

 Frequency detection will not be performed if there is no vibration in the position deviation or if the vibration frequency is outside the range of detectable frequencies. If that is a problem, use a device such as a displacement meter or vibration sensor to measure the vibration frequency.
 If an automatically detected vibration frequency is not suppressed, the actual frequency and

• If an automatically detected vibration frequency is not suppressed, the actual frequency and the detected frequency may be different. Fine-tune the detected frequency if necessary.

Items That Influence Performance

If continuous vibration occurs while the Servomotor is stopping, vibration suppression cannot be used to suppress the vibration effectively. In this case, use anti-resonance control adjustment or custom tuning.

Detection of Vibration Frequencies

Frequency detection may not be possible if vibration does not appear in the position deviation or the vibration that results from the position deviation is too small. You can adjust the detection sensitivity by changing the setting of the residual vibration detection width (Pn560), which is set as a percentage of the positioning completed width (Pn522). Perform the detection of vibration frequencies again after adjusting the setting of Pn560.

	Residual Vibration Detection Width			Posit	ion
Pn560	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	1 to 3,000	0.1%	400	Immediately	Setup

Note: As a guideline, change the setting 10% at a time. If the setting of this parameter is lowered, the detection sensitivity will be increased. Vibration may not be detected accurately if the setting is too small.

Information The vibration frequencies that are automatically detected may vary somewhat with each positioning operation. Perform positioning several times and make adjustments while checking the effect of vibration suppression.

8.10.2 Preparations

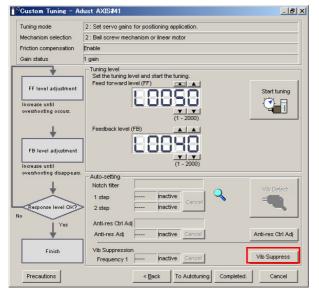
Check the following settings before you execute vibration suppression.

- Position control must be used.
- The tuning-less function must be disabled (Pn170 = $n.\Box\Box\Box$ 0).
- The test without a motor function must be disabled (Pn00C = $n.\Box\Box\Box$).
- The parameters must not be write prohibited.

8.10.3 Applicable Tools

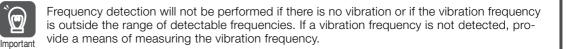
The following table lists the tools that you can use to perform vibration suppression and the applicable tool functions.

Tool	Function	Operating Procedure Reference		
Panel Operator	You cannot execute vibration suppres	on suppression from the Panel Operator.		
Digital Operator	Fn205	Ω Σ-7-Series Digital Operator Operating Man- ual (Manual No.: SIEP S800001 33)		
SigmaWin+	Tuning - Tuning	8.10.4 Operating Procedure on page 8-57		


8.10.4 Operating Procedure

Use the following procedure to perform vibration suppression.

1. Perform steps 1 to 7 of the procedure for custom tuning. Refer to the following section for details.


8.8.4 Operating Procedure on page 8-43

2. Click the Vib Suppress Button.

3. Click the Import Button or click ▲ and ▼ Button to manually adjust the set frequency. When you click the Import Button, the residual vibration frequency in the motor is read as the set frequency. (The frequency can be read only when the residual vibration frequency is between 1.0 and 100.0.)

8.10.4 Operating Procedure

Determine the frequency	Adjustment	<u></u>		Vib Suppression: Inactive
for setting.	Residual Vibration Fre	quency 14.7 [H	iz]	
ok the Import button. nual setting is also possible. Set the frequency.		Import 		
k the Set button. e vibration problem could not solved, ly adjust the frequency and o click the Set button again.	Set frequency		iz] Set	Reset
+		(1.0 - 100.0) Click the Set button.	76. 	

4. Click the Set Button.

No settings related to vibration suppression are changed during operation. If the Servomotor does not stop within approximately 10 seconds after changing the setting, an update timeout will occur. The setting will be automatically returned to the previous value.

Determine the frequency	Adjustment		Vib Supp	ression: Active
for setting.	Residual Vibration Frequency	13.5 [Hz]		
		Import	Set	Reset
Finish		0 - 100.0)	Finish	

If the vibration is not eliminated, use the \blacktriangle and \blacktriangledown Buttons for the set frequency to fine-tune the value and click the **Set** Button again.

😾 Vibration Suppression Functi	onAXI5#1	×
Determine the frequency for setting.	Adjustment Vib Suppression: Active Residual Vibration Frequency 13.5 [Hz]	
Manual setting is also possible.	Import	
Click the Set button. If the vibration problem could not be solved, finely adjust the frequency and then click the Set button again.	Set frequency	
Finish	(1.0 - 100.0) Current value: 32.3 Hz Precautions Finish Cancel	

Click the **Reset** Button during adjustment to restore the setting to its original value. The status from before when adjustment was started will be restored.

5. When the vibration has been eliminated, click the Finish Button. The updated value will be saved in the SERVOPACK.

Ĩ
Important

Vibration suppression will be enabled in step 5. The motor response, however, will change when the Servomotor comes to a stop with no reference input.

This concludes the procedure.

8.10.5 Setting Combined Functions

You can also use the feedforward function when you execute vibration suppression.

In the default settings, feedforward (Pn109), the speed feedforward input (V-REF), and the torque feedforward input (TREF) are disabled.

To use the speed feedforward input (V-REF), the torque feedforward input (T-REF), and model following control from the host controller in the system, set Pn140 to n.1DDD (Use model following control and speed/torque feedforward together).

Parameter Function		When Enabled	Classification	
Pn140	n.0□□□ (defaultsetting)	Do not use model following control and speed/torque feedforward together.	Immediately Tuning	
11140	n.1000	Use model following control and speed/ torque feedforward together.	Infinediately	runnig

Refer to the following section for information on the torque feedforward input (T-REF) and the speed feedforward input (V-REF).

When model following control is used with the feedforward function, it is used to make optimum feedforward settings in the SERVOPACK. Therefore, model following control is not normally used together with either the speed feedforward input (V-REF) or torque feedforward input (T-REF) from the host controller. However, model following control can be used with the speed feedforward input (V-REF) or torque feedforward input (V-REF) or torque feedforward input may result in overshooting.

8.10.6 Related Parameters

The following parameters are automatically adjusted or used as reference when you execute vibration suppression.

Do not change the settings wh	e vibration suppression	s being executed.
-------------------------------	-------------------------	-------------------

Parameter	Name	Automatic Changes
Pn140	Model Following Control-Related Selections	Yes
Pn141	Model Following Control Gain	Yes
Pn142	Model Following Control Correction	No
Pn143	Model Following Control Bias in the Forward Direction	No
Pn144	Model Following Control Bias in the Reverse Direction	No
Pn145	Vibration Suppression 1 Frequency A	Yes
Pn146	Vibration Suppression 1 Frequency B	Yes
Pn147	Model Following Control Speed Feedforward Compensation	No
Pn14A	Vibration Suppression 2 Frequency	No
Pn14B	Vibration Suppression 2 Correction	No

Yes: The parameter is automatically set.

No: The parameter is not automatically set, but the setting is read during execution.

8.11.1 Outline

8.11 Speed Ripple Compensation

This section describes speed ripple compensation.

8.11.1 Outline

Speed ripple compensation reduces the amount of ripple in the motor speed due to torque ripple or cogging torque. You can enable speed ripple compensation to achieve smoother operation. To enable it, you must set up ripple compensation on the SigmaWin+.

• Speed ripple compensation requires operating the motor and therefore presents hazards. Observe the following precaution.

Confirm safety around moving parts.

This function involves automatic operation. Make sure that you can perform an emergency stop (to turn OFF the power supply) at any time.

- Execute speed ripple compensation only after adjusting the gains.
- Reset speed ripple compensation after you replace the Servomotor or SERVOPACK.

• Execute speed ripple compensation after jogging to a position that ensures a suitable range of motion.

8.11.2 Setting Up Speed Ripple Compensation

Restrictions

The following restrictions apply to the setup for speed ripple compensation.

Systems for Which Execution Cannot Be Performed

There are no restrictions.

Systems for Which Adjustments Cannot Be Made Accurately

Systems for which there is not a suitable range of motion

Preparations

Check the following items before you set up speed ripple compensation.

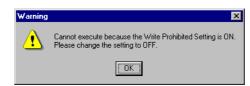
- The main circuit power supply must be ON.
- The servo must be OFF.
- There must be no alarms or warnings.
- There must be no hard wire base block (HWBB).
- The parameters must not be write prohibited.

8.11.2 Setting Up Speed Ripple Compensation

Applicable Tools

The following table lists the tools that you can use to set up speed ripple compensation and the applicable tool functions.

Tool	Function	Reference
Panel Operator	You cannot set up speed ripple compensation from the Panel Operator.	
Digital Operator	You cannot set up speed ripple compensation from the Digital Operator.	
SigmaWin+	Solutions – Ripple Compensation	Gerating Procedure on page 8-61


Operating Procedure

Use the following procedure to set up speed ripple compensation.

- 1. Select *Solutions Ripple Compensation* from the menu bar of the Main Window of the SigmaWin+.
- 2. Click the OK Button.

Information1. Click the Cancel Button to cancel ripple compensation. The Main Window will return.2. If write protection is set, the following dialog box will be displayed.

Click the **OK** Button to cancel write prohibition.

8.11.2 Setting Up Speed Ripple Compensation

3. Click the Edit Button.

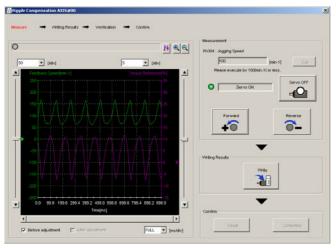
		防風風	Messurement
[Riv]			Pn304 : Jogging Speed 500 (min-1) East
i pavi		- Davi	Please execute by 100imin-11 or less.
5 1			Servo ON
4 ····· .		4	Servo Off
3			
2		2	Forward Revenue
4			+6 6-
0			
			-
			Writing Results
-2		-2	V#25
.3			3
-4		4	
-5	300.0 360.0 420.0 480.0	540.0 600.0	-

4. Enter the jogging speed in the Input Value Box and click the OK Button.

Edit AXIS#00	X
Pn304 Jogging Speed	
Input value 500 min-1	
	OK Cancel

5. Click the Servo ON Button.

Measurement
Pn304 : Jogging Speed
100 [min-1] Edit
Please execute by 100[min-1] or less.
Servo ON
Forward


8.11.2 Setting Up Speed Ripple Compensation

6. Click the Forward Button or the Reverse Button.

Measurement operation is started.

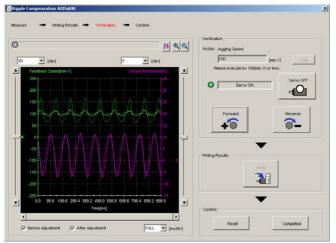
The motor will rotate at the preset jogging speed while you hold down the **Forward** or **Reverse** Button and the speed ripple will be measured.

The feedback speed and torque reference graph will be displayed in the Tracing Dialog Box during jogging.

Important	If the measurement time (i.e., the jogging time) for the speed ripple is too short, speed ripple measurement will not be completed. The following dialog box will be displayed if speed ripple measurement was not completed. Click the OK Button and repeat the measurement.
	Ripple Compensation
	Operation was interrupted during measurement. Please redo measurement.

- 7. After speed ripple measurement has been completed, click the Write Button. The ripple compensation value will be written to the SERVOPACK.
- 8. After writing has been completed, click the OK Button.

Ripple Co	mpensation X
i	The Ripple Compensation value was written in. Please measure again and verify. If a verification result is good, please click the "Completed" button.
	OK


8.11.3 Setting Parameters

9. Click the Forward Button or the Reverse Button.

Verification operation is started.

The motor will rotate at the preset jogging speed while you hold down the **Forward** or **Reverse** Button.

The waveform with speed ripple compensation applied to it will be displayed.

10. If the verification results are OK, click the Finish Button.

Information To discard the setup results, click the **Reset** Button.

This concludes the procedure.

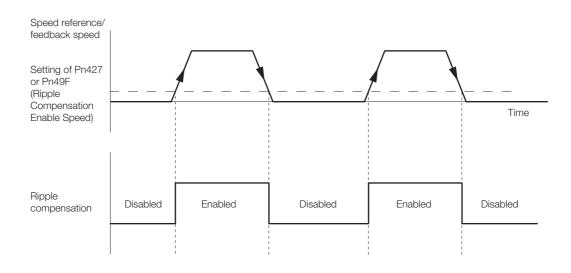
8.11.3 Setting Parameters

The function is enabled when you perform the operating procedure on *Operating Procedure* on page 8-61. To cancel speed ripple compensation, use $Pn423 = n.\square\square\square0$ (Disable speed ripple compensation) to disable it.

Parameter		Description	When Enabled	Classifi- cation
Pn423	n.□□□0 (default setting)	Disable speed ripple compensation.	After restart	Setup
	n.0001	Enable speed ripple compensation.		

If you enable speed ripple compensation, a compensation reference will be applied to reduce ripple even when stopped at a 0 speed reference. In speed control mode, this may result in the motor moving slightly. To prevent this, set $Pn423 = n.\Box X \Box \Box$ (Speed Ripple Compensation Selections) and Pn427 or Pn49F (Speed Ripple Compensation Enable Speed).

Parameter		Description	When Enabled	Classifi- cation
Pn423	n.0000 (default setting)	Speed reference	After restart	Setup
	n.🗆 1 🗆 🗆	Motor Speed	restart	


For Rotary Servomotors

	Speed Ripple Comp	ensation Enable Spe	Speed Positio	on Torque	
Pn427	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 10,000	1 min ⁻¹	0	Immediately	Tuning

For Linear Servomotors

	Speed Ripple Comp	ensation Enable Spe	Speed Positic	on Torque	
Pn49F	Setting Range	Setting Unit	Default Setting	When Enabled Classificat	
	0 to 10,000	1 mm/s	0	Immediately	Tuning

8.11.3 Setting Parameters

Speed Ripple Compensation Warnings

The speed ripple compensation value is specific to each Servomotor. If you replace the Servomotor while speed ripple compensation is enabled, an A.942 warning (Speed Ripple Compensation Information Disagreement) will occur to warn you.

- You can use any of the following methods to clear A.942.
- Reset the speed ripple compensation value on the SigmaWin+.
- Disable speed ripple compensation (Pn423 = $n.\Box\Box\Box$).
- Disable detection of A.942 (Pn423 = $n.\Box\Box1\Box$).

Parameter		Description		Classifi- cation
Pn423	n.□□0□ (default setting)	Detect A.942 alarms.		Setup
	n.0010	Do not detect A.942 alarms.	restart	

8.12.1 Gain Switching

8.12 Additional Adjustment Functions

This section describes the functions that you can use to make adjustments after you perform autotuning without a host reference, autotuning with a host reference, and custom tuning.

Function	Applicable Control Methods	Reference
Gain Switching	Position control, speed control, or torque control*	page 8-66
Friction Compensation	Position control or speed control	page 8-69
Current Control Mode Selection	Position control, speed control, or torque control	page 8-71
Current Gain Level Setting	Position control or speed control	page 8-71
Speed Detection Method Selection	Position control, speed control, or torque control	page 8-72
Proportional Control	Position control or speed control	page 8-72

* Automatic gain switching is enabled only for position control.

8.12.1 Gain Switching

Two gain switching functions are available, manual selection and automatic switching. The manual switching function uses an external input signal to select the gains, and the automatic switching function changes the gains automatically.

You can use gain switching to shorten the positioning time by increasing the gains during positioning and suppressing vibration by decreasing the gains while stopping.

Parameter		Function	When Enabled	Classification
	n.ロロロ0 (default setting)	Use manual gain switching.	Immediately	Tuning
	n.🗆🗆 🗆 2	Use automatic gain switching pattern 1.	*	

Note: $Pn139 = n.\square\square\square1$ is a reserved setting. Do not use this setting.

Refer to the following section for gain switching combinations.

Gain Switching Combinations on page 8-66

Refer to the following sections for information on manual and automatic gain switching. *Manual Gain Switching* on page 8-67 and *Automatic Gain Switching* on page 8-67

Gain Switching Combinations

Selected Gains	Speed Loop Gain	Speed Loop Integral Time Constant	Position Loop Gain	Torque Refer- ence Filter	Model Fol- lowing Con- trol Gain	Model Follow- ing Control Correction	Friction Compensa- tion Gain
Gain Set- tings 1	Speed Loop Gain (Pn100)	Speed Loop Integral Time Constant (Pn101)	Position Loop Gain (Pn102)	First Stage First Torque Reference Fil- ter Time Con- stant (Pn401)	Model Fol- lowing Con- trol Gain* (Pn141)	Model Follow- ing Control Correction* (Pn142)	Friction Compensa- tion Gain (Pn121)
Gain Set- tings 2	Second Speed Loop Gain (Pn104)	Second Speed Loop Integral Time Constant (Pn105)	Second Position Loop Gain (Pn106)	First Stage Second Torque Refer- ence Filter Time Con- stant (Pn412)	Second Model Fol- lowing Con- trol Gain* (Pn148)	Second Model Following Control Cor- rection* (Pn149)	Second Friction Compensa- tion Gain (Pn122)

* Gain switching for the model following control gain and the model following control gain correction is applicable only to manual gain switching.

To enable gain switching with these parameters, a gain switching input signal must be used and the following conditions must be met. If the conditions are not met, these parameters will not be changed even if the other parameters in the above table are changed.

There must be no reference.

• The motor must be stopped.

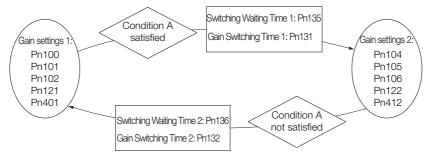
8.12.1 Gain Switching

Manual Gain Switching

With manual gain switching, you use the /G-SEL (Gain Selection) signal to change between gain settings 1 and gain settings 2.

Туре	Signal	Connector Pin No.	Setting	Meaning
Input /G-SEL	Must be allocated	OFF	Changes the gain settings to gain settings 1.	
	/G-SEL	Must be allocated.	ON	Changes the gain settings to gain settings 2.

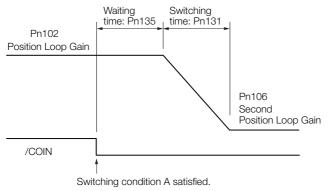
Automatic Gain Switching


Automatic gain switching is enabled only for position control. The switching conditions are specified by using the following settings.

Parameter		Switching Condition	Selected Gains	Switching Waiting Time	Switching Time
Pn139 n.ロロ	~ 0002	Condition A satisfied	Gain settings 1 to gain set- tings 2	Gain Switching Waiting Time 1 Pn135	Gain Switching Time 1 Pn131
	11.0002	Condition A not satisfied	Gain settings 2 to gain set- tings 1	Gain Switching Waiting Time 2 Pn136	Gain Switching Time 2 Pn132

Select one of the following settings for switching condition A.

Parameter		Position Control Gain Switching Condition A	For Control Methods Other Than Position Control (No Switching)	When Enabled	Classification
	n.□□0□ (default setting)	/COIN (Positioning Com- pletion) signal ON	Gain settings 1 used.		
	n.0010	/COIN (Positioning Com- pletion) signal OFF	Gain settings 2 used.		Tuning
	n.🗆 🗆 2 🗆	/NEAR (Near) signal ON	Gain settings 1 used.		
Pn139	n.🗆 🗆 3 🗆	/NEAR (Near) signal OFF	Gain settings 2 used.	Immediately	
	n.0040	Position reference filter output is 0 and reference pulse input is OFF.	Gain settings 1 used.		
	n.0050	Position reference pulse input is ON.	Gain settings 2 used.		


Automatic Switching Pattern 1 (Pn139 = n.

8.12.1 Gain Switching

Relationship between the Waiting Times and Switching Times for Gain Switching

In this example, an ON /COIN (Positioning Completion) signal is set as condition A for automatic gain switching. The position loop gain is changed from the value in Pn102 (Position Loop Gain) to the value in Pn106 (Second Position Loop Gain). When the /COIN signal turns ON, the switching operation begins after the waiting time (Pn135). The switching operation changes the position loop gain linearly from the gain set in Pn102 to the gain set in Pn106 over the switching time (Pn131).

tion You can use gain switching for either PI control or I-P control (Pn10B = $n.\Box\Box0\Box$ or $\Box\Box1\Box$).

Related Parameters

	Speed Loop Gain			Speed Posit	ion	
Pn100	Setting Range	Setting Unit	Default Setting	When Enabled	Classification	
	10 to 20,000	0.1 Hz	400	Immediately	Tuning	
	Speed Loop Integra	I Time Constant		Speed Posit	ion	
Pn101	Setting Range	Setting Unit	Default Setting	When Enabled	Classification	
	15 to 51,200	0.01 ms	2,000	Immediately	Tuning	
	Position Loop Gain			Posit	ion	
Pn102	Setting Range	Setting Unit	Default Setting	When Enabled	Classification	
	10 to 20,000	0.1/s	400	Immediately	Tuning	
	First Stage First Tor	que Reference Filter	Time Constant	Speed Posit	ion Torque	
Pn401	Setting Range	Setting Unit	Default Setting	When Enabled	Classification	
	0 to 65,535	0.01 ms	100	Immediately	Tuning	
	Model Following Co	ntrol Gain		Position		
Pn141	Setting Range	Setting Unit	Default Setting	When Enabled	Classification	
	10 to 20,000	0.1/s	500	Immediately	Tuning	
	Model Following Co	ntrol Correction	Position			
Pn142	Setting Range	Setting Unit	Default Setting	When Enabled	Classification	
	500 to 2,000	0.1%	1,000	Immediately	Tuning	
	Friction Compensat	ion Gain	-	Speed Posit	ion	
Pn121	Setting Range	Setting Unit	Default Setting	When Enabled	Classification	
	10 to 1,000	1%	100	Immediately	Tuning	
	Second Speed Loop	o Gain	-	Speed Position		
Pn104	Setting Range	Setting Unit	Default Setting	When Enabled	Classification	
	10 to 20,000	0.1 Hz	400	Immediately	Tuning	
	Second Speed Loop	o Integral Time Cons	tant	Speed Posit	ion	
Pn105	Setting Range	Setting Unit	Default Setting	When Enabled	Classification	
	15 to 51,200	0.01 ms	2,000	Immediately	Tuning	

8.12.2 Friction Compensation

Continued from previous page.

					i previous page.	
	Second Position Lo	op Gain		Posit	ion	
Pn106	Setting Range	Setting Unit	Default Setting	When Enabled	Classification	
	10 to 20,000	0.1/s	400	Immediately	Tuning	
	First Stage Second Torque Reference Filter Time Constant		Speed Posit	ion Torque		
Pn412	Setting Range	Setting Unit	Default Setting	When Enabled	Classification	
	0 to 65,535	0.01 ms	100	Immediately	Tuning	
	Second Model Following Control Gain			Position		
Pn148	Setting Range	Setting Unit	Default Setting	When Enabled	Classification	
	10 to 20,000	0.1/s	500	Immediately	Tuning	
	Second Model Follo	wing Control Correc	tion	Position		
Pn149	Setting Range	Setting Unit	Default Setting	When Enabled	Classification	
	500 to 2,000	0.1%	1,000	Immediately	Tuning	
	Second Friction Co	mpensation Gain		Speed Posit	ion	
Pn122	Setting Range	Setting Unit	Default Setting	When Enabled	Classification	
	10 to 1,000	1%	100	Immediately	Tuning	

Parameters Related to Automatic Gain Switching

	Gain Switching Time	e 1		Posit	ion	
Pn131	Setting Range	Setting Unit	Default Setting	When Enabled	Classification	
	0 to 65,535	1 ms	0	Immediately	Tuning	
	Gain Switching Time 2			Posit	ion	
Pn132	Setting Range	Setting Unit	Default Setting	When Enabled	Classification	
	0 to 65,535	1 ms	0	Immediately	Tuning	
	Gain Switching Waiting Time 1			Position		
Pn135	Setting Range	Setting Unit	Default Setting	When Enabled	Classification	
	0 to 65,535	1 ms	0	Immediately	Tuning	
	Gain Switching Wait	ting Time 2		Posit	ion	
Pn136	Setting Range	Setting Unit	Default Setting	When Enabled	Classification	
	0 to 65,535	1 ms	0	Immediately	Tuning	

Related Monitoring

• SigmaWin+

You can monitor gain switching with the status monitor or with tracing.

Analog Monitors

Parameter	Analog Monitor	Monitor Name	Output Value	Description
Pn006	n. DD 0B	Active Gain Monitor	1 V	Gain settings 1 are enabled.
Pn007	п.шшов	Active Gain Monitor	2 V	Gain settings 2 are enabled.

8.12.2 Friction Compensation

Friction compensation is used to compensate for viscous friction fluctuations and regular load fluctuations.

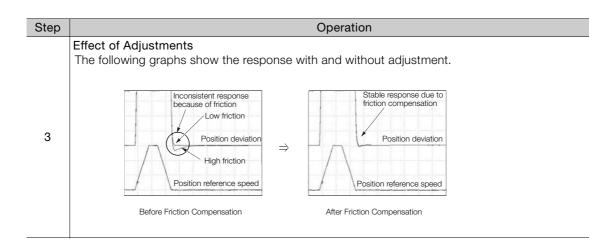
You can automatically adjust friction compensation with autotuning without a host reference, autotuning with a host reference, or custom tuning, or you can manually adjust it with the following procedure.

Required Parameter Settings

The following parameter settings are required to use friction compensation.

8.12.2 Friction Compensation

F	Parameter	Fund	tion	When Enabled	Classification
F	arameter	Function		when Enabled	Classification
Pn408	n.0□□□ (default setting)	Disable friction comper	Disable friction compensation.		Setup
	n.1000	Enable friction compen	sation.		
	Friction Compension	sation Gain	Speed Posit	ion	
Pn121	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	10 to 1,000	1%	100	Immediately	Tuning
	Second Friction Compensation Gain			Speed Posit	ion
Pn122	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	10 to 1,000	1%	100	Immediately	Tuning
	Friction Compension	sation Coefficient	n Coefficient		ion
Pn123	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 100	1%	0	Immediately	Tuning
	Friction Compension	sation Frequency Corre	ction	Speed Posit	ion
Pn124	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	-10,000 to 10,00	0 0.1 Hz	0	Immediately	Tuning
	Friction Compension	sation Gain Correction		Speed Posit	ion
Pn125	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	1 to 1,000	1%	100	Immediately	Tuning


Operating Procedure for Friction Compensation

Use the following procedure to perform friction compensation.

CAUTION Before you execute friction compensation, set the moment of inertia ratio (Pn103) as accurately as possible. If the setting greatly differs from the actual moment of inertia, vibration may occur.

	• ·
Step	Operation
1	Set the following parameters related to friction compensation to their default settings. Friction compensation gain (Pn121): 100 Second friction compensation gain (Pn122): 100 Friction compensation coefficient (Pn123): 0 Friction compensation frequency correction (Pn124): 0 Friction compensation gain correction (Pn125): 100 Note: Always use the default settings for the friction compensation frequency correction (Pn124) and fric- tion compensation gain correction (Pn125).
	Gradually increase the friction compensation coefficient (Pn123) to check the effect of friction com- pensation. Note: Usually, set the friction compensation coefficient (Pn123) to 95% or less. If the effect is insufficient, increase the friction compensation gain (Pn121) by 10% increments until vibration stops. Effect of Adjusted Parameters
2	 Pn121: Friction Compensation Gain and Pn122: Second Friction Compensation Gain These parameters set the response to external disturbances. The higher the setting is, the better the response will be. If the machine has a resonance frequency, however, vibration may occur if the setting is too high. Pn123: Friction Compensation Coefficient This parameter sets the effect of friction compensation. The higher the setting is, the more effective friction compensation will be. If the setting is too high, however, vibration will occur more easily. Usually, set the value to 95% or less.

8.12.3 Current Control Mode Selection

8.12.3 Current Control Mode Selection

Current control mode selection reduces high-frequency noise while the Servomotor is being stopped.

The setting depends on the capacity of the SERVOPACK.

To use current control mode selection, use current control mode 2 (set Pn009 to $n.\Box\Box1\Box$ or $n.\Box\Box2\Box$).

• SERVOPACK Models SGD7S-R70A, -R90A, -1R6A, -2R8A, -3R8A, -5R5A, and -7R6A

F	Parameter	Meaning	When Enabled	Classification
	n. 🗆 🗆 🗆 🗆			
Pn009	n.	Use current control mode 1.	After restart	Tuning
	n. 🗆 🗆 2 🗆	Use current control mode 2 (low noise).		

• SERVOPACK Models SGD7S-120A, -180A, -200A, -330A, -470A, -550A, -590A, and -780A

F	Parameter Meaning		When Enabled	Classification	
	n. 🗆 🗆 🗆			Tuning	
Pn009	n. DD1D (default setting)	Use current control mode 1.	After restart		
	n. 🗆 🗆 2 🗆	Use current control mode 2 (low noise).			

If current control mode 2 is selected, the load ratio may increase while the Servomotor is being stopped.

8.12.4 Current Gain Level Setting

You can set the current gain level to reduce noise by adjusting the parameter for current control inside the SERVOPACK according to the speed loop gain (Pn100). The noise level can be reduced by decreasing the current gain level (Pn13D) from its default setting of 2,000% (disabled). However, if the setting is decreased, the level of noise will be lowered, but the response characteristic of the SERVOPACK will also be reduced. Adjust the current gain level within the range that maintains the SERVOPACK response characteristic. This function is always disabled during torque control (Pn000 = $n.\square\square2\square$).

	Current Gain Level			Speed Posit	ion
Pn13D	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	100 to 2,000	1%	2,000	Immediately	Tuning

8.12.5 Speed Detection Method Selection

Ì
Important

If the current gain level is changed, the response characteristic of the speed loop will also change. Servo tuning must therefore be performed again.

8.12.5 Speed Detection Method Selection

You can use the speed detection method selection to ensure smooth Servomotor speed changes during operation. To ensure smooth motor speed changes during operation, set Pn009 to $n.\Box 1 \Box \Box$ (Use speed detection 2).

With a Linear Servomotor, you can reduce the noise level of the running motor when the linear encoder scale pitch is large.

F	Parameter	er Meaning		Classification
Pn009	n. 00 0 (default setting)	Use speed detection 1.	After restart	Tuning
	n. 🗆 1 🗆 🗆	Use speed detection 2.		

If the speed detection method is changed, the response characteristic of the speed loop will also change. Servo tuning must therefore be performed again.

8.12.6 Speed Feedback Filter

You can set a first order lag filter for the speed feedback in the speed loop. This ensures smooth changes in the feedback speed to reduce vibration. If a large value is set, it will increase the delay and make response slower.

	Speed Feedback Filter Time Constant			Speed Position		
Pn308	Setting Range	Setting Unit	Default Setting	When Enabled	Classification	
1 11000	0 to 65,535 (0.00 ms to 655.35 ms)	0.01 ms	0 (0.00 ms)	Immediately	Setup	

8.12.7 Proportional Control (P Control)

You can input the /P-CON (Proportional Control) signal from the host controller to select P control.

The speed control section uses proportional-integral control (PI control) if the reference remains at zero during speed control. The integral effect may cause the Servomotor to move. To prevent that, you can change from PI control to P control.

P control is set using $Pn000 = n.\Box\Box X\Box$ and the /P-CON signal.

However, if Pn000 is set to n. $\Box \Box A \Box$ (Switching between speed control with analog references and speed control with zero clamping), a position loop will be formed. Therefore, there is no need to use this function. P control is used while the /P-CON signal is ON.

/P-CON (Proportional Control) Signal

The /P-CON signal is used to switch between P control and PI control.

Туре	Signal	Connector Pin No.	Setting	Meaning
Input	/P-CON CN1-41	CN1-41	ON (closed)	Changes to PI control
Input	/F-00IN	(default setting)	OFF (open)	Changes to P control

8.12.7 Proportional Control (P Control)

Example When Using the Default Input Signal Allocations SERVOPACK Changing between P and PI control /P-CON

Note: This example uses the default input signal allocations.

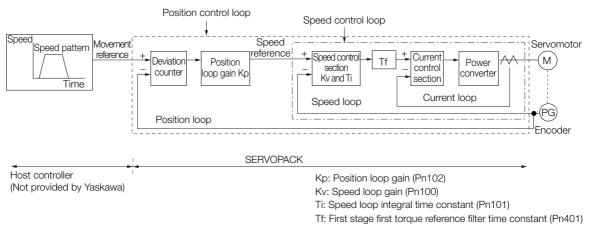
Control Methods and P Control Input Signals

Changing to P control is enabled when the control method is set to speed control or position control.

Parameter	Control Method Selection	Description	Changing to P Control	
	n.ロロ0ロ (default setting)	Speed control with analog references	You can change to P control with the default setting (CN1- 41 = /P-CON).	
	n.0010	Position control with pulse train references	You can also allocate the /P-CON signal to another connector pin.	
	n.□□2□	Torque control with analog references	You cannot change to P control.	
	n.🗆 🗆 3 🗆	Internal set speed control with contact commands		
	n.□□4□	Switching between internal set speed control with contact commands and speed control with analog references		
Pn000	n.□□5□	Switching between internal set speed control with contact commands and position control with pulse train references		
	n.□□6□	Switching between internal set speed control with contact commands and torque control with analog references		
	n.0070	Switching between position control with pulse train references and speed control with analog ref- erences	You must allocate the /P-CON signal to CN1-40 to CN1-46.	
	n.□□8□	Switching between position control with pulse train references and torque control with analog ref- erences		
	n.□□9□	Switching between torque control with analog ref- erences and speed control with analog references		
	n.DDAD	Switching between speed control with analog references and speed control with zero clamping		
	n.0080	Switching between position control with pulse train references and position control with reference pulse inhibition		

Note: Refer to the following section for information on changing the control method.

6.10 Selecting Combined Control Methods on page 6-58


8.13.1 Tuning the Servo Gains

8.13 Manual Tuning

This section describes manual tuning.

8.13.1 Tuning the Servo Gains

Servo Gains

Figure 8.1 Simplified Block Diagram for Position Control

In order to manually tune the servo gains, you must understand the configuration and characteristic of the SERVOPACK and adjust the servo gains individually. In most cases, if you greatly change any one parameter, you must adjust the other parameters again. To check the response characteristic, you must prepare a measuring instrument to monitor the output waveforms from the analog monitor.

The SERVOPACK has three feedback systems (the position loop, speed loop, and current loop), and the response characteristic must be increased more with the inner loops. If this relationship is not maintained, the response characteristic will suffer and vibration will occur more easily.

A sufficient response characteristic is ensured for the current loop. There is never a need for it to be adjusted by the user.

Outline

You can use manual tuning to set the servo gains in the SERVOPACK to increase the response characteristic of the SERVOPACK. For example, you can reduce the positioning time for position control.

Use manual tuning in the following cases.

- When tuning with autotuning without a host reference or autotuning with a host reference does not achieve the desired results
- When you want to increase the servo gains higher than the gains that resulted from autotuning without a host reference or autotuning with a host reference
- · When you want to determine the servo gains and moment of inertia ratio yourself

You start manual tuning either from the default parameter settings or from the gain settings that resulted from autotuning without a host reference or autotuning with a host reference.

Applicable Tools

You can monitor the servo gains with the SigmaWin+ or with the analog monitor.

Precautions

Vibration may occur while you are tuning the servo gains. We recommend that you enable vibration alarms (Pn310 = $n.\square\square\square$) to detect vibration. Refer to the following section for information on vibration detection.

3 6.15 Initializing the Vibration Detection Level on page 6-96

Vibration alarms are not detected for all vibration. Also, an emergency stop method is necessary to stop the machine safely when an alarm occurs. You must provide an emergency stop device and activate it immediately whenever vibration occurs.

Tuning Procedure Example (for Position Control or Speed Control)

Step	Description
1	Adjust the first stage first torque reference filter time constant (Pn401) so that vibration does not occur.
2	Increase the position loop gain (Pn100) and reduce the speed loop integral time constant (Pn101) as far as possible within the range that does not cause machine vibration.
3	Repeat steps 1 and 2 and return the settings about 10% to 20% from the values that you set.
4	For position control, increase the position loop gain (Pn102) within the range that does not cause vibration.

Information If you greatly change any one servo gain parameter, you must adjust the other parameters again. Do not increase the setting of just one parameter. As a guideline, adjust the settings of the servo gains by approximately 5% each. As a rule, change the servo parameters in the following order.

- To Increase the Response Speed
- 1. Reduce the torque reference filter time constant.
- 2. Increase the speed loop gain.
- 3. Decrease the speed loop integral time constant.
- 4. Increase the position loop gain.
- To Reduce Response Speed and to Stop Vibration and Overshooting
- 1. Reduce the position loop gain.
- 2. Increase the speed loop integral time constant.
- 3. Decrease the speed loop gain.
- 4. Increase the torque filter time constant.

Adjusted Servo Gains

You can set the following gains to adjust the response characteristic of the SERVOPACK.

- Pn100: Speed Loop Gain
- Pn101: Speed Loop Integral Time Constant
- Pn102: Position Loop Gain
- Pn401: First Stage First Torque Reference Filter Time Constant

♦ Position Loop Gain

The position loop gain determines the response characteristic of the position loop in the SER-VOPACK. If you can increase the setting of the position loop gain, the response characteristic will improve and the positioning time will be shortened. However, you normally cannot increase the position loop gain higher than the inherit vibration frequency of the machine system. Therefore, to increase the setting of the position loop gain, you must increase the rigidity of the machine to increase the inherit vibration frequency of the machine.

	Position Loop Gain			Position	
Pn102	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	10 to 20,000	0.1/s	400	Immediately	Tuning

8.13.1 Tuning the Servo Gains

For machines for which a high position loop gain (Pn102) cannot be set, overflow alarms can Information occur during high-speed operation. If that is the case, you can increase the setting of the following parameter to increase the level for alarm detection.

Use the following condition as a guideline for determining the setting.

 $Pn520 \ge \frac{Maximum feed speed [reference units/s]}{2.0} \times 2.0$ Pn102 ÷ 10 (1/s)

If you use a position reference filter, transient deviation will increase due to the filter time constant. When you make the setting, consider deviation accumulation that may result from the filter.

	Position Deviation	Overflow Alarm	Position		
Pn520	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
111020	1 to 1,073,741,823	1 reference unit	5,242,880	Immediately	Setup

Speed Loop Gain

This parameter determines the response characteristic of the speed loop. If the response characteristic of the speed loop is low, it becomes a delay factor for the position loop located outside of the speed loop. This will result in overshooting and vibration in the speed reference. Therefore, setting the speed loop gain as high as possible within the range that will not cause the machine system to vibrate will produce a stable servo system with a good response characteristic.

	Speed Loop Gain		Speed Position Torque		
Pn100	Setting Range	Setting Unit	Default Setting	When Enabled	Classifica- tion
	10 to 20,000	0.1 Hz	400	Immediately	Tuning

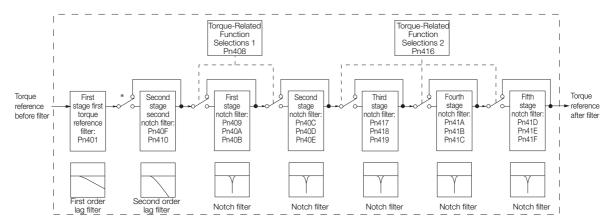
Setting of Pn103 = $\frac{\text{Load moment of inertia at motor shaft }(J_L)}{\text{Servomotor moment of inertia }(L_M)} \times 100(\%)$

The default setting of Pn103 (Moment of Inertia Ratio) is 100. Before you tune the servo, calculate the moment of inertia ratio with the above formula and set Pn103 to the calculation result.

	Moment of Inertia Ratio			Speed Position Torque		
Pn103	Setting Range	Setting Unit	Default Setting	When Enabled	Classifica- tion	
	0 to 20,000	1%	100	Immediately	Tuning	

Speed Loop Integral Time Constant

To enable response to even small inputs, the speed loop has an integral element. The integral element becomes a delay factor in the servo system. If the time constant is set too high, overshooting will occur, positioning settling time will increase, and the response characteristic will suffer.


	Speed Loop Integral Time Constant			Speed Position	
Pn101	Setting Range	Setting Unit	Default Setting	When Enabled	Classifica- tion
	15 to 51,200	0.01 ms	2,000	Immediately	Tuning

Torque Reference Filter

As shown in the following diagram, the torque reference filter contains a first order lag filter and notch filters arranged in series, and each filter operates independently.

The notch filters can be enabled and disabled with $Pn408 = n.\Box X\Box X$ and $Pn416 = n.\Box XXX$.

8.13.1 Tuning the Servo Gains

* The second stage second torque reference filter is disabled when Pn40F is set to 5,000 (default setting) and it is enabled when Pn40F is set to a value lower than 5,000.

■ Torque Reference Filter

If you suspect that machine vibration is being caused by the Servo Drive, try adjusting the torque reference filter time constant. This may stop the vibration. The lower the value, the better the control response characteristic will be, but there may be a limit depending on the machine conditions.

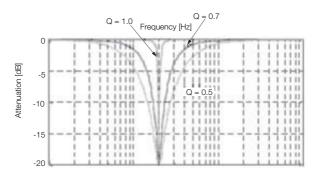
	First Stage First Torque Reference Filter Time Constant			Speed Position Torque	
Pn401	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 65,535	0.01 ms	100	Immediately	Tuning
	Second Stage Second Torque Reference Filter Frequency			Speed Position Torque	
Pn40F	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	100 to 5,000	1 Hz	5000*	Immediately	Tuning
	Second Stage Second Notch Filter Q Value			Speed Posit	ion Torque
Pn410	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	50 to 100	0.01	50	Immediately	Tuning

* The filter is disabled if you set the parameter to 5,000.

Notch Filters

The notch filter can eliminate specific frequency elements generated by the vibration of sources such as resonance of the shaft of a ball screw.

The notch filter puts a notch in the gain curve at the specific vibration frequency (called the notch frequency). The frequency components near the notch frequency can be reduced or removed with a notch filter.

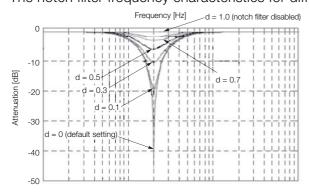

Notch filters are set with three parameters for the notch filter frequency, notch filter Q value, and notch filter depth. This section describes the notch filter Q value and notch filter depth.

Notch filter Q Value

The setting of the notch filter Q value determines the width of the frequencies that are filtered for the notch filter frequency. The width of the notch changes with the notch filter Q value. The larger the notch filter Q value is, the steeper the notch is and the narrower the width of frequencies that are filtered is.

The notch filter frequency characteristics for different notch filter Q values are shown below.

8.13.1 Tuning the Servo Gains



Note: The above notch filter frequency characteristics are based on calculated values and may be different from actual characteristics.

Notch Filter Depth

The setting of the notch filter depth determines the depth of the frequencies that are filtered for the notch filter frequency. The depth of the notch changes with the notch filter depth. The smaller the notch filter depth is, the deeper the notch is, increasing the effect of vibration suppression. However, if the value is too small, vibration can actually increase.

The notch filter is disabled if the notch filter depth, d, is set to 1.0 (i.e., if Pn419 is set to 1,000). The notch filter frequency characteristics for different notch filter depths are shown below.

Note: The above notch filter frequency characteristics are based on calculated values and may be different from actual characteristics.

F	Parameter	Meaning	When Enabled	Classification
	n.□□□0 (default setting)	Disable first stage notch filter.		
Pn408	n.0001	Enable first stage notch filter.		
F11400	n.□0□□ (default setting)	Disable second stage notch filter.		
	n.0100	Enable second stage notch filter.		Setup
	n.□□□0 (default setting)	Disable third stage notch filter.	Immediately	
	n.0001	Enable third stage notch filter.	-	
Pn416	n.□□0□ (default setting)	Disable fourth stage notch filter.		
	n.0010	Enable fourth stage notch filter.		
	n.□0□□ (default setting)	Disable fifth stage notch filter.		
	n.0100	Enable fifth stage notch filter.		

You can enable or disable the notch filter with Pn408.

Set the machine vibration frequencies in the notch filter parameters.

	First Stage Notch Fi	Iter Frequency		Speed Posit	ion Torque
Pn409	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	50 to 5,000	1 Hz	5,000	Immediately	Tuning
	First Stage Notch Fi	Iter Q Value		Speed Posit	ion Torque
Pn40A	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	50 to 1,000	0.01	70	Immediately	Tuning
	First Stage Notch Fi	Iter Depth		Speed Posit	ion Torque
Pn40B	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 1,000	0.001	0	Immediately	Tuning
	Second Stage Notcl	h Filter Frequency		Speed Posit	ion Torque
Pn40C	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	50 to 5,000	1 Hz	5,000	Immediately	Tuning
	Second Stage Notcl	h Filter Q Value		Speed Posit	ion Torque
Pn40D	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	50 to 1,000	0.01	70	Immediately	Tuning
	Second Stage Notcl	h Filter Depth		Speed Posit	ion Torque
Pn40E	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 1,000	0.001	0	Immediately	Tuning
	Third Stage Notch F	ilter Frequency		Speed Posit	ion Torque
Pn417	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	50 to 5,000	1 Hz	5,000	Immediately	Tuning
	Third Stage Notch F	ilter Q Value		Speed Posit	ion Torque
Pn418	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	50 to 1,000	0.01	70	Immediately	Tuning
	Third Stage Notch F	ilter Depth		Speed Posit	ion Torque
Pn419	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 1,000	0.001	0	Immediately	Tuning
	Fourth Stage Notch	Filter Frequency		Speed Posit	ion Torque
Pn41A	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	50 to 5,000	1 Hz	5,000	Immediately	Tuning
	Fourth Stage Notch	Filter Q Value		Speed Posit	ion Torque
Pn41B	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	50 to 1,000	0.01	70	Immediately	Tuning
	Fourth Stage Notch	Filter Depth		Speed Posit	ion Torque
Pn41C	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 1,000	0.001	0	Immediately	Tuning
	Fifth Stage Notch Fi	Iter Frequency		Speed Posit	ion Torque
Pn41D	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	50 to 5,000	1 Hz	5,000	Immediately	Tuning
	Fifth Stage Notch Fi	Iter Q Value		Speed Posit	ion Torque
Pn41E	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	50 to 1,000	0.01	70	Immediately	Tuning
	Fifth Stage Notch Fi	Iter Depth		Speed Posit	ion Torque
Pn41F	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
111411	0 to 1,000	0.001	0	Immediately	Tuning

to the loop Important ting • Chai	not set notch filter frequencies (Pn409, Pn40C, Pn417, Pn41A, and Pn41D) that are close e speed loop's response frequency. Set a frequency that is at least four times the speed gain (Pn100). (However, Pn103 (Moment of Inertia Ratio) must be set correctly. If the set- is not correct, vibration may occur and the machine may be damaged. nge the notch filter frequencies (Pn409, Pn40C, Pn417, Pn41A, and Pn41D) only while the omotor is stopped. Vibration may occur if a notch filter frequency is changed during oper- n.
--	---

Guidelines for Manually Tuning Servo Gains

When you manually adjust the parameters, make sure that you completely understand the information in the user's manual and use the following conditional expressions as guidelines. The appropriate values of the parameter settings are influenced by the machine specifications, so they cannot be determined universally. When you adjust the parameters, actually operate the machine and use the SigmaWin+ or analog monitor to monitor operating conditions. Even if the status is stable while the motor is stopped, an unstable condition may occur when an operation reference is input. Therefore, input operation references and adjust the servo gains as you operate the motor.

Stable gain: Settings that provide a good balance between parameters.

However, if the load moment of inertia is large and the machine system contains elements prone to vibration, you must sometimes use a setting that is somewhat higher to prevent the machine from vibrating.

Critical gain: Settings for which the parameters affect each other

Depending on the machine conditions, overshooting and vibration may occur and operation may not be stable. If the critical gain condition expressions are not met, operation will become more unstable, and there is a risk of abnormal motor shaft vibration and round-trip operation with a large amplitude. Always stay within the critical gain conditions.

If you use the torque reference filter, second torque reference filter, and notch filters together, the interference between the filters and the speed loop gain will be superimposed. Allow leeway in the adjustments.

The following adjusted value guidelines require that the setting of Pn103 (Moment of Inertia Ratio) is correctly set for the actual machine.

♦ When Pn10B = n.□□0□ (PI Control)

Guidelines are given below for gain settings 1.

The same guidelines apply to gain settings 2 (Pn104, Pn105, Pn106, and Pn412).

 Speed Loop Gain (Pn100 [Hz]) and Position Loop Gain (Pn102 [/s]) Stable gain: Pn102 [/s] ≤ 2π × Pn100/4 [Hz] Critical gain: Pn102 [/s] < 2π × Pn100 [Hz]

- Speed Loop Gain (Pn100 [Hz]) and Speed Loop Integral Time Constant (Pn101 [ms]) Stable gain: Pn101 [ms] ≥ 4,000/(2π × Pn100 [Hz]) Critical gain: Pn101 [ms] > 1,000/(2π × Pn100 [Hz])
- Speed Loop Gain (Pn100 [Hz]) and First Stage First Torque Reference Filter Time Constant (Pn401 [ms]) Stable gain: Pn401 [ms] ≤ 1,000/(2π × Pn100 [Hz] × 4)

Critical gain: Pn401 [ms] \leq 1,000/(2 π × Pn100 [Hz] × 4)

Speed Loop Gain (Pn100 [Hz]) and Second Stage Second Torque Reference Filter Frequency (Pn40F [Hz])

Critical gain: Pn40F [Hz] > $4 \times$ Pn100 [Hz] Note: Set the second stage second notch filter Q value (Pn410) to 0.70.

- Speed Loop Gain (Pn100 [Hz]) and First Stage Notch Filter Frequency (Pn409 [Hz]) (or Second Stage Notch Filter Frequency (Pn40C [Hz])) Critical gain: Pn409 [Hz] > 4 × Pn100 [Hz]
- Speed Loop Gain (Pn100 [Hz]) and Speed Feedback Filter Time Constant (Pn308 [ms]) Stable gain: Pn308 [ms] ≤ 1,000/(2π × Pn100 [Hz] × 4) Critical gain: Pn308 [ms] < 1,000/(2π × Pn100 [Hz] × 1)

• When $Pn10B = n.\Box\Box1\Box$ (I-P Control)

Guidelines are given below for gain settings 1.

The same guidelines apply to gain settings 2 (Pn104, Pn105, Pn106, and Pn412).

For I-P control, the relationships between the speed loop integral time constant, speed loop gain, and position loop gain are different from the relationships for PI control. The relationship between other servo gains is the same as for PI control.

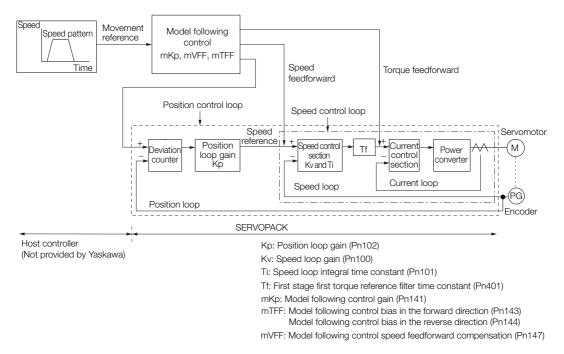
- Speed Loop Gain (Pn100 [Hz]) and Speed Loop Integral Time Constant (Pn101 [ms]) Stable gain: Pn100 [Hz] ≥ 320/Pn101 [ms]
- Position Loop Gain (Pn102 [/s]) and Speed Loop Integral Time Constant (Pn101 [ms]) Stable gain: Pn102 [/s] ≤ 320/Pn101 [ms]
 - Information Selecting the Speed Loop Control Method (PI Control or I-P Control) Usually, I-P control is effective for high-speed positioning and high-speed, high-precision processing applications. With I-P control, you can use a lower position loop gain than for PI control to reduce the positioning time and reduce arc radius reduction. However, if you can use mode switching to change to proportional control to achieve the desired application, then using PI control would be the normal choice.

Decimal Points in Parameter Settings

For the SGD7S SERVOPACKs, decimal places are given for the settings of parameters on the Digital Operator, Panel Operator, and in the manual. For example with Pn100 (Speed Loop Gain), Pn100 = 40.0 is used to indicate a setting of 40.0 Hz. In the following adjusted value guidelines, the decimal places are also given.

• Speed Loop Gain (Pn100 [Hz]) and Speed Loop Integral Time Constant (Pn101 [ms]) Stable gain: Pn101 [ms] \geq 4,000/($2\pi \times$ Pn100 [Hz]), therefore If Pn100 = 40.0 [Hz], then Pn101 = 4,000/($2\pi \times$ 40.0) \approx 15.92 [ms].

Model Following Control


You can use model following control to improve response characteristic and shorten positioning time. You can use model following control only with position control.

Normally, the parameters that are used for model following control are automatically set along with the servo gains by executing autotuning or custom tuning. However, you must adjust them manually in the following cases.

- When the tuning results for autotuning or custom tuning are not acceptable
- When you want to increase the response characteristic higher than that achieved by the tuning results for autotuning or custom tuning
- · When you want to determine the servo gains and model following control parameters yourself

8.13.1 Tuning the Servo Gains

The block diagram for model following control is provided below.

Manual Tuning Procedure

Use the following tuning procedure for using model following control.

Step	Description
1	Friction compensation must also be used. Set the friction compensation parameters. Refer to the following section for the setting procedure.
2	 Adjust the servo gains. Refer to the following section for an example procedure. <i>Tuning Procedure Example (for Position Control or Speed Control)</i> on page 8-75 Note: 1. Set the moment of inertia ratio (Pn103) as accurately as possible. 2. Refer to the guidelines for manually tuning the servo gains and set a stable gain for the position loop gain (Pn102). <i>Guidelines for Manually Tuning Servo Gains</i> on page 8-80
3	Increase the model following control gain (Pn141) as much as possible within the range in which overshooting and vibration do not occur.
4	If overshooting occurs or if the response is different for forward and reverse operation, fine-tune model following control with the following settings: model following control bias in the forward direction (Pn143), model following control bias in the reverse direction (Pn144), and model following control speed feedforward compensation (Pn147).

Related Parameters

Next we will describe the following parameters that are used for model following control.

- Pn140 (Model Following Control-Related Selections)
- Pn141 (Model Following Control Gain)
- Pn143 (Model Following Control Bias in the Forward Direction)
- Pn144 (Model Following Control Bias in the Reverse Direction)
- Pn147 (Model Following Control Speed Feedforward Compensation)

Model Following Control-Related Selections

Set $Pn140 = n.\square\square\squareX$ to specify whether to use model following control.

If you use model following control with vibration suppression, set Pn140 to $n.\Box\Box1\Box$ or Pn140 = $n.\Box\Box2\Box$. When you also perform vibration suppression, adjust vibration suppression with custom tuning in advance.

Note: If you use vibration suppression (Pn140 = n. $\Box \Box \Box \Box$ or Pn140 = n. $\Box \Box \Box \Box$), always set Pn140 to n. $\Box \Box \Box \Box$ (Use model following control).

	Parameter	Function	When Enabled	Classification
Pn140	n.□□□0 (default setting)	Do not use model following control.	Immediately	Tuning
	n.0001	Use model following control.		
	n.□□0□ (default setting)	Do not perform vibration suppression.		
	n.0010	Perform vibration suppression for a specific frequency.		
	n.0020	Perform vibration suppression for two specific frequencies.		

Model Following Control Gain

The model following control gain determines the response characteristic of the servo system. If you increase the setting of the model following control gain, the response characteristic will improve and the positioning time will be shortened. The response characteristic of the servo system is determined by this parameter, and not by Pn102 (Position Loop Gain).

	Model Following Control Gain			Position	
Pn141	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	10 to 20,000	0.1/s	500	Immediately	Tuning

Information For machines for which a high model following control gain cannot be set, the size of the position deviation in model following control will be determined by the setting of the model following control gain. For a machine with low rigidity, in which a high model following control gain cannot be set, position deviation overflow alarms may occur during high-speed operation. If that is the case, you can increase the setting of the following parameter to increase the level for alarm detection.

Use the following conditional expression for reference in determining the setting.

 $Pn 520 \ge \frac{\text{Maximum feed speed [reference units/s]}}{Pn 141/10 [1/s]} \times 2.0$

	Position Deviation Overflow Alarm Level			Position	
Pn520	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
111320	1 to 1,073,741,823	1 reference unit	5,242,880	Immediately	Setup

Model Following Control Bias in the Forward Direction and Model Following Control Bias in the Reverse Direction

If the response is different for forward and reverse operation, use the following parameters for fine-tuning.

If you decrease the settings, the response characteristic will be lowered but overshooting will be less likely to occur.

	Model Following Control Bias in the Forward Direction			Position		
Pn143	Setting Range	Setting Unit	Default Setting	When Enabled	Classification	
	0 to 10,000	0.1%	1,000	Immediately	Tuning	
	Model Following Control Bias in the Reverse Direction			Position		
Pn144	Setting Range	Setting Unit	Default Setting	When Enabled	Classification	
	0 to 10,000	0.1%	1,000	Immediately	Tuning	

Model Following Control Speed Feedforward Compensation

If overshooting occurs even after you adjust the model following control gain, model following control bias in the forward direction, and model following control bias in the reverse direction, you may be able to improve performance by setting the following parameter.

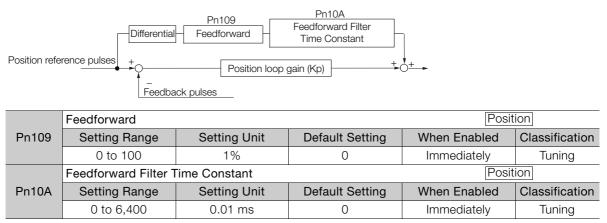
If you decrease the settings, the response characteristic will be lowered but overshooting will be less likely to occur.

8.13.2 Compatible Adjustment Functions

	Model Following Control Speed Feedforward Compensation			Position	
Pn147	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 10,000	0.1%	1,000	Immediately	Tuning

Model Following Control Type Selection

When you enable model following control, you can select the model following control type. Normally, set Pn14F to n. DDD1 (Use model following control type 2) (default setting). If compatibility with previous models is required, set Pn14F to n. DDD0 (Use model following control type 1).


Parameter		Meaning	When Enabled	Classification
	n.□□□0	Use model following control type 1.		
Pn14F	n.□□□1 (default setting)	Use model following control type 2.	After restart	Tuning

8.13.2 Compatible Adjustment Functions

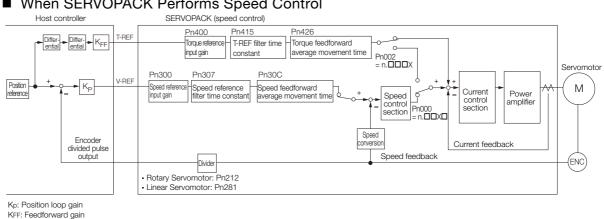
The compatible adjustment functions are used together with manual tuning. You can use these functions to improve adjustment results. These functions allow you to use the same functions as for Σ -III-Series SERVOPACKs to adjust Σ -7-Series SERVOPACKs.

Feedforward

The feedforward function applies feedforward compensation to position control to shorten the positioning time.

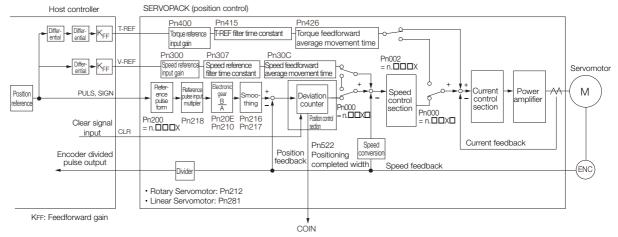
Note: If you set the feedforward value too high, the machine may vibrate. As a guideline, use a setting of 80% or less.

Torque Feedforward and Speed Feedforward


You can use the torque feedforward and speed feedforward functions to help shorten the positioning time. The reference is created from the differential of the position reference at the host controller.

Torque feedforward: This is effective for speed control or position control. It is sent from the

host controller along with the speed reference. Connect the speed reference from the host controller to the V-REF (CN1-5 and CN1-6) signal and the torque feedforward reference from the host controller to the T-REF (CN1-9 and CN1-10) signal.


Speed feedforward: This is effective only for position control. It is sent to the SERVOPACK from the host controller along with the position reference. Connect the position reference from the host controller to the PULS and SIGN (CN1-7,CN1 -8, CN1-11, and CN1-12) signals and the speed feedforward reference from the host controller to the V-REF (CN1-5 and CN1-6) signal.

Examples of Connections to Host Controllers

When SERVOPACK Performs Speed Control

When SERVOPACK Performs Position Control

Related Parameters

Torque Feedforward

Torque feedforward is allocated to T-REF (Pn002 = $n.\Box\Box\BoxX$) and it is set using the torque reference input gain (Pn400) and T-REF filter time constant (Pn415).

The default setting of Pn400 is 30. Therefore, if the torque feedforward value is ±3 V, then the torque is limited to $\pm 100\%$ of the rated torque.

Parameter		Meaning	When Enabled	Classification
	n.□□□0 (default setting)	Do not use T-REF.	After restart	Setup
Pn002	n.0001	Use T-REF as an external torque limit input.		
FIIUUZ	n.🗆 🗆 🗠 2	Use T-REF as a torque feedback input.	Aller Testart	Setup
	n.0003	Use T-REF as an external torque limit input when /P-CL or /N-CL is active.		

	Torque Reference Ir	iput Gain		Speed Position	on Torque
Pn400	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	10 to 100	0.1 V/rated torque	30	Immediately	Setup
	T-REF Filter Time C	onstant		Speed Position	on Torque
Pn415	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 65,535	0.01 ms	0	Immediately	Setup

8.13.2 Compatible Adjustment Functions

	Torque feedforward average movement time					
Pn426	Setting Range	Setting Unit	Default Setting	When Enabled	Classification	
	0 to 5,100	0.1 ms	0	Immediately	Setup	

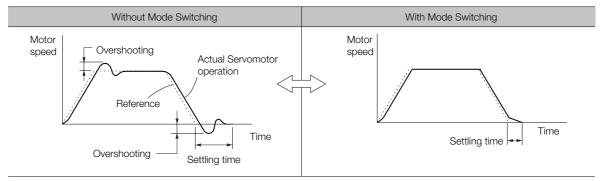
Note: 1. Overshooting will occur if you set the torque feedforward too high. Set the optimum value while monitoring the response.

2. You cannot use the torque feedforward function together with torque limiting with an analog voltage reference.

Speed Feedforward

You set the speed feedforward function with the position control option (Pn207 = $n.\Box\Box X\Box$) and the speed reference input gain (Pn300).

The default setting of Pn300 is 600. Therefore, if the speed feedforward value is ± 6 V, then it will indicate the rated speed.


F	Parameter Meaning		When Enabled	Classification	
Pn207	n.□□0□ (default setting)	Do not use V-REF.		After restart	Setup
	n.0010	Use V-REF as a speed	feedback input.		
	Speed Reference	Reference Input Gain			on Torque
Pn300	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
1 11000	150 to 3,000	0.01 V/Rated motor speed	600	Immediately	Setup
	Speed Reference	Filter Time Constant			
Pn307	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 65,535	0.01 ms	40	Immediately	Setup
	Speed Feedforwa	ard Average Movement	Time		
Pn30C	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 5,100	0.1 ms	0	Immediately	Setup

Note: Overshooting will occur if you set the feedforward too high. Set the optimum value while monitoring the response.

Mode Switching (Changing between Proportional and PI Control)

You can use mode switching to automatically change between proportional control and PI control.

Overshooting caused by acceleration and deceleration can be suppressed and the settling time can be reduced by setting the switching condition and switching levels.

Related Parameters

Select the switching condition for mode switching with $Pn10B = n.\Box\Box\BoxX$.

Parameter		Mode Switching		Parameter That Sets the Level		Classification
		Selection	Rotary Servomotor	Linear Servomotor	Enabled	Classification
	n.□□□0 (default setting)	Use the internal torque reference as the condition.	Pn1	10C		
	n.0001	Use the speed ref- erence as the con- dition.	Pn10D	Pn181		
Pn10B	n.0002	Use the accelera- tion reference as the condition.	Pn10E	Pn182	Immediately	Setup
	n.0003	Use the position deviation as the condition.	Pn	10F		
	n.0004	Do not use mode switching.	-	-		

Parameters That Set the Switching Levels

• Rotary Servomotors

	Mode Switching Level for Torque Reference			Speed F	Position
Pn10C	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 800	1%	200	Immediately	Tuning
	Mode Switching L	evel for Speed Refe	erence	Speed F	Position
Pn10D	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 10,000	1 min ⁻¹	0	Immediately	Tuning
	Mode Switching L	evel for Acceleration	n	Speed F	Position
Pn10E	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 30,000	1 min ⁻¹ /s	0	Immediately	Tuning
	Mode Switching L	evel for Position De	eviation	F	Position
Pn10F	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 10,000	1 reference unit	0	Immediately	Tuning

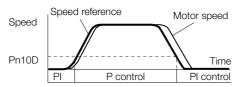
• Linear Servomotors


	Mode Switching Level for Force Reference			Speed	Position
Pn10C	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 800	1%	200	Immediately	Tuning
	Mode Switching L	evel for Speed Refe	erence	Speed F	Position
Pn181	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 10,000	1 mm/s	0	Immediately	Tuning
	Mode Switching L	evel for Acceleration	n	Speed F	Position
Pn182	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 30,000	1 mm/s ²	0	Immediately	Tuning
	Mode Switching L	evel for Position De	eviation	F	Position
Pn10F	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 10,000	1 reference unit	0	Immediately	Tuning

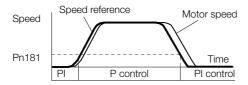
Using the Torque Reference as the Mode Switching Condition (Default Setting)

When the torque reference equals or exceeds the torque set for the mode switching level for torque reference (Pn10C), the speed loop is changed to P control.

The default setting for the torque reference level is 200%.

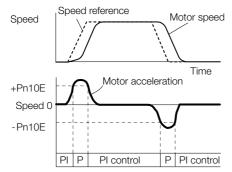

8.13.2 Compatible Adjustment Functions

■ Using the Speed Reference as the Mode Switching Condition

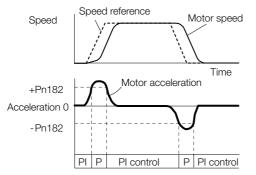

Rotary Servomotors

When the speed reference equals or exceeds the speed set for the mode switching level for a speed reference (Pn10D), the speed loop is changed to P control.

• Linear Servomotors


When the speed reference equals or exceeds the speed set for the mode switching level for a speed reference (Pn181), the speed loop is changed to P control.

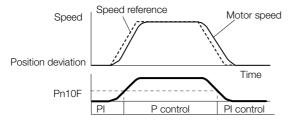
Using the Acceleration as the Mode Switching Condition


Rotary Servomotors

When the speed reference equals or exceeds the acceleration rate set for the mode switching level for acceleration (Pn10E), the speed loop is changed to P control.

Linear Servomotors

When the speed reference equals or exceeds the acceleration rate set for the mode switching level for acceleration (Pn182), the speed loop is changed to P control.



8.13.2 Compatible Adjustment Functions

◆ Using the Position Deviation as the Mode Switching Condition

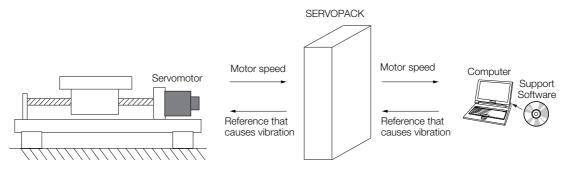
When the position deviation equals or exceeds the value set for the mode switching level for position deviation (Pn10F), the speed loop is changed to P control.

This setting is enabled only for position control.

Position Integral

The position integral is the integral function of the position loop. It is used for the electronic cams and electronic shafts when using the SERVOPACK with a Yaskawa MP3000-Series Machine Controller.

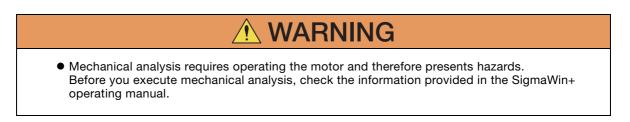
	Position Integral Tin	ne Constant		Posit	ion
Pn11F	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 50,000	0.1 ms	0	Immediately	Tuning


8.14.1 Mechanical Analysis

8.14 Diagnostic Tools

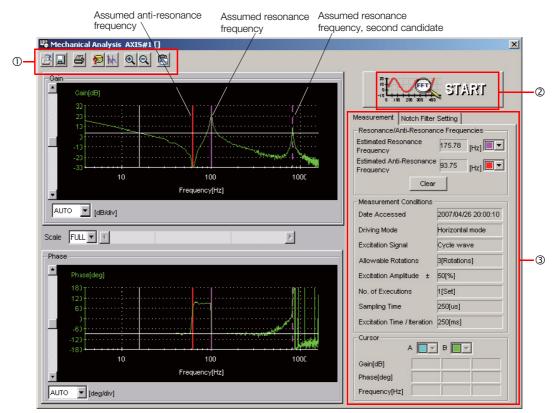
8.14.1 Mechanical Analysis

Overview


You can connect the SERVOPACK to a computer to measure the frequency characteristics of the machine. This allows you to measure the frequency characteristics of the machine without using a measuring instrument.

The motor is used to cause machine vibration and then the speed frequency characteristics for the motor torque are measured. The measured frequency characteristics can be used to determine the machine resonance.

You determine the machine resonance for use in servo tuning and as reference for considering changes to the machine. The performance of the servo cannot be completely utilized depending on the rigidity of the machine. You may need to consider making changes to the machine. The information can also be used as reference for servo tuning to help you adjust parameters, such as the servo rigidity and torque filter time constant.


You can also use the information to set parameters, such as the notch filters.

Frequency Characteristics

The motor is used to cause the machine to vibrate and the frequency characteristics from the torque to the motor speed are measured to determine the machine characteristics. For a normal machine, the resonance frequencies are clear when the frequency characteristics are plotted on graphs with the gain and phase (Bode plots). The Bode plots show the size (gain) of the response of the machine to which the torque is applied, and the phase delay (phase) in the response for each frequency. Also, the machine resonance frequency can be determined from the maximum frequency of the valleys (anti-resonance) and peaks (resonance) of the gain and the phase delay.

For a motor without a load or for a rigid mechanism, the gain and phase change gradually in the Bode plots.

① Toolbar

② START Button

Click the START Button to start analysis.

3 Measurement and Notch Filter Setting Tab Pages

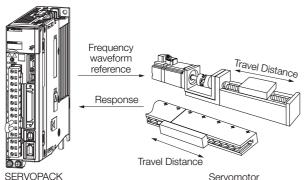
Measurement Tab Page: Displays detailed information on the results of analysis.

Notch Filter Setting Tab Page: Displays the notch filter frequencies. You can set these values in the parameters.

8.14.2 Easy FFT

Easy FFT 8.14.2

The machine is made to vibrate and a resonance frequency is detected from the generated vibration to set notch filters according to the detected resonance frequencies. This is used to eliminate high-frequency vibration and noise.


During execution of Easy FFT, a frequency waveform reference is sent from the SERVOPACK to the Servomotor to automatically cause the shaft to rotate multiple times within 1/4th of a rotation, thus causing the machine to vibrate.

Execute Easy FFT after the servo is turned OFF if operation of the SERVOPACK results in highfrequency noise and vibration.

- WARNING
- Never touch the Servomotor or machine during execution of Easy FFT. Doing so may result in injury.

 Use Easy FFT when the servo gain is low, such as in the initial stage of servo tuning. If you execute Easy FFT after you increase the gain, the machine may vibrate depending on the machine characteristics or gain balance.

SERVOPACK

Easy FFT is built into the SERVOPACK for compatibility with previous products. Normally use autotuning without a host reference for tuning.

Preparations

Check the following settings before you execute Easy FFT.

- The parameters must not be write prohibited.
- The main circuit power supply must be ON.
- The test without a motor function must be disabled (Pn00C = $n.\Box\Box\Box$).
- There must be no alarms.
- There must be no hard wire base block (HWBB).
- The servo must be OFF.
- There must be no overtravel.
- An external reference must not be input.

Operating Procedure

Use the following procedure.

1. Select Setup - EasyFFT from the menu bar of the Main Window of the SigmaWin+. The EasyFFT Dialog Box will be displayed. Click the Cancel Button to cancel Easy FFT. You will return to the main window.

2. Click the OK Button.

Another EasyFFT Dialog Box will be displayed.

3. Click the Servo ON Button.

EasyFFT AXIS#0	×
Servo ON/OFF operation	
Servo OFF	Servo ON
Measurement start / Stopping operation	
Measurement condition	
Stimulus signal Frequency	Start
Instruction amplitude	
(1 - 300) Rotation direction	
	Analyzing frequency
Measurement result	
Detected resonance frequency	[Hz]
Optimal notch filter frequency	[Hz]
Notch filter selection	
	Measurement complete

4. Select the instruction (reference) amplitude and the rotation direction in the Measurement condition Area, and then click the Start Button. The motor shaft will rotate and measurements will start.

Servo ON/OFF operation Servo ON Servo ON Servo OFF Servo OFF Servo OFF Servo OFF Servo OFF Servo OFF Servo OFF Servo OFF Servo OFF Servo OFF Servo OFF Servo OFF Servo OFF Servo OFF Servo OFF Servo OFF Servo OFF Servo OFF Servo OFF Servo OFF Servo OFF Servo OFF Servo OFF Servo OFF Servo OFF Servo OFF Servo OFF Servo OFF Servo OFF Servo OFF Servo OFF S	EasyFFT AXIS#0		
Servo DN	Servo ON/OFF operat	ion	
Measurement condition Stimulus signal Frequency Instruction amplitude Sol (1 - 300) Rotation direction Forward Analyzing frequency Measurement resut Detected resonance frequency (Hz) Optimal notch filter requency (Hz) Notch filter selection	Ser Ser	70 ON	Servo OFF
Stimulus signal Frequency Instruction amplitude 50 (%) Rotation direction Forward Detected resonance frequency [Hz] Optimal notch filter frequency [Hz] Notch filter selection	Measurement start / S	Stopping operation	
Stimulus signal Frequency Instruction amplitude 50 2 (%) Rotation direction Forward Analyzing frequency Measurement result Detected resonance frequency [Hz] Optimal notch filter frequency [Hz] Notch filter selection	Measurement condi	tion	
Rotation direction Rotat	Stimulus signal	Frequency	Start I I I I I I I I I I I I I I I I I I I
Rotation direction Forward Analyzing frequency Measurement result	Instruction amplitude		
Analyzing frequency Measurement result Detected resonance frequency (Hz) Optimal notch filter frequency (Hz) Notch filter selection		(1 - 300)	
Measurement result Detected resonance frequency [Hz] Optimal notch filter frequency [Hz] Notch filter selection	Rotation direction	Forward 💌	
Detected resonance frequency [Hz] Optimal notch filter frequency [Hz] Notch filter selection			Analyzing frequency
Optimal notch filter frequency [Hz] Notch filter selection	Measurement result -		
Notch filter selection	Detected resonance	e frequency	[Hz]
	Optimal notch filter	frequency	[Hz]
Messurement comple	Notch filter selectio	n	
Measurement comple			
			Measurement complet

8.14.2 Easy FFT

When measurements have been completed, the measurement results will be displayed.

5. Check the results in the Measurement result Area and then click the Measurement complete Button.

EasyFFT AXIS#0	×
Servo ON/OFF operation	
Servo OFF	
Measurement start / Stopping operation	
Measurement condition	
Stimulus signal Frequency Start	
Instruction amplitude 50 (%)	
Rotation direction Forward	
Measurement result	
Detected resonance frequency 504 [Hz]	
Optimal notch filter frequency 554 [Hz]	
Notch filter selection The 1st step	
Measurement corr	plete

6. Click the **Result Writing** Button if you want to set the measurement results in the parameters.

Notch filter selection Pn408:Torque Related Function Switch nibble 0 Notch Filter Selection 1 D:Disabled
0:Disabled
V
fulless diet eine einte filter fersterrere erferenze
1:Uses 1st step notch filter for torque reference.
-Notch filter frequency-
Pn409:1st Step Notch Filter Frequency
2000 [Hz] 🕨 554 [Hz]
Please click a button, when you reflect a measurement result in User Parameter.
Result Writing

This concludes the procedure.

Related Parameters

The following parameters are automatically adjusted or used as reference when you execute Easy FFT.

Do not change the settings of these parameters during execution of Easy FFT.

Parameter	Name	Automatic Changes
Pn408	Torque-Related Function Selections	Yes
Pn409	First Stage Notch Filter Frequency	Yes
Pn40A	First Stage Notch Filter Q Value	No
Pn40C	Second Stage Notch Filter Frequency	Yes
Pn40D	Second Stage Notch Filter Q Value	No
Pn456	Sweep Torque Reference Amplitude	No

Yes: The parameter is automatically set.

No: The parameter is not automatically set, but the setting is read during execution.

Monitoring

This chapter provides information on monitoring SERVO-PACK product information and SERVOPACK status.

9.1	Monit	oring Product Information9-2
	9.1.1 9.1.2	Items That You Can Monitor 9-2 Operating Procedures 9-2
9.2	Monit	oring SERVOPACK Status9-3
	9.2.1 9.2.2 9.2.3	System Monitor9-3Monitoring Status and Operations9-3I/O Signal Monitor9-5
9.3	Monitor	ing Machine Operation Status and Signal Waveforms . 9-6
	9.3.1 9.3.2 9.3.3	Items That You Can Monitor
9.4	Monit	oring Product Life
	9.4.1 9.4.2 9.4.3	Items That You Can Monitor9-14Operating Procedure9-14Preventative Maintenance9-15

9.1.1 Items That You Can Monitor

9.1 Monitoring Product Information

9.1.1 Items That You Can Monitor

Monitor Items				
Information on SERVOPACKs	 SERVOPACK model SERVOPACK software version SERVOPACK special specifications SERVOPACK serial number SERVOPACK manufacturing date 			
Information on Servomotors	Servomotor modelServomotor serial numberServomotor manufacturing date			
Information on Encoders	 Encoder model Rotary encoder resolution and linear encoder pitch resolution Encoder type Encoder software version Encoder serial number Encoder manufacturing date 			
Information on Option Modules	 Option Module model Option Module software version Option Module special specifications Option Module serial number Option Module manufacturing date 			

9.1.2 Operating Procedures

Use the following procedure to display the product information monitor dialog box.

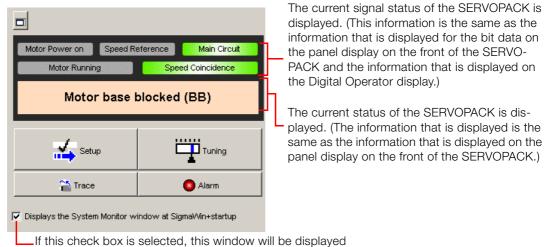
• Select *Monitor - Read Product Information* from the menu bar of the Main Window of the SigmaWin+.

Product Informa	tion AXIS#1	×
	Servopack/Motor Option Card	Change the tab page as necessary.
	Soft version: F004 Special Spec: Standard Servomotor Type: SGMAS-01ACA21	Click the Serial No. Buttons to display the serial numbers and manufacturing dates of the Servomotor and SERVOPACK.
	Encoder Information Type: UTTIH-B17EC Resolution: 131072 [Pulse/rev] Type: incremental Soft version: 000A	
	Serial No.	

- With the Panel Operator, you can use Fn011 and Fn012 to monitor this information. Refer to the following sections for the differences in the monitor items compared with the SigmaWin+.
 - 3.4.16 Display Servomotor Model (Fn011) on page 13-22
 - 3.4.17 Display Software Version (Fn012) on page 13-23
 - With the Digital Operator, you can use Fn011, Fn012, and Fn01E to monitor this information.

Refer to the following manual for the differences in the monitor items compared with the SigmaWin+.

Ω Σ-7-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33)


9.2.1 System Monitor

9.2 Monitoring SERVOPACK Status

9.2.1 System Monitor

Use one of the following methods to display the System Monitor Window.

- Start the SigmaWin+. The System Monitor Window will be automatically displayed.
- Select *Monitor Monitor System Monitor* from the menu bar of the Main Window of the SigmaWin+.

If this check box is selected, this window will be displayed automatically when the SigmaWin+ starts.

9.2.2 Monitoring Status and Operations

Use the following method to display the SERVOPACK's Status Monitor Window or Motion Monitor Window.

• Select *Monitor - Monitor - Status Monitor* or *Monitor - Monitor - Motion Monitor* from the menu bar of the Main Window of the SigmaWin+.

-----If these check boxes are selected, the current values are displayed in the Value column.

Status M	Stat <mark>u</mark> s Monitor					
Axis	Name	Value	▲			
	Main Circuit	Main Circuit ON				
	Encoder (PGRDY)	Encoder Prepar				
	Motor	No Motor Power				
\square	Dynamic Brake (DB)	-				
	Rotation Direction	-				
	Mode Switch	-				
	Speed Reference (V-Ref)	-				
	Torque Reference (T-Ref)	-				
	Position Reference (PULS)	-				
	Command Pulse Sign (SIGN)	-				
□ ∘	Clear (CLR)	-	×			

9.2.2 Monitoring Status and Operations

Monitor Items

The items that you can monitor on the Status Monitor Window and Motion Monitor Window are listed below.

Status Monitor Window

Monitor Items						
Internal Status	 Main Circuit Encoder (PGRDY) Motor Power (Request) Motor Power ON Dynamic Brake (DB) Rotation (Movement) Direction Mode Switch Speed Reference (V-Ref) Torque Reference (T-Ref) Position Reference (PULS) Position Reference Direction Clear Signal (CLR) Surge Current Limiting Resistor Short Relay Regenerative Error Detection AC Power ON Overcurrent Origin Not Passed 	Input Signal Status	 /S-ON (Servo ON Input Signal) /P-CON (Proportional Control Input Signal) P-OT (Forward Drive Prohibit Input Signal) N-OT (Reverse Drive Prohibit Input Signal) /P-CL (Forward External Torque Limit Signal) /P-CL (Reverse External Torque Limit Signal) /N-CL (Reverse External Torque Limit Signal) /ALM-RST (Alarm Reset Input Signal) SEN (Absolute Data Request Input Signal) /SPD-D (Motor Direction Signal) /SPD-A (Internal Set Speed Selection Input Signal) /SPD-B (Internal Set Speed Selection Input Signal) /C-SEL (Control Selection Input Sig- nal) /ZCLAMP (Zero Clamping Input Sig- nal) /INHIBIT (Reference Pulse Inhibit Input Signal) /P-DET (Polarity Detection Input Signal) /P-DET (Polarity Detection Input Signal) SIGN (Sign Reference Input Signal) SIGN (Sign Reference Pulse Input Signal) CLR (Position Deviation Clear Input Signal) /PSEL (Reference Pulse Input Signal) FSTP (Forced Stop Input Signal) 	Output Signal Status	 ALM (Servo Alarm Output Signal) /COIN (Positioning Com- pletion Output Signal) /V-CMP (Speed Coinci- dence Detection Output Signal) /TGON (Rotation Detec- tion Output Signal) /S-RDY (Servo Ready Out- put Signal) /CLT (Torque Limit Detec- tion Output Signal) /VLT (Speed Limit Detec- tion Output Signal) /VLT (Speed Limit Detec- tion Output Signal) /WARN (Warning Output Signal) /MEAR (Near Output Sig- nal) ALO1 (Alarm Code Output Signal) ALO2 (Alarm Code Output Signal) ALO3 (Alarm Code Output Signal) PAO (Encoder Divided Pulse Output Phase A Sig- nal) PBO (Encoder Divided Pulse Output Phase B Sig- nal) PCO (Encoder Divided Pulse Output Phase C Sig- nal) PCO (Encoder Divided Pulse Output Phase C Sig- nal) PCA (Reference Pulse Input Multiplication Switch- ing Output Signal) /PSELA (Reference Pulse Input Multiplication Switch- ing Output Signal) 	

Motion Monitor Window

Monitor Items					
 Current Alarm State Motor Speed Speed Reference Internal Torque Reference Angle of Rotation 1 (number of encoder pulses from origin within one encoder rotation) Angle of Rotation 2 (angle from origin within one encoder rotation) Input Reference Pulse Speed Deviation Counter (Position Deviation) Cumulative Load Regenerative Load 	 Power Consumption Consumed Power Cumulative Power Consumption DB Resistor Consumption Power Absolute Encoder Multiturn Data Absolute Encoder Position within One Rotation Absolute Encoder (Lower) Absolute Encoder (Upper) Reference Pulse Counter Feedback Pulse Counter Fully Closed Feedback Pulse Counter Total Operating Time 				

9.2.3 I/O Signal Monitor

9.2.3 I/O Signal Monitor

Use the following procedure to check I/O signals.

- 1. Select *Monitor Check Wiring* from the menu bar of the Main Window of the SigmaWin+.
- 2. Click the Monitor Mode Button.

	Model	SGDV-1R6A01A				Hi
CN1-7,8 PULS		e 🚺 (refi	erence units]		¢	Lo
N1-11,12 SIGN	->¢	0 (pps	5]		ė	Forced Hi
		0 (min	-1]		0	Forced Lo
CN1-5,6 V-REF	Speed	-12 (min	-1]			
		-0.02 [V]				
CN1-9,10 T-REF	Torque	0 [%]				
		0.00 [V]				
N1-15,14 CLR	CLEAR S	ignal Not Input	Monitor Mode Forced Output Mode			
CN1-4,2 SEN	Sensor C	DFF	Forced Output Mode			
				人		_
ilo)CN1-40 /S-ON	Servo OF	F	AL01 Output OFF	T:	ALO1	CN1-37
1)CN1-41 /P-CON		and Quantities Q	AL02 Output OFF	P	ALO2	CN1-38
11)CN1-41 J /P-CON		nai Operation C	AL03 Output OFF	Ψ.	ALO3	CN1-39
12)CN1-42 P-OT	Allow Fo	rward Run	PAO Output ON	9	PAO	CN1-33,34
			PBO Output OFF	φI	PBO	CN1-35,36
i3)CN1-43 N-OT	Allow Re	verse Run	PCO Output OFF	фI	PCO	CN1-37,38
			Positioning Incomplete		/COIN	
SI4)CN1-44 /ALM-RST	Alarm No	t Reset	Speed Coincidence	9	∕V-CMP	(SO1)CN1-25,26
15)CN1-45 P-CL	No Forwa	ard External Tor	Motor Stopped	•	/TGON	(SO2)CN1-27,28
i6)CN1-46 N-CL	No Forwa	ard Reverse To	Motor Preparation Compl	фI	/S-RDY	(SO3)CN1-29,30
CN8-3,4 HVVBB1	Basebloo	k released	Normal	¢	ALM	CN1-31,32
CN8-5,6 HWBB2	Basebloc	k released		Y		

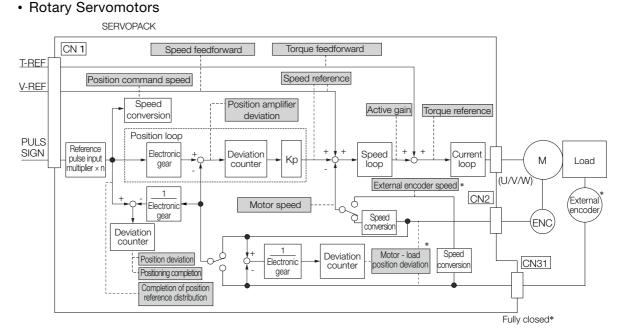
Input signal status

Output signal status

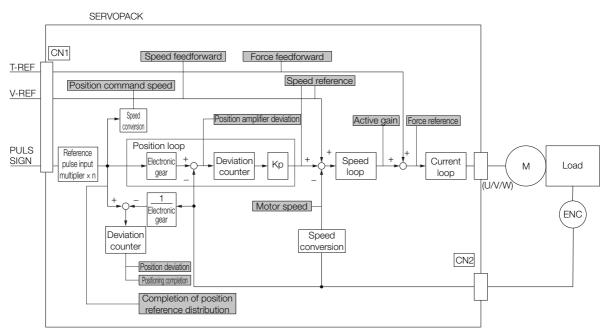
Information

You can also use the above window to check wiring.

- Checking Input Signal Wiring
 - Change the signal status at the host controller. If the input signal status on the window changes accordingly, then the wiring is correct.
- Checking Output Signal Wiring
- Click the **Force Output Mode** Button. This will force the output signal status to change. If the signal status at the host controller changes accordingly, then the wiring is correct. You cannot use the **Force Output Mode** Button while the servo is ON.


9.3.1 Items That You Can Monitor

9.3 Monitoring Machine Operation Status and Signal Waveforms


To monitor waveforms, use the SigmaWin+ trace function or a measuring instrument, such as a memory recorder.

9.3.1 Items That You Can Monitor

You can use the SigmaWin+ or a measuring instrument to monitor the shaded items in the following block diagram.

- * This speed is available when fully-closed loop control is being used.
- Linear Servomotors

Sampling Time

-0 UQ 1 UO 2 UO 3

Pre-trigger

Trioner B

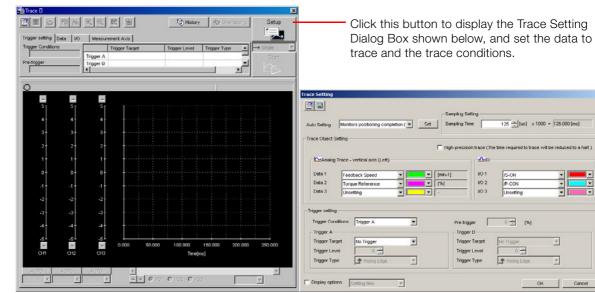
Trigger Level

/S-ON

1

- [%]

125 + [us] x 1000 = 125.000 [ms


Using the SigmaWin+ 9.3.2

This section describes how to trace data and I/O with the SigmaWin+.

Refer to the following manual for detailed operating procedures for the SigmaWin+. C AC Servo Drives Engineering Tool SigmaWin+ Online Manual Σ-7 Component (Manual No.: SIEP S800001 48)

Operating Procedure

Select Trace - Trace from the menu bar of the Main Window of the SigmaWin+.

Trace Objects

You can trace the following items.

Data Tracing

Trace Objects				
 Torque Reference Feedback Speed Reference Speed Position Reference Speed Position Error (Deviation) Position Amplifier Error (Deviation) 	 Motor - Load Position Deviation Speed Feedforward Torque Feedforward Effective (Active) Gain Main Circuit DC Voltage External Encoder Speed Control Mode 			

I/O Tracing

	Trace Objects		
Input Signals	 /S-ON (Servo ON Input Signal) /P-CON (Proportional Control Input Signal) P-OT (Forward Drive Prohibit Input Signal) N-OT (Reverse Drive Prohibit Input Signal) /ALM-RST (Alarm Reset Input Signal) /P-CL (Forward External Torque/Force Limit Input Signal) /N-CL (Reverse External Torque/Force Limit Input Signal) /N-CL (Reverse External Torque/Force Limit Input Signal) /SPD-D (Internal Set Speed Selection Input Signal) /SPD-A (Internal Set Speed Selection Input Signal) /SPD-B (Internal Set Speed Selection Input Signal) /C-SEL (Control Selection Input Signal) /ZCLAMP (Zero Clamping Input Signal) /INHIBIT (Reference Pulse Inhibit Input Signal) /G-SEL (Gain Selection Input Signal) /P-DET (Polarity Detection Input Signal) SEN (Absolute Data Request Input Signal) SIGN (Sign Reference Input Signal) CLR (Position Deviation Clear Input Signal) 	Output Signals	 ALM (Servo Alarm Output Signal) /COIN (Positioning Completion Output Signal) /V-CMP (Speed Coincidence Detection Output Signal) /TGON (Rotation Detection Output Sig- nal) /S-RDY (Servo Ready Output Signal) /CLT (Torque Limit Detection Output Sig- nal) /VLT (Speed Limit Detection Output Sig- nal) /VLT (Speed Limit Detection Output Sig- nal) /WLT (Speed Limit Detection Output Sig- nal) /WLR (Brake Output Signal) /WARN (Warning Output Signal) /NEAR (Near Output Signal) ALO1 (Alarm Code Output Signal) ALO2 (Alarm Code Output Signal) ALO2 (Alarm Code Output Signal) PAO (Encoder Divided Pulse Output Phase A Signal) PBO (Encoder Divided Pulse Output Phase B Signal) PCO (Encoder Divided Pulse Output Phase C Signal) /PSELA (Reference Pulse Input Multipli- cation Switching Output Signal)
	nal) • /PSEL (Reference Pulse Input Multiplica- tion Input Signal) • /HWBB1 (Hard Wire Base Block Input 1 Signal) • /HWBB2 (Hard Wire Base Block Input 2 Signal)	Internal Status	 ACON (Main Circuit ON Signal) PDETCMP (Polarity Detection Completed Signal) DEN (Position Reference Distribution Completed Signal)

9.3.3 Using a Measuring Instrument

Connect a measuring instrument, such as a memory recorder, to the analog monitor connector (CN5) on the SERVOPACK to monitor analog signal waveforms. The measuring instrument is not provided by Yaskawa.

Refer to the following section for details on the connection. (37) 4.7.3 Analog Monitor Connector (CN5) on page 4-46

Setting the Monitor Object

Use $Pn006 = n.\square\squareXX$ and $Pn007 = n.\square\squareXX$ (Analog Monitor 1 and 2 Signal Selections) to set the items to monitor.

Line Color	Signal	Parameter Setting
White	Analog monitor 1	Pn006 = n.□□XX
Red	Analog monitor 2	Pn007 = n.□□XX
Black (2 lines)	GND	-

Parameter			Description	
Par	ameter	Monitor Signal	Output Unit	Remarks
	n.□□00 (default setting of Pn007)	Motor Speed	 Rotary Servomotor: 1 V/1,000 min⁻¹ Linear Servomotor: 1 V/1,000 mm/s 	-
	n.□□01	Speed Reference	 Rotary Servomotor:1 V/1,000 min⁻¹ Linear Servomotor:1 V/1,000 mm/s 	-
	n.□□02 (default setting of Pn006)	Torque Reference	1 V/100% rated torque	-
	n.□□03	Position Deviation	0.05 V/Reference unit	0 V for speed or torque control
Pn006 or	n.□□04	Position Amplifier Devi- ation	0.05 V/encoder pulse unit	Position deviation after electronic gear conversion
	n.□□05	Position Command Speed	 Rotary Servomotor:1 V/1,000 min⁻¹ Linear Servomotor:1 V/1,000 mm/s 	The input reference pulses will be multi- plied by n to output the position com- mand speed.
Pn007	n.□□06	Reserved parameter (Do not change.)	-	-
	n.ロロ07	Motor - Load Position Deviation	0.01 V/Reference unit	-
	n.□□08	Positioning Completion	Positioning completed: 5 V Positioning not completed: 0 V	Completion is indi- cated by the output voltage.
	n.□□09	Speed Feedforward	 Rotary Servomotor:1 V/1,000 min⁻¹ Linear Servomotor:1 V/1,000 mm/s 	_
	n.□□0A	Torque Feedforward	1 V/100% rated torque	-
	n.□□0B	Active Gain*	1st gain: 1 V 2nd gain: 2 V	The gain that is active is indicated by the output voltage.
	n.□□0C	Completion of Position Reference Distribution	Distribution completed: 5 V Distribution not completed: 0 V	Completion is indi- cated by the output voltage.
	n.□□0D	External Encoder Speed	1 V/1,000 min ⁻¹	Value calculated at the motor shaft

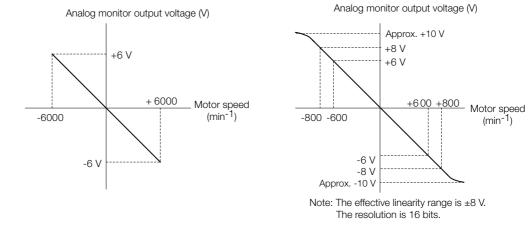
* Refer to the following section for details.

9-9

Changing the Monitor Factor and Offset

You can change the monitor factors and offsets for the output voltages for analog monitor 1 and analog monitor 2. The relationships to the output voltages are as follows:

Analog Monitor 1 Signal Analog Monitor 1 Analog monitor 1 Analog Monitor 1 $= (-1) \times 10^{-1}$ Selection (Pn006 = $n.\Box\BoxXX$) × Magnification (Pn552) + Offset Voltage (Pn550) output voltage Analog Monitor 2 Signal Selection (Pn007 = n.□□XX) Analog monitor 2 Analog Monitor 2 Analog Monitor 2 × $= (-1) \times$ output voltage Magnification (Pn553) Offset Voltage (Pn551)


The following parameters are set.

	Analog Monitor 1 Of	fset Voltage	Speed	osition Torque	
Pn550	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	-10,000 to 10,000	0.1 V	0	Immediately	Setup
	Analog Monitor 2 Of	fset Voltage	Speed	osition Torque	
Pn551	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	-10,000 to 10,000	0.1 V	0	Immediately	Setup
	Analog Monitor 1 Ma	agnification	Speed	osition Torque	
Pn552	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	-10,000 to 10,000	×0.01	100	Immediately	Setup
Pn553	Analog Monitor 2 Magnification			Speed	osition Torque
	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	-10,000 to 10,000	×0.01	100	Immediately	Setup

Example

• Example for Setting the Item to Monitor to the Motor Speed (Pn006 = n.□□00) When Pn552 = 100 (Setting Unit: ×0.01)

When Pn552 = 1,000 (Setting Unit: ×0.01)

Adjusting the Analog Monitor Output

You can manually adjust the offset and gain for the analog monitor outputs for the torque reference monitor and motor speed monitor.

The offset is adjusted to compensate for offset in the zero point caused by output voltage drift or noise in the monitoring system.

The gain is adjusted to match the sensitivity of the measuring system.

The offset and gain are adjusted at the factory. You normally do not need to adjust them.

♦ Adjustment Example

An example of adjusting the output of the motor speed monitor is provided below.

Offset Adjustment		Gain Adjustment		
Analog monitor output voltage		Analog monitor output voltage		
Item	Specification	Item	Specification	
Offset Adjustment Range	-2.4 V to 2.4 V	Gain Adjustment Range	100 ±50%	
Adjustment Unit	18.9 mV/LSB	Adjustment Unit	0.4%/LSB	
		The gain adjustment range is made using a 100% output value (gain adjustment of 0) as the reference value with an adjustment range of 50% to 150%. A setting example is given below. • Setting the Adjustment Value to -125 100 + (-125 × 0.4) = 50 [%] Therefore, the monitor output voltage goes to 50% of the original value. • Setting the Adjustment Value to 125 100 + (125 × 0.4) = 150 [%] Therefore, the monitor output voltage goes to 150% of the original value.		

Information • The adjustment values do not use parameters, so they will not change even if the parameter settings are initialized.

- Adjust the offset with the measuring instrument connected so that the analog monitor output value goes to zero. The following setting example achieves a zero output.
 - While power is not supplied to the Servomotor, set the monitor signal to the torque reference.
 - In speed control, set the monitor signal to the position deviation.

Preparations

Confirm the following condition before you adjust the analog monitor output.

• The parameters must not be write prohibited.

◆ Applicable Tools

You can use the following tools to adjust analog monitor outputs. The function that is used is given for each tool.

Offset Adjustment

Tool	Function	Operating Procedure Reference
Panel Operator	Fn00C	13.4.11 Adjust Analog Monitor Output Offset (Fn00C) on page 13-18
Digital Operator	Fn00C	Ω Σ-7-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33)
SigmaWin+	Setup - Adjust Offset	G

Gain Adjustment

Tool	Function	Operating Procedure Reference
Panel Operator	Fn00D	13.4.12 Adjust Analog Monitor Output Gain (Fn00D) on page 13-19
Digital Operator	Fn00D	Ω Σ-7-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33)
SigmaWin+	Setup - Adjust Offset	

♦ Operating Procedure

Use the following procedure.

1. Select Setup - Adjust Offset from the menu bar of the Main Window of the SigmaWin+. The Adjust the Analog Monitor Output Dialog Box will be displayed.

2. Click the Zero Adjustment or Gain Adjustment Tab.

3. While watching the analog monitor, use the +1 and -1 Buttons to adjust the offset. There are two channels: CH1 and CH2. If necessary, click the down arrow on the **Channel** Box and select the channel.

Sector Adjust the Analog Monitor Output AXIS#0
Zero Adjustment Gain Adjustment
Analog Monitor Output Offset
Channel CH1
Offset
Monitor Signal Torque reference : 1V/100%

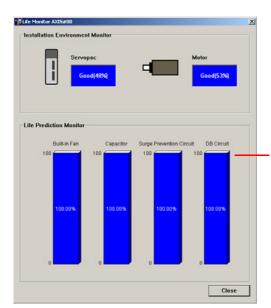
This concludes adjusting the analog monitor output.

9.4.1 Items That You Can Monitor

9.4 Monitoring Product Life

9.4.1 Items That You Can Monitor

Monitor Items


- SERVOPACK Installation Environment
- Servomotor Installation Environment
- Built-in Fan Service Life Prediction
- Capacitor Service Life Prediction
- Surge Prevention Circuit Service Life Prediction
- Dynamic Brake Circuit Service Life Prediction

9.4.2 Operating Procedure

Use the following procedure to display the installation environment and service life prediction monitor dialog boxes.

• Select Life Monitor – Installation Environment Monitor or Life Monitor – Service Life Prediction Monitor from the menu bar of the Main Window of the SigmaWin+.

Information With the Panel Operator or Digital Operator, you can use Un025 to Un02A to monitor this information.

A value of 100% indicates that the SERVOPACK has not yet been used. The percentage decreases as the SERVOPACK is used and reaches 0% when it is time to replace the SERVOPACK.

9.4.3 Preventative Maintenance

You can use the following functions for preventative maintenance.

- Preventative maintenance warnings
- /PM (Preventative Maintenance Output) signal

The SERVOPACK can notify the host controller when it is time to replace any of the main parts.

Preventative Maintenance Warning

An A.9b0 warning (Preventative Maintenance Warning) is detected when any of the following service life prediction values drops to 10% or less: SERVOPACK built-in fan life, capacitor life, inrush current limiting circuit life, and dynamic brake circuit life. You can change the setting of $PnO0F = n.\Box\Box\BoxX$ to enable or disable these warnings.

Parameter		Description	When Enabled	Classifi- cation
Pn00F	n.□□□0 (default setting)	Do not detect preventative maintenance warnings.	After restart	Setup
	n.0001	Detect preventative maintenance warnings.	residit	

/PM (Preventative Maintenance Output) Signal

The /PM (Preventative Maintenance Output) signal is output when any of the following service life prediction values reaches 10% or less: SERVOPACK built-in fan life, capacitor life, inrush current limiting circuit life, and dynamic brake circuit life. The /PM (Preventative Maintenance Output) signal must be allocated.

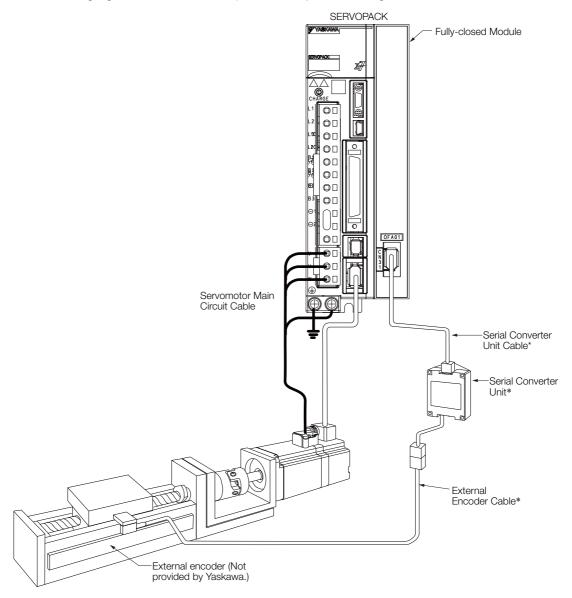
Even if detection of preventive maintenance warnings is disabled (Pn00F = $n.\Box\Box\Box$), the /PM signal will still be output as long as it is allocated.

Classifi- cation	Signal	Connector Pin No.	Signal Status	Description
Output /PM	Must be allocated.	ON (closed)	One of the following service life prediction values reached 10% or less: SERVOPACK built-in fan life, capacitor life, inrush current limiting circuit life, and dynamic brake circuit life.	
		OFF (open)	All of the following service life prediction values are greater than 10%: SERVOPACK built-in fan life, capacitor life, inrush current limiting circuit life, and dynamic brake circuit life.	

Note: You must allocate the /PM signal to use it. Use Pn514 = $n.\Box\Box\BoxX$ (/PM (Preventative Maintenance Output) Signal Allocation) to allocate the signal to connector pins. Refer to the following section for details.

3 6.1.2 Output Signal Allocations on page 6-6

Fully-Closed Loop Control


This chapter provides detailed information on performing fully-closed loop control with the SERVOPACK.

10.1	Fully-	Closed System 10-2
10.2	SERV	OPACK Commissioning Procedure . 10-3
10.3	Parame	eter Settings for Fully-Closed Loop Control 10-5
	10.3.1	Control Block Diagram for Fully-Closed Loop Control
	10.3.2	-
	10.3.3	Setting the Number of External Encoder Scale Pitches
	10.3.4	Setting the PAO, PBO, and PCO (Encoder Divided Pulse Output) Signals 10-7
	10.3.5	
	10.3.6	Electronic Gear Setting
	10.3.7	Alarm Detection Settings 10-8
	10.3.8	Analog Monitor Signal Settings 10-9
	10.3.9	Setting to Use an External Encoder for Speed Feedback

10.1 Fully-Closed System

With a fully-closed system, an externally installed encoder is used to detect the position of the controlled machine and the machine's position information is fed back to the SERVOPACK. High-precision positioning is possible because the actual machine position is fed back directly. With a fully-closed system, looseness or twisting of mechanical parts may cause vibration or oscillation, resulting in unstable positioning.

The following figure shows an example of the system configuration.

* The connected devices and cables depend on the type of external linear encoder that is used.

Note: Refer to the following section for details on connections that are not shown above, such as connections to power supplies and peripheral devices.

2.4 Examples of Standard Connections between SERVOPACKs and Peripheral Devices on page 2-25

10.2 SERVOPACK Commissioning Procedure

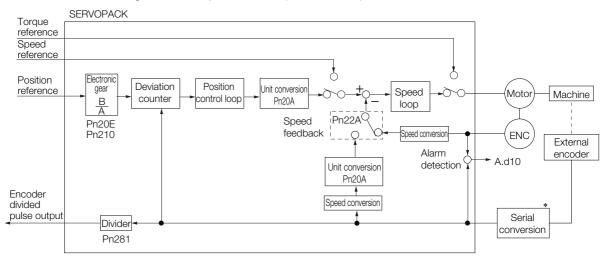
First, confirm that the SERVOPACK operates correctly with semi-closed loop control, and then confirm that it operates correctly with fully-closed loop control.

The commissioning procedure for the SERVOPACK for fully-closed loop control is given below.

Step	Description	Operation	Required Parameter Settings	Con- trolling Device
1	Check operation of the entire sequence with semi-closed loop control and without a load. Items to Check • Power supply circuit wiring • Servomotor wiring • Encoder wiring • Wiring of I/O signal lines from the host con- troller • Servomotor rotation direction, motor speed, and multiturn data • Operation of safety mechanisms, such as the brakes and the overtravel mechanisms	 Set the parameters so that the SERVOPACK operates correctly in semi-closed loop control without a load and check the following points. Set Pn002 to n.0□□□ to specify semi-closed loop control. Are there any errors in the SER-VOPACK? Does jogging function correctly when you operate the SERVO-PACK without a load? Do the I/O signals turn ON and OFF correctly? Is power supplied to the Servo-motor when the /S-ON (Servo ON) signal is input? Does the Servomotor operate correctly when a position reference is input by the host control-ler? 	 Pn000 (Basic Function Select Switch 0) Pn001 (Basic Function Select Switch 1) Pn002 = n.X□□□ (External Encoder Usage) Pn20E (Electronic Gear Ratio (Numerator)) Pn210 (Electronic Gear Ratio (Denominator)) Pn50A, Pn50B, Pn511, Pn515, and Pn516 (Input Signal Selections) Pn50E, Pn50F, Pn510, Pn514, and Pn517 (Out- put Signal Selections) 	SERVO- PACK or host con- troller
2	 Check operation with the Servomotor connected to the machine with semi-closed loop control. Items to Check Initial response of the system connected to the machine Movement direction, travel distance, and movement speed as specified by the refer- ences from the host controller 	Connect the Servomotor to the machine. Set the moment of inertia ratio in Pn103 using autotuning without a host reference. Check that the machine's move- ment direction, travel distance, and movement speed agree with the references from the host controller.	• Pn103 (Moment of Iner- tia Ratio)	Host con- troller
3	Check the external encoder. Items to Check • Is the signal from the external encoder received correctly?	 Set the parameters related to fully-closed loop control and move the machine with your hand without turning ON the power supply to the Servomotor. Check the following status with the Panel Operator, Digital Operator, or SigmaWin+. Does the fully-closed feedback pulse counter count up when the Servomotor moves in the forward direction? Is the travel distance of the machine visually about the same as the amount counted by the fully-closed feedback pulse counter? Note: The unit for the fully-closed feedback pulses, which is equivalent to the external encoder sine wave pitch. 	 Pn002 = n.X□□□ (External Encoder Usage) Pn20A (Number of External Scale Pitches) Pn20E (Electronic Gear Ratio (Numerator)) Pn210 (Electronic Gear Ratio (Denominator)) Pn281 (Encoder Output Resolution) Pn51B (Excessive Error Level between Servo- motor and Load Posi- tions) Pn522 (Positioning Completed Width) Pn52A (Multiplier per One Fully-closed Rota- tion) 	-

	i.			neae pagei
Step	Description	Operation	Required Parameter Settings	Con- trolling Device
4	Perform a program jog- ging operation. Items to Check Does the fully-closed system operate correctly for the SERVOPACK without a load?	Perform a program jogging opera- tion and confirm that the travel dis- tance is the same as the reference value in Pn531. When you perform program jog- ging, start from a low speed and gradually increase the speed.	 Pn530 to Pn536 (pro- gram jogging-related parameters) 	SERVO- PACK
5	Operate the SERVO- PACK. Items to Check Does the fully-closed system operate correctly, including the host con- troller?	Input a position reference and con- firm that the SERVOPACK oper- ates correctly. Start from a low speed and gradu- ally increase the speed.	_	Host con- troller

10.3.1 Control Block Diagram for Fully-Closed Loop Control


10.3 Parameter Settings for Fully-Closed Loop Control

Parameter to Set	Setting	Position Control	Speed Control	Torque Control	Reference
Pn000 = n.□□□X	Motor direction		\checkmark	\checkmark	
Pn002 = n.X□□□	External encoder usage method	\checkmark	\checkmark	\checkmark	page 10-6
Pn20A	Number of external scale pitches	\checkmark	\checkmark	\checkmark	page 10-7
Pn281	Encoder divided pulse output signals (PAO, PBO, and PCO) from the SERVO- PACK	\checkmark	\checkmark	\checkmark	page 10-7
_	External absolute encoder data reception sequence	\checkmark	\checkmark	\checkmark	page 6-88
Pn20E and Pn210	Electronic gear ratio		-	-	page 5-45
Pn51B	Excessive deviation level between Servo- motor and load positions	\checkmark	_	_	page 10-8
Pn52A	Multiplier for one fully-closed rotation		_	_	
Pn006/Pn007	Analog monitor signal		\checkmark	\checkmark	page 10-9
Pn22A = n.X□□□	Speed feedback method during fully- closed loop control	\checkmark	-	_	page 10-9

This section describes the parameter settings that are related to fully-closed loop control.

10.3.1 Control Block Diagram for Fully-Closed Loop Control

The control block diagram for fully-closed loop control is provided below.

* The connected device depends on the type of external encoder.

Note: You can use either an incremental or an absolute encoder. If you use an absolute encoder, set Pn002 to n.□1□□ (Use the absolute encoder as an incremental encoder).

10.3.2 Setting the Motor Direction and the Machine Movement Direction

10.3.2 Setting the Motor Direction and the Machine Movement Direction

You must set the motor direction and the machine movement direction. To perform fully-closed loop control, you must set the motor rotation direction with both $Pn000 = n.\square\square\squareX$ (Direction Selection) and $Pn002 = n.X\square\square\square$ (External Encoder Usage).

	Parameter			Pn002 = n.XDDD (External Encoder Usage)			
	i alamete	51	n.1E		n.3000		
	n.□□□0	Reference direction	Forward reference	Reverse reference	Forward reference	Reverse reference	
		Motor direction	CCW	CW	CCW	CW	
Pn000 =n.□□□X		External encoder	Forward movement	Reverse movement	Reverse movement	Forward movement	
(Direction Selection)		Reference direction	Forward reference	Reverse reference	Forward reference	Reverse reference	
	n.□□□1	Motor direction	CW	CCW	CW	CCW	
		External encoder	Reverse movement	Forward movement	Forward movement	Reverse movement	

• Phase B leads in the divided pulses for a forward reference regardless of the setting of Pn000 = $n.\Box\Box\BoxX$.

• Forward direction: The direction in which the pulses are counted up.

• Reverse direction: The direction in which the pulses are counted down.

Related Parameters

♦ Pn000 = n.□□□X

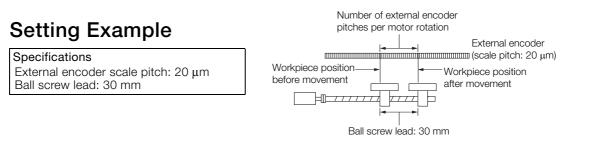
Refer to the following section for details. 5.6 Motor Direction Setting on page 5-17

◆ Pn002 = n.X□□□

When you perform fully-closed loop control, set Pn002 to $n.1\square\square\square$ or $n.3\square\square\square$.

Parameter		Name	Meaning	When Enabled	Classifi- cation
	n.0□□□ (default set- ting)		Do not use an external encoder.		
n.1000	n.1000	External	External encoder moves in forward direction for CCW motor rotation.	After restart	Setup
	n.2000	Encoder Usage	Reserved parameter (Do not change.)	_	
	n.3000		External encoder moves in reverse direction for CCW motor rotation.		
	n.4000		Reserved parameter (Do not change.)		

Information


Determine the setting of $Pn002 = n.X \square \square \square$ as described below.

- Set Pn000 to n.□□□□ (Use the direction in which the linear encoder counts up as the forward direction) and set Pn002 to n.1□□□ (The external encoder moves in the forward direction for CCW motor rotation).
- Manually rotate the motor shaft counterclockwise.
- If the fully-closed feedback pulse counter counts up, do not change the setting of Pn002 (Pn002 = n.1□□□).
- If the fully-closed feedback pulse counter counts down, set Pn002 to n.3

10.3.3 Setting the Number of External Encoder Scale Pitches

10.3.3 Setting the Number of External Encoder Scale Pitches

Set the number of external encoder scale pitches per motor rotation in Pn20A.

If the external encoder is connected directly to the motor, the setting will be 1,500 (30 mm/0.02 mm = 1,500).

Note: 1. If there is a fraction, round off the digits below the decimal point.

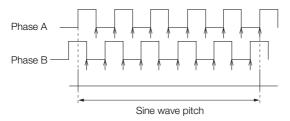
2. If the number of external encoder scale pitches per motor rotation is not an integer, there will be deviation in the position loop gain (Kp), feedforward, and position reference speed monitor. This is not relevant for the position loop and it therefore does not interfere with the position accuracy.

Related Parameters

	Number of Externa	I Scale Pitches	Position		
Pn20A	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	4 to 1,048,576	1 scale pitch/revo- lution	32,768	After restart	Setup

10.3.4 Setting the PAO, PBO, and PCO (Encoder Divided Pulse Output) Signals

Set the position resolution in Pn281 (Encoder Output Resolution). Enter the number of phase A and phase B edges for the setting.


Setting Example

Specifications External encoder scale pitch: 20 μm Ball screw lead: 30 mm Speed:1,600 mm/s

If a single pulse (multiplied by 4) is output for 1 μ m, the setting would be 20.

If a single pulse (multiplied by 4) is output for 0.5 μ m, the setting would be 40.

The encoder divided pulse output would have the following waveform if the setting is 20.

"1" indicates the edge positions. In this example, the set value is 20 and therefore the number of edges is 20.

Note: The upper limit of the encoder signal output frequency (multiplied by 4) is 6.4 Mpps. Do not set a value that would cause the output to exceed 6.4 Mpps. If the output exceeds the upper limit, an A.511 alarm (Overspeed of Encoder Output Pulse Rate) will be output.

10.3.5 External Absolute Encoder Data Reception Sequence

Example If the setting is 20 and the speed is 1,600 mm/s, the output frequency would be 1.6 Mpps 1600 mm/s

$$\frac{1000 \text{ mm/s}}{0.001 \text{ mm}} = 1,600,000 = 1.6 \text{ Mpps}$$

Because 1.6 Mpps is less than 6.4 Mpps, this setting can be used.

Related Parameters

Encoder Output Resolution				Position		
Pn281	Setting Range	Setting Unit	Default Setting	When Enabled	Classification	
	1 to 4,096	1 edge/pitch	20	After restart	Setup	

Note: The maximum setting for the encoder output resolution is 4,096.

If the resolution of the external encoder exceeds 4,096, pulse output will no longer be possible at the resolution given in ■ Feedback Resolution of Linear Encoder on page 5-47.

10.3.5 External Absolute Encoder Data Reception Sequence

Refer to the following section for details.

3 6.13.4 Reading the Position Data from the Absolute Linear Encoder on page 6-88

With fully-closed loop control, the same sequence as for a Linear Servomotor is used.

10.3.6 Electronic Gear Setting

Refer to the following section for details.

5.16 Electronic Gear Settings on page 5-45

With fully-closed loop control, the same setting as for a Linear Servomotor is used.

10.3.7 Alarm Detection Settings

This section describes the alarm detection settings (Pn51B and Pn52A).

Pn51B (Excessive Error Level between Servomotor and Load Positions)

This setting is used to detect the difference between the feedback position of the motor encoder and the feedback load position of the external encoder for fully-closed loop control. If the detected difference exceeds the setting, an A.d10 alarm (Motor-Load Position Error Overflow) will be output.

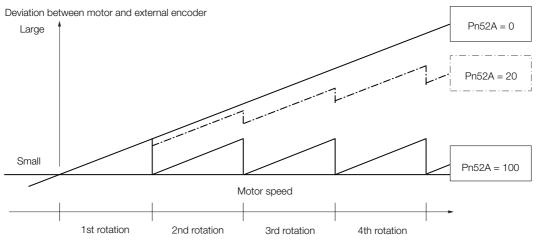
	Excessive Error Level between Servomotor and Load Positions Position						
Pn51B	Setting Range	Setting Unit	Default Setting	When Enabled	Classifica- tion		
	0 to 1,073,741,824	1 reference unit	1000	Immediately	Setup		

Note: An A.d10 alarm will not be output if this parameter is set to 0.

Pn52A (Multiplier per One Fully-closed Rotation)

Set the coefficient of the deviation between the motor and the external encoder per motor rotation.

This setting can be used to prevent the motor from running out of control due to damage to the external encoder or to detect belt slippage.


10.3.8 Analog Monitor Signal Settings

Setting Example

Increase the value if the belt slips or is twisted excessively.

If this parameter is set to 0, the external encoder value will be read as it is.

If you use the default setting of 20, the second rotation will start with the deviation for the first motor rotation multiplied by 0.8.

Related Parameters

	Multiplier per One I	ully-closed Rotatio	Position		
Pn52A	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0 to 100	1%	20	Immediately	Setup

10.3.8 Analog Monitor Signal Settings

You can monitor the position deviation between the Servomotor and load with an analog monitor.

Parameter Name		Name	Meaning	When Enabled	Classifi- cation
Pn006	n.ロロ07	Analog Monitor 1 Signal Selection	Position deviation between motor and load (output unit: 0.01 V/reference unit).	Immedi-	Setup
Pn007	n.□□07	Analog Monitor 2 Signal Selection	Position deviation between motor and load (output unit: 0.01 V/reference unit).	ately	Setup

10.3.9 Setting to Use an External Encoder for Speed Feedback

For fully-closed loop control, you normally set a parameter to specify using the motor encoder speed (Pn22A = $n.0\square\square\square$).

If you will use a Direct Drive Servomotor and a high-resolution external encoder, set the parameter to specify using the speed of the external encoder ($Pn22A = n.1 \square \square \square$).

Parameter		Meaning	When Enabled	Classification
Pn22A	n.0□□□ (default set- ting)	Use motor encoder speed.	After restart	Setup
	n.1000	Use external encoder speed.		

Note: This parameter cannot be used if Pn002 is set to n.0 DD (Do not use external encoder).

Safety Functions

This chapter provides detailed information on the safety functions of the SERVOPACK.

(11)

11.1	Introd	uction to the Safety Functions 11-3
	11.1.1 11.1.2	Safety Functions
11.2	Hard \	Wire Base Block (HWBB)11-4
		Risk Assessment11-4Hard Wire Base Block (HWBB) State11-5Resetting the HWBB State11-5Detecting Errors in HWBB Signal11-6HWBB Input Signal Specifications11-6Operation without a Host Controller11-6/S-RDY (Servo Ready Output) Signal11-7/BK (Brake Output) Signal11-7Stopping Methods11-8Settings to Clear the Position Deviation11-8ALM (Servo Alarm) Signal and ALO1, ALO2, andALO3 (Alarm Code Output) Signals11-8
11.3	EDM1	(External Device Monitor)11-9
	11.3.1	EDM1 Output Signal Specifications
11.4	Applic	ations Examples for Safety Functions .11-10
	11.4.1 11.4.2 11.4.3	Connection Example11-10Failure Detection Method11-10Procedure11-11
11.5	Valida	ting Safety Functions 11-12

11.1.1 Safety Functions

11.1 Introduction to the Safety Functions

11.1.1 Safety Functions

Safety functions are built into the SERVOPACK to reduce the risks associated with using the machine by protecting workers from the hazards of moving machine parts and otherwise increasing the safety of machine operation.

Especially when working in hazardous areas inside guards, such as for machine maintenance, the safety function can be used to avoid hazardous moving machine parts.

Refer to the following section for information on the safety function and safety parameters. *Compliance with UL Standards, EU Directives, and Other Safety Standards* on page xxii

Products that display the TÜV mark on the nameplate have met the safety standards.

11.1.2 Precautions for Safety Functions

WARNING WBB function satisfies the safety requirements of

- To confirm that the HWBB function satisfies the safety requirements of the system, you must conduct a risk assessment of the system. Incorrect use of the safety function may cause injury.
- The Servomotor will move if there is an external force (e.g., gravity on a vertical axis) even when the HWBB function is operating. Use a separate means, such as a mechanical brake, that satisfies the safety requirements. Incorrect use of the safety function may cause injury.
- While the HWBB function is operating, the motor may move within an electric angle of 180° or less as a result of a SERVOPACK failure. Use the HWBB function for an application only after confirming that movement of the motor will not result in a hazardous condition. Incorrect use of the safety function may cause injury.
- The dynamic brake and the brake signal are not safety-related elements. You must design the system so that SERVOPACK failures will not cause a hazardous condition while the HWBB function is operating.
 - Incorrect use of the safety function may cause injury.
- Connect devices that satisfy the safety standards for the signals for safety functions. Incorrect use of the safety function may cause injury.
- The HWBB function does not shut OFF the power to the SERVOPACK or electrically isolate it. Implement measures to shut OFF the power supply to the SERVOPACK before you perform maintenance on it. There is a risk of electric shock.

11.2.1 Risk Assessment

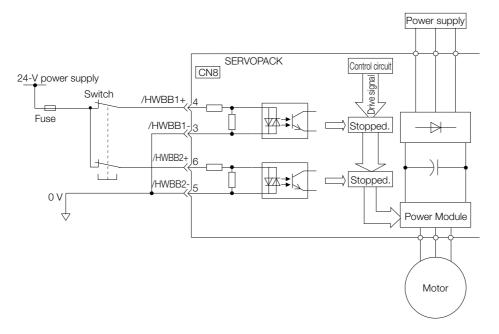
11.2 Hard Wire Base Block (HWBB)

A hard wire base block (abbreviated as HWBB) is a safety function that is designed to shut OFF the current to the motor with a hardwired circuit.

The drive signals to the Power Module that controls the motor current are controlled by the circuits that are independently connected to the two input signal channels to turn OFF the Power Module and shut OFF the motor current.

Important

For safety function signal connections, the input signal is the 0-V common and the output signal is a source output.


This is opposite to other signals described in this manual.

To avoid confusion, the ON and OFF status of signals for the safety function are defined as follows:

ON: The state in which the relay contacts are closed or the transistor is ON and current flows into the signal line.

OFF: The state in which the relay contacts are open or the transistor is OFF and no current flows into the signal line.

The input signal uses the 0-V common. The following figure shows a connection example.

11.2.1 Risk Assessment

When using the HWBB, you must perform a risk assessment of the servo system in advance to confirm that the safety level of the standards is satisfied. Refer to the following section for details on the standards.

Compliance with UL Standards, EU Directives, and Other Safety Standards on page xxii

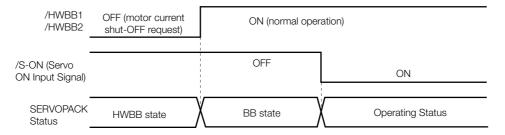
Note: To meet performance level e (PLe) in EN ISO 13849-1, the EDM signal must be monitored by the host controller. If the EDM signal is not monitored by the host controller, the level will be safety performance level d (PLd).

The following hazards exist even when the HWBB is operating. These hazards must be included in the risk assessment.

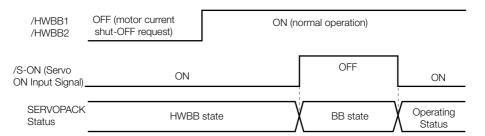
- The Servomotor will move if an external force is applied to it (for example, gravity on a vertical axis). Implement measures to hold the Servomotor, such as installing a separate mechanical brake.
- If a failure occurs such as a Power Module failure, the Servomotor may move within an electric angle of 180°. Ensure safety even if the Servomotor moves.
 - The rotational angle or travel distance depends on the type of Servomotor as follows:
 - Rotary Servomotor: 1/6 rotation max. (rotational angle calculated at the motor shaft)

11.2.2 Hard Wire Base Block (HWBB) State

- Direct Drive Servomotor: 1/20 rotation max. (rotational angle calculated at the motor shaft)
- Linear Servomotor: 50 mm max.
- The HWBB does not shut OFF the power to the SERVOPACK or electrically isolate it. Implement measures to shut OFF the power supply to the SERVOPACK before you perform maintenance on it.


11.2.2 Hard Wire Base Block (HWBB) State

The SERVOPACK will be in the following state if the HWBB operates. If the /HWBB1 or /HWBB2 signal turns OFF, the HWBB will operate and the SERVOPACK will enter a HWBB state.


/HWBB1 /HWBB2	ON (nor	mal operation)	OFF (motor current shut-OFF request)		
/S-ON (Servo ON Input Signal)	ON	OFF			
SERVOPACK Status	Operating state	BB state	HWBB state		

11.2.3 Resetting the HWBB State

Normally, after the /S-ON (Servo ON) signal is turned OFF and power is no longer supplied to the Servomotor, the /HWBB1 and /HWBB2 signals will turn OFF and the SERVOPACK will enter the HWBB state. If you turn ON the /HWBB1 and /HWBB2 signals in this state, the SER-VOPACK will enter a base block (BB) state and will be ready to acknowledge the /S-ON signal.

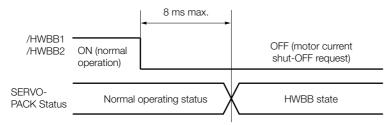
If the /HWBB1 and /HWBB2 signals are OFF and the /S-ON (Servo ON Input) signal is input, the HWBB state will be maintained even after the /HWBB1 and /HWBB2 signals are turned ON. Turn OFF the /S-ON signal to place the SERVOPACK in the BB state and then turn ON the /S-ON signal again.

- Note: 1. If the SERVOPACK is placed in the BB state while the main circuit power supply is OFF, the HWBB state will be maintained until the /S-ON (Servo ON) signal is turned OFF.
 - 2. If the /S-ON (Servo ON) signal is set to be always active (Pn50A = n.□□7□), you cannot reset the HWBB state.

Do not set this value if you are using the HWBB.

11.2.4 Detecting Errors in HWBB Signal

11.2.4 Detecting Errors in HWBB Signal


If only the /HWBB1 or the /HWBB2 signal is input, an A.Eb1 alarm (Safety Function Signal Input Timing Error) will occur unless the other signal is input within 10 seconds. This makes it possible to detect failures, such as disconnection of an HWBB signal.

• The A.Eb1 alarm (Safety Function Signal Input Timing Error) is not a safety-related element. Keep this in mind when you design the system.

11.2.5 HWBB Input Signal Specifications

If an HWBB is requested by turning OFF the two HWBB input signal channels (/HWBB1 and /HWBB2), the power supply to the Servomotor will be turned OFF within 8 ms.

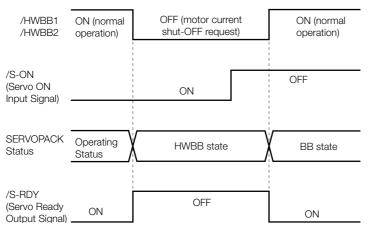
Note: 1. The OFF status is not recognized if the OFF interval of the /HWBB1 or /HWBB2 signal is 0.5 ms or shorter. 2. You can check the status of the input signals by using monitor displays. Refer to the following section for details.

3.2.3 I/O Signal Monitor on page 9-5

11.2.6 Operation without a Host Controller

The HWBB will operate even for operation without a host controller.

However, if the HWBB operates during execution of the following functions, leave the execution mode for the function and then enter it again to restart operation. Operation will not be restarted simply by turning OFF the /HWBB1 and /HWBB2 signals.


Applicable Functions	Resetting the HWBB State
JoggingOrigin search	After you turn ON the /HWBB1 and /HWBB2 signals, leave the execution mode for the function and then enter it again.
 Program jogging Automatic adjustment without host reference 	execution execution mode execution execut
 Easy FFT Adjustment of motor current detection signal offset 	/HWBB1 ON (normal /HWBB2 operation) request) ON (normal operation)
	SERVOPACK Operating HWBB state BB state Operating Status

11.2.7 /S-RDY (Servo Ready Output) Signal

11.2.7 /S-RDY (Servo Ready Output) Signal

The /S-ON (Servo ON) signal will not be acknowledged in the HWBB state. Therefore, the Servo Ready Output Signal will turn OFF. The Servo Ready Output Signal will turn ON if both the /HWBB1 and /HWBB2 signals are ON and the /S-ON signal is turned OFF (BB state).

An example is provided below for when the main circuit power supply is ON and the SEN signal turns ON when there is no servo alarm. (An absolute encoder is used in this example.)

11.2.8 /BK (Brake Output) Signal

If the HWBB operates when the /HWBB1 or /HWBB2 signal is OFF, the /BK (Brake) signal will turn OFF. At that time, the setting in Pn506 (Brake Reference - Servo OFF Delay Time) will be disabled. Therefore, the Servomotor may be moved by external force until the actual brake becomes effective after the /BK signal turns OFF.

• The brake signal is not a safety-related element. You must design the system so that a hazardous condition does not occur even if the brake signal fails in the HWBB state. Also, if a Servomotor with a Brake is used, keep in mind that the brake in the Servomotor is used only to prevent the moving part from being moved by gravity or an external force and it cannot be used to stop the Servomotor.

11.2.9 Stopping Methods

11.2.9 Stopping Methods

If the /HWBB1 or /HWBB2 signal turns OFF and the HWBB operates, the Servomotor will stop according to the stop mode that is set for stopping the Servomotor when the servo turns OFF (Pn001 = $n.\square\square\squareX$). However, if the dynamic brake is enabled (Pn001 = $n.\square\square\squareO$ or $n.\square\square\square1$), observe the following precautions.

- The dynamic brake is not a safety-related element. You must design the system so that a hazardous condition does not occur even if the Servomotor coasts to a stop in the HWBB state. Normally, we recommend that you use a sequence that returns to the HWBB state after stopping for a reference.
- If the application frequently uses the HWBB, stopping with the dynamic brake may result in the deterioration of elements in the SERVOPACK. To prevent internal elements from deteriorating, use a sequence in which the HWBB state is returned to after the Servomotor has come to a stop.

11.2.10 Settings to Clear the Position Deviation

A position deviation in the HWBB state is cleared according to the setting of $Pn200 = n.\Box X \Box \Box$ (Clear Operation). If you specify not clearing the position deviation during position control ($Pn200 = n.\Box 1 \Box \Box$), the position deviation will accumulate unless the position reference from the host controller is canceled in the HWBB state. The following conditions may result.

- An A.d00 alarm (Position Deviation Overflow) may occur.
- If you turn ON the servo after changing from HWBB state to BB state, the Servomotor may move for the accumulated position deviation.

Therefore, stop the position reference from the host controller while in the HWBB state. If you specify not clearing the position deviation during position control ($Pn200 = n.\Box 1 \Box \Box$), input the CLR (Position Deviation Clear) signal during the HWBB or BB state to clear the position deviation.

11.2.11 ALM (Servo Alarm) Signal and ALO1, ALO2, and ALO3 (Alarm Code Output) Signals

The ALM (Servo Alarm) signal is not output in the HWBB state. The ALO1, ALO2, and ALO3 (Alarm Code Output) signals are not output in the HWBB state.

11.3.1 EDM1 Output Signal Specifications

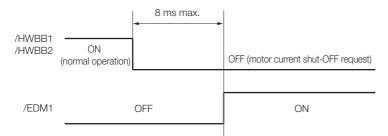
11.3 EDM1 (External Device Monitor)

The EDM1 (External Device Monitor) signal is used to monitor failures in the HWBB. Connect the monitor signal as a feedback signal, e.g., to the Safety Unit.

Note: To meet performance level e (PLe) in EN ISO 13849-1, the EDM signal must be monitored by the host controller. If the EDM signal is not monitored by the host controller, the level will be safety performance level d (PLd).

• Failure Detection Signal for EDM1 Signal

The relationship between the EDM1, /HWBB1, and /HWBB2 signals is shown below.

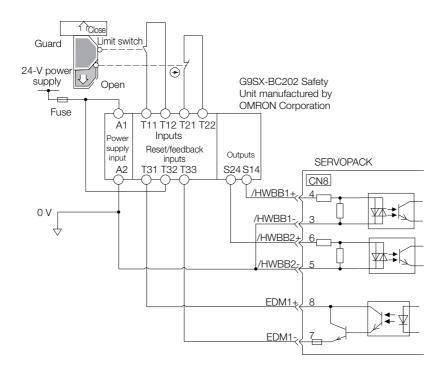

Detection of failures in the EDM1 signal circuit can be achieved by using the four status of the EDM1 signal in the following table. A failure can be detected by checking the failure status, e.g., when the power supply is turned ON.

Signal		Lo	gic	
/HWBB1	ON	ON	OFF	OFF
/HWBB2	ON	OFF	ON	OFF
EDM1	OFF	OFF	OFF	ON

• The EDM1 signal is not a safety output. Use it only for monitoring for failures.

11.3.1 EDM1 Output Signal Specifications

If an HWBB is requested by turning OFF the two HWBB input signal channels (/HWBB1 and /HWBB2) when the safety function is operating normally, the EDM1 output signal will be turned ON within 8 ms.


11.4.1 Connection Example

11.4 Applications Examples for Safety Functions

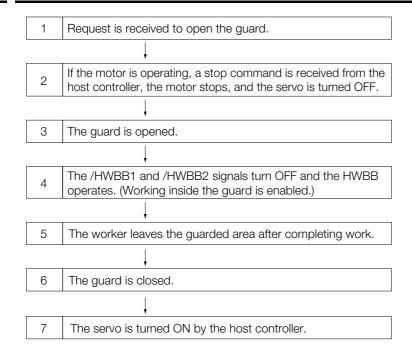
This section provides examples of using the safety functions.

11.4.1 Connection Example

In the following example, a Safety Unit is used and the HWBB operates when the guard is opened.

When the guard is opened, both the /HWBB1 and the /HWBB2 signals turn OFF, and the EDM1 signal turns ON. Because the feedback circuit is ON while the guard is closed, the Safety Unit is reset, the /HWBB1 and the / HWBB2 signals turn ON, and the operation is enabled.

Note: The EDM1 signal is used as a source output. Connect the EDM1 so that the current flows from EMD1+ to EMD1-.


11.4.2 Failure Detection Method

If a failure occurs (e.g., the /HWBB1 or the /HWBB2 signal remains ON), the Safety Unit is not reset when the guard is closed because the EDM1 signal remains OFF. Therefore starting is not possible and a failure is detected.

In this case the following must be considered: an error in the external device, disconnection of the external wiring, short-circuiting in the external wiring, or a failure in the SERVOPACK. Find the cause and correct the problem.

11.4.3 Procedure

11.4.3 Procedure

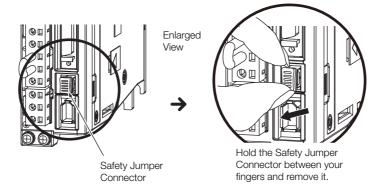
11.5 Validating Safety Functions

When you commission the system or perform maintenance or SERVOPACK replacement, you must always perform the following validation test on the HWBB after completing the wiring. (It is recommended that you keep the confirmation results as a record.)

- When the /HWBB1 and /HWBB2 signals turn OFF, confirm that the Panel Operator or Digital Operator displays **Hbb** and that the Servomotor does not operate.
- Monitor the ON/OFF status of the /HWBB1 and /HWBB2 signals.

If the ON/OFF status of the signals do not coincide with the display, the following must be considered: an error in the external device, disconnection of the external wiring, short-circuiting in the external wiring, or a failure in the SERVOPACK. Find the cause and correct the problem.

Refer to the following sections for details on the monitor.


3.2.3 I/O Signal Monitor on page 9-5

- 3.3.4 Safety Input Signal Monitor (Un015) on page 13-10
- Confirm that the EDM1 signal is OFF while in normal operation by using the feedback circuit input display of the connected device.

11.6 Connecting a Safety Function Device

Use the following procedure to connect a safety function device.

1. Remove the Safety Jumper Connector from the connector for the safety function device (CN8).

- 2. Connect the safety function device to the connector for the safety function device (CN8).
- Note: If you do not connect a safety function device, leave the Safety Jumper Connector connected to the connector for the safety function device (CN8). If the SERVOPACK is used without the Safety Jumper Connector connected to CN8, no current will be supplied to the Servomotor and no motor torque will be output. In this case, **Hbb** will be displayed on the Digital Operator.

Maintenance

(12)

This chapter provides information on the meaning of, causes of, and corrections for alarms and warnings.

12.1	Inspe	ctions and Part Replacement 12-2
	12.1.1 12.1.2 12.1.3	Inspections12-2Guidelines for Part Replacement12-2Replacing the Battery12-3
12.2	Alarm	Displays12-5
	12.2.1 12.2.2 12.2.3 12.2.4 12.2.5 12.2.6 12.2.7	List of Alarms
12.3	Warni	ng Displays
	12.3.1 12.3.2	List of Warnings 12-45 Troubleshooting Warnings 12-46
12.4	Troublesh	ooting Based on the Operation and Conditions of the Servomotor 12-51

12.1.1 Inspections

2.1 Inspections and Part Replacement

This section describes inspections and part replacement for SERVOPACKs.

12.1.1 Inspections

Perform the inspections given in the following table at least once every year for the SERVO-PACK. Daily inspections are not required.

Item	Frequency	Inspection	Correction
Exterior	At least and a	Check for dust, dirt, and oil on the surfaces.	Clean with compressed air or a cloth.
Loose Screws	At least once a year	Check for loose terminal block and connector screws and for other loose parts.	Tighten any loose screws or other loose parts.

12.1.2 Guidelines for Part Replacement

The following electric or electronic parts are subject to mechanical wear or deterioration over time. Use one of the following methods to check the standard replacement period.

- Use the service life prediction function of the SERVOPACK. Refer to the following section for information on service life predictions.
 I 9.4 Monitoring Product Life on page 9-14
- Use the following table.

Part	Standard Replace- ment Period	Remarks
Cooling Fan	4 to 5 years	The standard replacement periods given on the left are for
Electrolytic Capacitor	10 years	 the following operating conditions. Surrounding air temperature: Annual average of 30°C Load factor: 80% max. Operation rate: 20 hours/day max.
Relays	100,000 power ON operations	Power ON frequency: Once an hour
Battery	3 years without power supplied	Surrounding temperature without power supplied: 20°C

When any standard replacement period is close to expiring, contact your Yaskawa representative. After an examination of the part in question, we will determine whether the part should be replaced.

The parameters of any SERVOPACKs that are sent to Yaskawa for part replacement are reset to the factory settings before they are returned to you. Always keep a record of the parameter settings. And, always confirm that the parameters are properly set before starting operation.

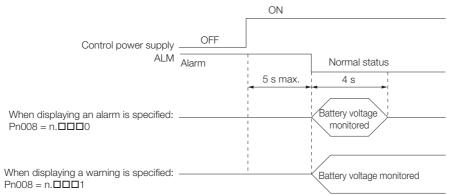
12.1.3 Replacing the Battery

If the battery voltage drops to approximately 2.7 V or less, an A.830 alarm (Encoder Battery Alarm) or an A.930 warning (Encoder Battery Warning) will be displayed.

If this alarm or warning is displayed, the battery must be replaced. Refer to the following section for the battery replacement procedure.

Battery Alarm/Warning Selection

Whether to display an alarm or a warning is determined by the setting of $Pn008 = n.\Box\Box\BoxX$ (Low Battery Voltage Alarm/Warning Selection).

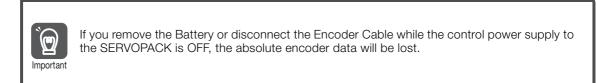

F	Parameter	Meaning	When Enabled	Classification	
Pn008	n.□□□0 (default setting)	Output alarm (A.830) for low battery voltage.	After restart	Setup	
	n.0001	Output warning (A.930) for low battery voltage.			

• Pn008 = n.□□□0

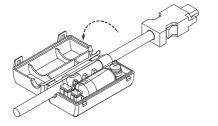
• The ALM (Servo Alarm) signal is output for up to five seconds when the control power supply is turned ON, and then the battery voltage is monitored for four seconds. No alarm will be displayed even if the battery voltage drops below the specified value after these four seconds.

• Pn008 = n.□□□1

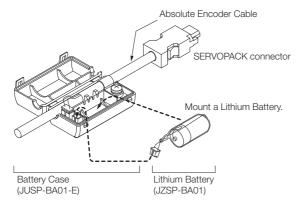
The ALM (Servo Alarm) signal is output for up to five seconds when the control power supply is turned ON, and then the battery voltage is monitored continuously.

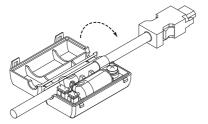

Battery Replacement Procedure

- When Installing a Battery on the Host Controller
- 1. Turn ON only the control power supply to the SERVOPACK.
- 2. Remove the old battery and mount a new battery.
- **3.** Turn OFF the control power supply to the SERVOPACK to clear the A.830 alarm (Absolute Encoder Battery Error).
- 4. Turn ON the control power supply to the SERVOPACK again.
- 5. Make sure that the alarm has been cleared and that the SERVOPACK operates normally.


12.1.3 Replacing the Battery

When Using an Encoder Cable with a Battery Case


1. Turn ON only the control power supply to the SERVOPACK.


2. Open the cover of the Battery Case.

3. Remove the old Battery and mount a new Battery.

4. Close the cover of the Battery Case.

- **5.** Turn OFF the power supply to the SERVOPACK to clear the A.830 alarm (Absolute Encoder Battery Error).
- 6. Turn ON the power supply to the SERVOPACK.
- 7. Make sure that the alarm has been cleared and that the SERVOPACK operates normally.

12.2 Alarm Displays

If an error occurs in the SERVOPACK, an alarm number will be displayed on the panel display.

 An alarm number flashes on the display.

This section provides a list of the alarms that may occur and the causes of and corrections for those alarms.

12.2.1 List of Alarms

The list of alarms gives the alarm name, alarm meaning, alarm stopping method, alarm reset possibility, and alarm code output in order of the alarm numbers.

Servomotor Stopping Method for Alarms

Refer to the following section for information on the stopping method for alarms. 5.14.2 Servomotor Stopping Method for Alarms on page 5-41

Alarm Reset Possibility

Yes: You can use an alarm reset to clear the alarm. However, this assumes that the cause of the alarm has been removed.

No: You cannot clear the alarm.

List of Alarms

Alarm Number			Servo- motor	Alarm Code Output			
	Alarm Name	Alarm Meaning	Stop- ping Method	Reset Possi- ble?	ALO1	ALO2	ALO3
A.020	Parameter Checksum Error	There is an error in the parameter data in the SER- VOPACK.	Gr.1	No	Н	Н	Н
A.021	Parameter Format Error	There is an error in the parameter data format in the SERVOPACK.	Gr.1	No	Н	Н	Н
A.022	System Checksum Error	There is an error in the parameter data in the SER- VOPACK.	Gr.1	No	Н	Н	Н
A.024	System Alarm	An internal program error occurred in the SERVO- PACK.	Gr.1	No	Н	Н	Н
A.025	System Alarm	An internal program error occurred in the SERVO- PACK.	Gr.1	No	Н	Н	Н
A.030	Main Circuit Detector Error	There is an error in the detec- tion data for the main circuit.	Gr.1	Yes	Н	Н	Н
A.040	Parameter Setting Error	A parameter setting is out- side of the setting range.	Gr.1	No	Н	Η	Н

Alarm			Servo- motor	Alarm Reset	Ala	arm Co Outpu	bde
Number	Alarm Name	Alarm Meaning	Stop- ping Method	Possi- ble?	ALO1	ALO2	ALO3
A.041	Encoder Output Pulse Setting Error	The setting of Pn212 (Encoder Output Pulses) or Pn281 (Encoder Output Res- olution) is outside of the set- ting range or does not satisfy the setting conditions.	Gr.1	No	Н	Н	н
A.042	Parameter Combination Error	The combination of some parameters exceeds the set- ting range.	Gr.1	No	Н	Н	Н
A.044	Semi-Closed/Fully-Closed Loop Control Parameter Setting Error	The settings of the Option Module and Pn002 = n.X□□□ (External Encoder Usage) do not match.	Gr.1	No	Н	н	н
A.050	Combination Error	The capacities of the SER- VOPACK and Servomotor do not match.	Gr.1	Yes	Н	Н	Н
A.051	Unsupported Device Alarm	An unsupported device was connected.	Gr.1	No	Н	н	Н
A.070	Motor Type Change Detected	The connected motor is a dif- ferent type of motor from the previously connected motor.	Gr.1	No	н	н	н
A.080	Linear Encoder Pitch Set- ting Error	The setting of Pn282 (Linear Encoder Pitch) has not been changed from the default setting.	Gr.1	No	н	н	н
A.0b0	Invalid Servo ON Com- mand Alarm	The /S-ON (Servo ON) signal was input from the host con- troller after a utility function that turns ON the Servomo- tor was executed.	Gr.1	Yes	н	н	н
A.100	Overcurrent Detected	An overcurrent flowed through the power trans- former or the heat sink over- heated.	Gr.1	No	L	н	н
A.101	Motor Overcurrent Detected	The current to the motor exceeded the allowable current.	Gr.1	No	L	Н	н
A.300	Regeneration Error	There is an error related to regeneration.	Gr.1	Yes	L	L	Н
A.320	Regenerative Overload	A regenerative overload occurred.	Gr.2	Yes	L	L	Н
A.330	Main Circuit Power Supply Wiring Error	 The AC power supply input setting or DC power supply input setting is not correct. The power supply wiring is not correct. 	Gr.1	Yes	L	L	н
A.400	Overvoltage	The main circuit DC voltage is too high.	Gr.1	Yes	Н	Н	L
A.410	Undervoltage	The main circuit DC voltage is too low.	Gr.2	Yes	Н	Н	L
A.510	Overspeed	The motor exceeded the maximum speed.	Gr.1	Yes	L	Н	L

Continued from p	previous page.
------------------	----------------

Alarm			Servo- motor	Alarm Reset	Alarm Code Output		
Number	Alarm Name	Alarm Meaning	Stop- ping Method	Possi- ble?	ALO1	ALO2	ALO3
A.511	Encoder Output Pulse Overspeed	 Rotary Servomotor: The pulse output speed for the setting of Pn212 (Encoder Output Pulses) was exceeded. Linear Servomotor: The motor speed upper limit for the setting of Pn281 (Encoder Output Resolution) was exceeded. 	Gr.1	Yes	L	Н	L
A.520	Vibration Alarm	Abnormal oscillation was detected in the motor speed.	Gr.1	Yes	L	Н	L
A.521	Autotuning Alarm	Vibration was detected during autotuning for the tun- ing-less function.	Gr.1	Yes	L	Н	L
A.550	Maximum Speed Setting Error	The setting of Pn385 (Maxi- mum Motor Speed) is greater than the maximum motor speed.	Gr.1	Yes	L	Н	L
A.710	Instantaneous Overload	The Servomotor was operat- ing for several seconds to several tens of seconds under a torque that largely exceeded the rating.	Gr.2	Yes	L	L	L
A.720	Continuous Overload	The Servomotor was operat- ing continuously under a torque that exceeded the rat- ing.	Gr.1	Yes	L	L	L
A.730 A.731	Dynamic Brake Overload	When the dynamic brake was applied, the rotational or lin- ear kinetic energy exceeded the capacity of the dynamic brake resistor.	Gr.1	Yes	L	L	L
A.740	Inrush Current Limiting Resistor Overload	The main circuit power sup- ply was frequently turned ON and OFF.	Gr.1	Yes	L	L	L
A.7A1	Internal Temperature Error 1 (Control Board Tempera- ture Error)	The surrounding tempera- ture of the control PCB is abnormal.	Gr.2	Yes	L	L	L
A.7A2	Internal Temperature Error 2 (Power Board Tempera- ture Error)	The surrounding tempera- ture of the power PCB is abnormal.	Gr.2	Yes	L	L	L
A.7A3	Internal Temperature Sen- sor Error	An error occurred in the tem- perature sensor circuit.	Gr.2	No	L	L	L
A.7Ab	SERVOPACK Built-in Fan Stopped	The fan inside the SERVO- PACK stopped.	Gr.1	Yes	L	L	L
A.810	Encoder Backup Alarm	The power supplies to the encoder all failed and the position data was lost.	Gr.1	No	Н	Н	Н
A.820	Encoder Checksum Alarm	There is an error in the checksum results for encoder memory.	Gr.1	No	н	Н	Н
A.830	Encoder Battery Alarm	The battery voltage was lower than the specified level after the control power sup- ply was turned ON.	Gr.1	Yes	н	Н	Н
A.840	Encoder Data Alarm	There is an internal data error in the encoder.	Gr.1	No	Н	Н	Н

Alarm			Servo- motor	Alarm Reset		ırm Co Outpu	
Number	Alarm Name	Alarm Meaning	Stop- ping Method	Possi- ble?	ALO1	Output ALO2 H	ALO3
A.850	Encoder Overspeed	The encoder was operating at high speed when the power was turned ON.	Gr.1	No	Н	Н	н
A.860	Encoder Overheated	The internal temperature of the rotary encoder or linear encoder is too high.	Gr.1	No	Н	Н	Н
A.861	Motor Overheated	The internal temperature of motor is too high.	Gr.1	No	Н	Н	Н
A.890	Encoder Scale Error	A failure occurred in the lin- ear encoder.	Gr.1	No	Н	н	Н
A.891	Encoder Module Error	An error occurred in the lin- ear encoder.	Gr.1	No	Н	Н	Н
A.8A0	External Encoder Error	An error occurred in the external encoder.	Gr.1	Yes	Н	Н	Н
A.8A1	External Encoder Module Error	An error occurred in the Serial Converter Unit.	Gr.1	Yes	Н	Н	Н
A.8A2	External Incremental Encoder Sensor Error	An error occurred in the external encoder.	Gr.1	Yes	Н	Н	Н
A.8A3	External Absolute Encoder Position Error	An error occurred in the posi- tion data of the external encoder.	Gr.1	Yes	Н	Н	н
A.8A5	External Encoder Over- speed	An overspeed error occurred in the external encoder.	Gr.1	Yes	Н	Н	Н
A.8A6	External Encoder Over- heated	An overheating error occurred in the external encoder.	Gr.1	Yes	Н	Н	н
A.b10	Speed Reference A/D Error	An error occurred in the A/D converter for the speed reference input.	Gr.2	Yes	Н	Н	Н
A.b11	Speed Reference A/D Data Error	An error occurred in the A/D conversion data for the speed reference.	Gr.2	Yes	Н	Н	Н
A.b20	Torque Reference A/D Error	An error occurred in the A/D converter for the torque reference input.	Gr.2	Yes	Н	Н	Н
A.b33	Current Detection Error 3	An error occurred in the cur- rent detection circuit.	Gr.1	No	Н	н	Н
A.bF0	System Alarm 0	Internal program error 0 occurred in the SERVO- PACK.	Gr.1	No	н	Н	н
A.bF1	System Alarm 1	Internal program error 1 occurred in the SERVO- PACK.	Gr.1	No	Н	Н	Н
A.bF2	System Alarm 2	Internal program error 2 occurred in the SERVO- PACK.	Gr.1	No	Н	Н	Н
A.bF3	System Alarm 3	Internal program error 3 occurred in the SERVO- PACK.	Gr.1	No	Н	Н	Н
A.bF4	System Alarm 4	Internal program error 4 occurred in the SERVO- PACK.	Gr.1	No	Н	Н	Н
A.C10	Servomotor Out of Control	The Servomotor ran out of control.	Gr.1	Yes	L	Н	L
A.C20	Phase Detection Error	The detection of the phase is not correct.	Gr.1	No	L	Н	L

Continued from previous page.

Alarm			Servo- motor	Alarm Reset	Alarm Code Output		
Number	Alarm Name	Alarm Meaning	Stop- ping Method	Possi- ble?	ALO1	ALO2	ALO3
A.C21	Polarity Sensor Error	An error occurred in the polarity sensor.	Gr.1	No	L	Н	L
A.C22	Phase Information Dis- agreement	The phase information does not match.	Gr.1	No	L	Н	L
A.C50	Polarity Detection Failure	The polarity detection failed.	Gr.1	No	L	Н	L
A.C51	Overtravel Detected during Polarity Detection	The overtravel signal was detected during polarity detection.	Gr.1	Yes	L	н	L
A.C52	Polarity Detection Not Completed	The servo was turned ON before the polarity was detected.	Gr.1	Yes	L	н	L
A.C53	Out of Range of Motion for Polarity Detection	The travel distance exceeded the setting of Pn48E (Polarity Detection Range).	Gr.1	No	L	н	L
A.C54	Polarity Detection Failure 2	The polarity detection failed.	Gr.1	No	L	Н	L
A.C80	Encoder Clear Error or Multiturn Limit Setting Error	The multiturn data for the absolute encoder was not correctly cleared or set.	Gr.1	No	L	н	L
A.C90	Encoder Communications Error	Communications between the encoder and SERVO- PACK is not possible.	Gr.1	No	L	н	L
A.C91	Encoder Communications Position Data Acceleration Rate Error	An error occurred in calculat- ing the position data of the encoder.	Gr.1	No	L	н	L
A.C92	Encoder Communications Timer Error	An error occurred in the com- munications timer between the encoder and SERVO- PACK.	Gr.1	No	L	Н	L
A.CA0	Encoder Parameter Error	The parameters in the encoder are corrupted.	Gr.1	No	L	Н	L
A.Cb0	Encoder Echoback Error	The contents of communica- tions with the encoder are incorrect.	Gr.1	No	L	н	L
A.CC0	Multiturn Limit Disagree- ment	Different multiturn limits have been set in the encoder and the SERVOPACK.	Gr.1	No	L	н	L
A.CF1	Reception Failed Error in Feedback Option Module Communications	Receiving data from the Feedback Option Module failed.	Gr.1	No	L	н	L
A.CF2	Timer Stopped Error in Feedback Option Module Communications	An error occurred in the timer for communications with the Feedback Option Module.	Gr.1	No	L	Н	L
A.d00	Position Deviation Over- flow	The setting of Pn520 (Exces- sive Position Deviation Alarm Level) was exceeded by the position deviation while the servo was ON.	Gr.1	Yes	L	L	Н
A.d01	Position Deviation Over- flow Alarm at Servo ON	The servo was turned ON after the position deviation exceeded the setting of Pn526 (Excessive Position Deviation Alarm Level at Servo ON) while the servo was OFF.	Gr.1	Yes	L	L	Н

Alarm	Alarm Name		Servo- motor	Alarm Reset	Alarm Code Output		
Number		Alarm Meaning	Stop- ping Method	Possi- ble?	ALO1	ALO2	ALO3
A.d02	Position Deviation Over- flow Alarm for Speed Limit at Servo ON	If position deviation remains in the deviation counter, the setting of Pn529 or Pn584 (Speed Limit Level at Servo ON) limits the speed when the servo is turned ON. This alarm occurs if reference pulses are input and the set- ting of Pn520 (Excessive Position Deviation Alarm Level) is exceeded before the limit is cleared.	Gr.2	Yes	L	L	н
A.d10	Motor-Load Position Devi- ation Overflow	There was too much position deviation between the motor and load during fully-closed loop control.	Gr.2	Yes	L	L	Н
A.d30	Position Data Overflow	The position feedback data exceeded $\pm 1,879,048,192$.	Gr.1	No	L	L	Н
A.E71	Safety Option Module Detection Failure	Detection of the Safety Option Module failed.	Gr.1	No	Н	L	L
A.E72	Feedback Option Module Detection Failure	Detection of the Feedback Option Module failed.	Gr.1	No	Н	L	L
A.E74	Unsupported Safety Option Module	An unsupported Safety Option Module was con- nected.	Gr.1	No	Н	L	L
A.Eb1	Safety Function Signal Input Timing Error	An error occurred in the input timing of the safety function signal.	Gr.1	No	Н	L	L
A.EC8	Gate Drive Error 1	An error occurred in the gate drive circuit.	Gr.1	No	Н	L	L
A.EC9	Gate Drive Error 2	An error occurred in the gate drive circuit.	Gr.1	No	Н	L	L
A.F10	Power Supply Line Open Phase	The voltage was low for more than one second for phase R, S, or T when the main power supply was ON.	Gr.2	Yes	н	L	Н
A.F50	Servomotor Main Circuit Cable Disconnection	The Servomotor did not operate or power was not supplied to the Servomotor even though the /S-ON (Servo ON) signal was input when the Servomotor was ready to receive it.	Gr.1	Yes	Н	L	Н
FL-1* FL-2* FL-3* FL-4* FL-5*	System Alarm	An internal program error occurred in the SERVO- PACK.	-	No	Undefined.		
CPF00 CPF01	Digital Operator Commu- nications Error 1 Digital Operator Commu- nications Error 2	Communications were not possible between the Digital Operator (model: JUSP- OP05A-1-E) and the SERVO- PACK (e.g., a CPU error occurred).	-	No	Undefined.		ed.

Note: The A.Eb0, A.Eb2 to A.Eb9, and A.EC0 to A.EC2 alarms can occur when a Safety Module is connected.

The causes of and corrections for the alarms are given in the following table. Contact your Yaskawa representative if you cannot solve a problem with the correction given in the table.

Alarm Number: Alarm Name	Possible Cause	Confirmation	Correction	Reference
	The power supply voltage suddenly dropped.	Measure the power supply voltage.	Set the power supply volt- age within the specified range, and initialize the parameter settings.	page 5-9
	The power supply was shut OFF while writing parameter set- tings.	Check the timing of shutting OFF the power supply.	Initialize the parameter settings and then set the parameters again.	puge e e
A.020: Parameter	The number of times that parameters were written exceeded the limit.	Check to see if the parameters were fre- quently changed from the host controller.	The SERVOPACK may be faulty. Replace the SER- VOPACK. Reconsider the method for writing the parame- ters.	-
Checksum Error (There is an error in the parameter data in the SER- VOPACK.)	A malfunction was caused by noise from the AC power supply, ground, static elec- tricity, or other source.	Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, noise may be the cause.	Implement countermea- sures against noise.	page 4-5
	Gas, water drops, or cutting oil entered the SERVOPACK and caused failure of the internal components.	Check the installation conditions.	The SERVOPACK may be faulty. Replace the SER- VOPACK.	_
	A failure occurred in the SERVOPACK.	Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the SERVOPACK may have failed.	The SERVOPACK may be faulty. Replace the SER- VOPACK.	-
A.021: Parameter For- mat Error (There is an error in the parameter data format in the	The software version of the SERVOPACK that caused the alarm is older than the soft- ware version of the parameters specified to write.	Read the product infor- mation to see if the soft- ware versions are the same. If they are differ- ent, it could be the cause of the alarm.	Write the parameters from another SERVOPACK with the same model and the same software version, and then turn the power OFF and ON again.	page 9-2
SERVOPACK.)	A failure occurred in the SERVOPACK.	-	The SERVOPACK may be faulty. Replace the SER- VOPACK.	-
	The power supply voltage suddenly dropped.	Measure the power supply voltage.	The SERVOPACK may be faulty. Replace the SER- VOPACK.	-
A.022: System Check- sum Error (There is an error	The power supply was shut OFF while setting a utility func- tion.	Check the timing of shutting OFF the power supply.	The SERVOPACK may be faulty. Replace the SER- VOPACK.	-
in the parameter data in the SER- VOPACK.)	A failure occurred in the SERVOPACK.	Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the SERVOPACK may have failed.	The SERVOPACK may be faulty. Replace the SER- VOPACK.	-

Alarm Number:	Possible Cause	Confirmation	Correction	Reference
Alarm Name	POSSIble Cause	Commation	Correction	nelelelice
A.024: System Alarm (An internal pro- gram error occurred in the SERVOPACK.)	A failure occurred in the SERVOPACK.	-	The SERVOPACK may be faulty. Replace the SER- VOPACK.	-
A.025: System Alarm (An internal pro- gram error occurred in the SERVOPACK.)	A failure occurred in the SERVOPACK.	_	The SERVOPACK may be faulty. Replace the SER- VOPACK.	_
A.030: Main Circuit Detector Error	A failure occurred in the SERVOPACK.	-	The SERVOPACK may be faulty. Replace the SER- VOPACK.	-
	The SERVOPACK and Servomotor capaci- ties do not match each other.	Check the combination of the SERVOPACK and Servomotor capacities.	Select a proper combina- tion of SERVOPACK and Servomotor capacities.	-
A.040: Parameter Set-	A failure occurred in the SERVOPACK.	-	The SERVOPACK may be faulty. Replace the SER- VOPACK.	_
ting Error (A parameter set- ting is outside of the setting	A parameter setting is outside of the setting range.	Check the setting ranges of the parame- ters that have been changed.	Set the parameters to values within the setting ranges.	-
range.)	The electronic gear ratio is outside of the setting range.	Check the electronic gear ratio. The ratio must be within the fol- lowing range: 0.001 < (Pn20E/Pn210) < 64,000.	Set the electronic gear ratio in the following range: 0.001 < (Pn20E/ Pn210) < 64,000.	page 5-46
A.041: Encoder Output Pulse Setting Error	The setting of Pn212 (Encoder Output Pulses) or Pn281 (Encoder Output Res- olution) is outside of the setting range or does not satisfy the setting conditions.	Check the setting of Pn212 or Pn281.	Set Pn212 or Pn281 to an appropriate value.	page 6-47
	The speed of program jogging went below the setting range when the electronic gear ratio (Pn20E/ Pn210) or the Servo- motor was changed.	Check to see if the detection conditions ^{*1} are satisfied.	Decrease the setting of the electronic gear ratio (Pn20E/Pn210).	page 5-46
A.042: Parameter Com- bination Error	The speed of program jogging went below the setting range when Pn533 or Pn585 (Program Jogging Speed) was changed.	Check to see if the detection conditions ^{*1} are satisfied.	Increase the setting of Pn533 or Pn585.	page 7-20
	The movement speed of advanced autotun- ing went below the setting range when the electronic gear ratio (Pn20E/ Pn210) or the Servomotor was changed.	Check to see if the detection conditions ^{*2} are satisfied.	Decrease the setting of the electronic gear ratio (Pn20E/Pn210).	page 5-46

Continued	from	previous	page.
0011111000	nom	proviouo	pugo.

Alarm Number:	Possible Cause	Confirmation	Continued from pr mation Correction			Confirmation	
Alarm Name	Possible Cause	Confirmation	Correction	Reference			
A.044: Semi-Closed/ Fully-Closed Loop Control Parameter Setting Error	The setting of the Fully-Closed Module does not match the setting of Pn002 = n.XDDD (External Encoder Usage).	Check the setting of Pn002 = $n.X\square\square\square$.	Make sure that the setting of the Fully-closed Module agrees with the setting of Pn002 = $n.X\Box\Box\Box$.	page 10-6			
A.050: Combination Error	The SERVOPACK and Servomotor capaci- ties do not match each other.	Check the capacities to see if they satisfy the following condition: $1/4 \le \frac{\text{Servomotor capacity}}{\text{SERVOPACK capacity}} \le 4$	Select a proper combina- tion of the SERVOPACK and Servomotor capaci- ties.	-			
(The capacities of the SERVOPACK and Servomotor do not match.)	A failure occurred in the encoder.	Replace the encoder and check to see if the alarm still occurs.	Replace the Servomotor or encoder.	-			
· · · · · ,	A failure occurred in the SERVOPACK.	_	The SERVOPACK may be faulty. Replace the SER- VOPACK.	-			
A.051:	The motor parameter file was not written to the linear encoder. (This applies only when not using a Serial Converter Unit.)	Check to see if the motor parameter file was written to the lin- ear encoder.	Write the motor parame- ter file to the linear encoder.	page 5-19			
Unsupported Device Alarm	An unsupported Serial Converter Unit or encoder (e.g., an external encoder) is connected to the SERVOPACK.	Check the product combination specifica-tions.	Change to a correct com- bination of models.	_			
A.070: Motor Type Change Detected (The connected	A Rotary Servomotor was removed and a Linear Servomotor was connected.	_	Set the parameters for a Linear Servomotor and reset the motor type alarm. Then, turn the power supply to the SER- VOPACK OFF and ON again.	page 12-43			
motor is a differ- ent type of motor from the previ- ously connected motor.)	A Linear Servomotor was removed and a Rotary Servomotor was connected.	_	Set the parameters for a Rotary Servomotor and reset the motor type alarm. Then, turn the power supply to the SER- VOPACK OFF and ON again.	page 12-43			
A.080: Linear Encoder Pitch Setting Error	The setting of Pn282 (Linear Encoder Pitch) has not been changed from the default set- ting.	Check the setting of Pn282.	Correct the setting of Pn282.	page 5-18			
A.0b0: Invalid Servo ON Command Alarm	The /S-ON (Servo ON) signal was input from the host controller after a utility function that turns ON the Ser- vomotor was exe- cuted.	_	Turn the power supply to the SERVOPACK OFF and ON again. Or, execute a software reset.	page 6-94			

12

12-13

Alarm Number: Alarm Name	Possible Cause	Confirmation	Correction	Reference
	The Main Circuit Cable is not wired correctly or there is faulty contact.	Check the wiring.	Correct the wiring.	
	There is a short-circuit or ground fault in a Main Circuit Cable.	Check for short-circuits across Servomotor phases U, V, and W, or between the ground and Servomotor phases U, V, and W.	The cable may be short- circuited. Replace the cable.	
	There is a short-circuit or ground fault inside the Servomotor.	Check for short-circuits across Servomotor phases U, V, and W, or between the ground and Servomotor phases U, V, or W.	The Servomotor may be faulty. Replace the Servo- motor.	page 4-22
A.100: Overcurrent Detected (An overcurrent flowed through the power trans-	rent ugh	Check for short-circuits across the Servomotor connection terminals U, V, and W on the SER- VOPACK, or between the ground and termi- nals U, V, or W.	The SERVOPACK may be faulty. Replace the SER- VOPACK.	
former or the heat sink overheated.)	The regenerative resistor is not wired correctly or there is faulty contact.	Check the wiring.	Correct the wiring.	page 4-18
	The dynamic brake (DB, emergency stop executed from the SERVOPACK) was frequently activated, or a DB overload alarm occurred.	Check the power con- sumed by the DB resis- tor to see how frequently the DB is being used. Or, check the alarm display to see if a DB overload alarm (A.730 or A.731) has occurred.	Change the SERVOPACK model, operating meth- ods, or the mechanisms so that the dynamic brake does not need to be used so frequently.	-
	The regenerative resistor value exceeded the SER- VOPACK regenerative processing capacity.	Check the regenerative load ratio in the Sig- maWin+ Motion Monitor Tab Page to see how frequently the regenera- tive resistor is being used.	Select a regenerative resistance value that is appropriate for the oper- ating conditions and load.	-

Alarm Number: De rive						
Alarm Number: Alarm Name	Possible Cause	Confirmation	Correction	Reference		
	The SERVOPACK regenerative resis- tance is too small.	Check the regenerative load ratio in the Sig- maWin+ Motion Monitor Tab Page to see how frequently the regenera- tive resistor is being used.	Change the regenerative resistance to a value larger than the SERVO- PACK minimum allowable resistance.	-		
A.100: Overcurrent Detected (An overcurrent	A heavy load was applied while the Ser- vomotor was stopped or running at a low speed.	Check to see if the operating conditions exceed Servo Drive specifications.	Reduce the load applied to the Servomotor. Or, increase the operating speed.	-		
flowed through the power trans- former or the heat sink overheated.)	A malfunction was caused by noise.	Improve the noise envi- ronment, e.g. by improving the wiring or installation conditions, and check to see if the alarm still occurs.	Implement countermea- sures against noise, such as correct wiring of the FG. Use an FG wire size equivalent to the SERVO- PACK's main circuit wire size.	-		
	A failure occurred in the SERVOPACK.	_	Turn the power supply to the SERVOPACK OFF and ON again. If an alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK.	-		
	The Main Circuit Cable is not wired correctly or there is faulty contact.	Check the wiring.	Correct the wiring.			
	There is a short-circuit or ground fault in a Main Circuit Cable.	Check for short-circuits across cable phases U, V, and W, or between the ground and cable phases U, V, and W.	The cable may be short- circuited. Replace the cable.			
A.101: Motor Overcur- rent Detected (The current to the motor exceeded the	There is a short-circuit or ground fault inside the Servomotor.	Check for short-circuits across Servomotor phases U, V, and W, or between the ground and Servomotor phases U, V, or W.	The Servomotor may be faulty. Replace the Servo- motor.	page 4-22		
allowable cur- rent.)	able cur-	Check for short-circuits across the Servomotor connection terminals U, V, and W on the SER- VOPACK, or between the ground and termi- nals U, V, or W.	The SERVOPACK may be faulty. Replace the SER- VOPACK.			
	A heavy load was applied while the Ser- vomotor was stopped or running at a low speed.	Check to see if the operating conditions exceed Servo Drive specifications.	Reduce the load applied to the Servomotor. Or, increase the operating speed.	-		

Alarm Number: Alarm Name	Possible Cause	Confirmation	Correction	Reference
A.101: Motor Overcurrent Detected (The current to	A malfunction was caused by noise.	Improve the noise envi- ronment, e.g. by improving the wiring or installation conditions, and check to see if the alarm still occurs.	Implement countermea- sures against noise, such as correct wiring of the FG. Use an FG wire size equivalent to the SERVO- PACK's main circuit wire size.	_
the motor exceeded the allowable current.)	A failure occurred in the SERVOPACK.	-	Turn the power supply to the SERVOPACK OFF and ON again. If an alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK.	-
	Pn600 (Regenerative Resistor Capacity) is not set to 0 and an External Regenerative Resistor is not con- nected to one of the following SERVO- PACKs: SGD7S- R70A, -R90A, -1R6A, -2R8A, or -330A.	Check it see if an Exter- nal Regenerative Resis- tor is connected and check the setting of Pn600.	Connect an External Regenerative Resistor, or set Pn600 (Regenerative Resistor Capacity) to 0 (setting unit: ×10 W) if no Regenerative Resistor is required.	page 5-56
	An External Regener- ative Resistor is not connected to one of the following SERVO- PACKs: SGD7S- 470A, -550A, -590A, or -780A.	Check to see if an External Regenerative Resistor or a Regenera- tive Resistor Unit is con- nected and check the setting of Pn600.	Connect an External Regenerative Resistor and set Pn600 to an appropri- ate value, or connect a Regenerative Resistor Unit and set Pn600 to 0.	
A.300: Regeneration Error	The jumper between the regenerative resis- tor terminals (B2 and B3) was removed from one of the fol- lowing SERVO- PACKs: SGD7S- 3R8A, SGD7S-5R5A, SGD7S-7R6A, SGD7S-120A, SGD7S-120A, SGD7S-180A, or SGD7S-200A.	Check to see if the jumper is connected between power supply terminals B2 and B3.	Correctly connect a jumper.	page 4-18
	The External Regener- ative Resistor is not wired correctly, or was removed or discon- nected.	Check the wiring of the External Regenerative Resistor.	Correct the wiring of the External Regenerative Resistor.	
	A failure occurred in the SERVOPACK.	-	While the main circuit power supply is OFF, turn the control power supply to the SERVOPACK OFF and ON again. If an alarm still occurs, the SERVO- PACK may be faulty. Replace the SERVO- PACK.	-

Alarm Number: Alarm Name	Possible Cause	Confirmation	Correction	Reference
	The power supply voltage exceeded the specified range.	Measure the power supply voltage.	Set the power supply volt- age within the specified range.	-
	The external regener- ative resistance value or regenerative resis- tor capacity is too small, or there has been a continuous regeneration state.	Check the operating conditions or the capacity using the Sig- maJunmaSize+ Capac- ity Selection Software or other means.	Change the regenerative resistance value or capac- ity. Reconsider the operating conditions using the Sig- maJunmaSize+ Capacity Selection Software or other means.	-
	There was a continu- ous regeneration state because a negative load was continu- ously applied.	Check the load applied to the Servomotor during operation.	Reconsider the system including the servo, machine, and operating conditions.	_
A.320: Regenerative Overload	The setting of Pn600 (Regenerative Resis- tor Capacity) is smaller than the capacity of the Exter- nal Regenerative Resistor.	Check it see if a Regen- erative Resistor is con- nected and check the setting of Pn600.	Correct the setting of Pn600.	page 5-56
	The setting of Pn603 (Regenerative Resis- tor Capacity) is smaller than the capacity of the Exter- nal Regenerative Resistor.	Check to see if a Regenerative Resistor is connected and check the setting of Pn603.	Correct the setting of Pn603.	page 5-56
	The external regener- ative resistance is too high.	Check the regenerative resistance.	Change the regenerative resistance to a correct value or use an External Regenerative Resistor of an appropriate capacity.	-
	A failure occurred in the SERVOPACK.	-	The SERVOPACK may be faulty. Replace the SER- VOPACK.	-

Alarm Number: Alarm Name	Possible Cause	Confirmation	Correction	Reference
	The regenerative resistor was discon- nected when the SERVOPACK power supply voltage was high.	Measure the resistance of the regenerative resistor using a measur- ing instrument.	If you are using the regen- erative resistor built into the SERVOPACK, replace the SERVOPACK. If you are using an Exter- nal Regenerative Resis- tor, replace the External Regenerative Resistor.	_
A.330:	DC power was sup- plied when an AC power supply input was specified in the settings.	Check the power sup- ply to see if it is a DC power supply.	Correct the power supply setting to match the actual power supply.	page 5-13
Main Circuit Power Supply Wiring Error (Detected when the main circuit power supply is turned ON.) AC power was sup- plied when a DC power supply input was specified in the settings. Pn600 (Regenerative Resistor Capacity) is not set to 0 and an External Regenerative Resistor is not con- nected to one of the following SERVO- PACKs: SGD7S- R70A, SGD7S- R90A,SGD7S-1R6A, or SGD7S-2R8A.	plied when a DC power supply input was specified in the	Check the power sup- ply to see if it is an AC power supply.	Correct the power supply setting to match the actual power supply.	page 5-15
	Check it see if an Exter- nal Regenerative Resis- tor is connected and check the setting of Pn600.	Connect an External Regenerative Resistor, or if an External Regenera- tive Resistor is not required, set Pn600 to 0.	page 4-18, page 5-56	
	A failure occurred in the SERVOPACK.	-	The SERVOPACK may be faulty. Replace the SER- VOPACK.	-

Continued from previous page.

Continued from previous page.				
Alarm Number: Alarm Name	Possible Cause	Confirmation	Correction	Reference
	The power supply voltage exceeded the specified range.	Measure the power supply voltage.	Set the AC/DC power supply voltage within the specified range.	-
	The power supply is not stable or was influenced by a light- ning surge.	Measure the power supply voltage.	Improve the power sup- ply conditions, install a surge absorber, and then turn the power supply OFF and ON again. If an alarm still occurs, the SERVOPACK may be faulty. Replace the SER- VOPACK.	-
A.400: Overvoltage (Detected in the	The voltage for AC power supply was too high during accelera- tion or deceleration.	Check the power sup- ply voltage and the speed and torque during operation.	Set the AC power supply voltage within the speci- fied range.	_
main circuit power supply section of the SERVOPACK.)	The external regener- ative resistance is too high for the operating conditions.	Check the operating conditions and the regenerative resistance.	Select a regenerative resistance value that is appropriate for the oper- ating conditions and load.	-
	The moment of inertia ratio or mass ratio exceeded the allow- able value.	Check to see if the moment of inertia ratio or mass ratio is within the allowable range.	Increase the deceleration time, or reduce the load.	_
	A failure occurred in the SERVOPACK.	_	While the main circuit power supply is OFF, turn the control power supply to the SERVOPACK OFF and ON again. If an alarm still occurs, the SERVO- PACK may be faulty. Replace the SERVO- PACK.	_
	The power supply voltage went below the specified range.	Measure the power supply voltage.	Set the power supply volt- age within the specified range.	-
	The power supply voltage dropped during operation.	Measure the power supply voltage.	Increase the power supply capacity.	-
A.410: Undervoltage (Detected in the main circuit power supply section of the SERVOPACK.)	A momentary power interruption occurred.	Measure the power supply voltage.	If you have changed the setting of Pn509 (Momen- tary Power Interruption Hold Time), decrease the setting.	page 6-12
	The SERVOPACK fuse is blown out.	-	Replace the SERVO- PACK and connect a reactor to the DC reactor terminals (\ominus 1 and \ominus 2) on the SERVOPACK.	-
	A failure occurred in the SERVOPACK.	-	The SERVOPACK may be faulty. Replace the SER- VOPACK.	-

Maintenance

Alarm Number:	Possible Cause	Confirmation	Correction	Reference
Alarm Name				
	The order of phases U, V, and W in the motor wiring is not correct.	Check the wiring of the Servomotor.	Make sure that the Servo- motor is correctly wired.	-
A.510: Overspeed	A reference value that exceeded the over- speed detection level was input.	Check the input refer- ence.	Reduce the reference value. Or, adjust the gain.	
(The motor exceeded the maximum speed.)	The motor exceeded the maximum speed.	Check the waveform of the motor speed.	Reduce the speed refer- ence input gain and adjust the servo gain. Or, reconsider the operating conditions.	- page 6-16
	A failure occurred in the SERVOPACK.	_	The SERVOPACK may be faulty. Replace the SER- VOPACK.	-
A.511:	The encoder output pulse frequency exceeded the limit.	Check the encoder out- put pulse setting.	Decrease the setting of Pn212 (Encoder Output Pulses) or Pn281 (Encoder Output Resolu- tion).	page 6-52
Encoder Output Pulse Overspeed	The encoder output pulse frequency exceeded the limit because the motor speed was too high.	Check the encoder out- put pulse setting and the motor speed.	Reduce the motor speed.	-
A.520:	Abnormal oscillation was detected in the motor speed.	Check for abnormal motor noise, and check the speed and torque waveforms during oper- ation.	Reduce the motor speed. Or, reduce the setting of Pn100 (Speed Loop Gain).	_
Vibration Alarm	The setting of Pn103 (Moment of Inertia Ratio) is greater than the actual moment of inertia or was greatly changed.	Check the moment of inertia ratio or mass ratio.	Set Pn103 (Moment of Inertia Ratio) to an appro- priate value.	-
A.521: Autotuning Alarm (Vibration was detected while executing the custom tuning,	The Servomotor vibrated considerably while performing the tuning-less function.	Check the waveform of the motor speed.	Reduce the load so that the moment of inertia ratio is within the allowable value. Or increase the load level or reduce the rigidity level in the tuning- less level settings.	page 8-12
Easy FFT, or the tuning-less func- tion.)	The Servomotor vibrated considerably while performing cus- tom tuning or Easy FFT.	Check the waveform of the motor speed.	Check the operating pro- cedure of corresponding function and implement corrections.	page 8-42, page 8-92
A.550: Maximum Speed Setting Error	The setting of Pn385 (Maximum Motor Speed) is greater than the maximum speed.	Check the setting of Pn385, and the upper limits of the maximum motor speed setting and the encoder output resolution setting.	Set Pn385 to a value that does not exceed the max- imum motor speed.	page 6-15

Continued from previous page.

Continued from previous page				evious page.
Alarm Number: Alarm Name	Possible Cause	Confirmation	Correction	Reference
	The wiring is not cor- rect or there is a faulty contact in the motor or encoder wiring.	Check the wiring.	Make sure that the Servo- motor and encoder are correctly wired.	page 4-22
	Operation was per- formed that exceeded the overload protec- tion characteristics.	Check the motor over- load characteristics and Run command.	Reconsider the load and operating conditions. Or, increase the motor capacity.	-
A.710: Instantaneous Overload A.720: Continuous	An excessive load was applied during operation because the Servomotor was not driven due to mechanical problems.	Check the operation reference and motor speed.	Correct the mechanical problem.	-
Overload	There is an error in the setting of Pn282 (Lin- ear Encoder Pitch).	Check the setting of Pn282.	Correct the setting of Pn282.	page 5-18
	There is an error in the setting of Pn080 = n.□□X□ (Motor Phase Selection).	Check the setting of Pn080 = $n.\square\squareX\square$.	Set Pn080 = $n.\Box\Box X\Box$ to an appropriate value.	page 5-23
	A failure occurred in the SERVOPACK.	_	The SERVOPACK may be faulty. Replace the SER- VOPACK.	-
	The Servomotor was rotated by an external force.	Check the operation status.	Implement measures to ensure that the motor will not be rotated by an external force.	-
A.730 and A.731: Dynamic Brake Overload (An excessive power consump- tion by the dynamic brake was detected.)	When the Servomo- tor was stopped with the dynamic brake, the rotational or linear kinetic energy exceeded the capac- ity of the dynamic brake resistor.	Check the power con- sumed by the DB resis- tor to see how frequently the DB is being used.	 Reconsider the following: Reduce the Servomotor command speed. Decrease the moment of inertia ratio or mass ratio. Reduce the frequency of stopping with the dynamic brake. 	-
	A failure occurred in the SERVOPACK.	_	The SERVOPACK may be faulty. Replace the SER- VOPACK.	-
A.740: Inrush Current Limiting Resistor Overload (The main circuit power supply was frequently turned ON and OFF.)	The allowable fre- quency of the inrush current limiting resis- tor was exceeded when the main circuit power supply was turned ON and OFF.	_	Reduce the frequency of turning the main circuit power supply ON and OFF.	-
	A failure occurred in the SERVOPACK.	-	The SERVOPACK may be faulty. Replace the SER- VOPACK.	-

Alarm Number: Alarm Name	Possible Cause	Confirmation	Correction	Reference
	The surrounding tem- perature is too high.	Check the surrounding temperature using a thermostat. Or, check the operating status with the SERVOPACK installation environment monitor.	Decrease the surround- ing temperature by improving the SERVO- PACK installation condi- tions.	-
	An overload alarm was reset by turning OFF the power sup- ply too many times.	Check the alarm display to see if there is an overload alarm.	Change the method for resetting the alarm.	-
A.7A1: Internal Tempera- ture Error 1 (Control Board Temperature Error)	There was an exces- sive load or operation was performed that exceeded the regen- erative processing capacity.	Use the accumulated load ratio to check the load during operation, and use the regenera- tive load ratio to check the regenerative pro- cessing capacity.	Reconsider the load and operating conditions.	-
	The SERVOPACK installation orientation is not correct or there is insufficient space around the SERVO- PACK.	Check the SERVOPACK installation conditions.	Install the SERVOPACK according to specifica- tions.	page 3-3, page 3-5
	A failure occurred in the SERVOPACK.	-	The SERVOPACK may be faulty. Replace the SER- VOPACK.	-
	The surrounding tem- perature is too high.	Check the surrounding temperature using a thermostat. Or, check the operating status with the SERVOPACK installation environment monitor.	Decrease the surround- ing temperature by improving the SERVO- PACK installation condi- tions.	-
	An overload alarm was reset by turning OFF the power sup- ply too many times.	Check the alarm display to see if there is an overload alarm.	Change the method for resetting the alarm.	_
A.7A2: Internal Tempera- ture Error 2 (Power Board Temperature Error)	There was an exces- sive load or operation was performed that exceeded the regen- erative processing capacity.	Use the accumulated load ratio to check the load during operation, and use the regenera- tive load ratio to check the regenerative pro- cessing capacity.	Reconsider the load and operating conditions.	-
	The SERVOPACK installation orientation is not correct or there is insufficient space around the SERVO- PACK.	Check the SERVOPACK installation conditions.	Install the SERVOPACK according to specifica- tions.	page 3-3, page 3-5
	A failure occurred in the SERVOPACK.	-	The SERVOPACK may be faulty. Replace the SER- VOPACK.	_
A.7A3: Internal Tempera- ture Sensor Error (An error occurred in the temperature sen- sor circuit.)	A failure occurred in the SERVOPACK.	_	The SERVOPACK may be faulty. Replace the SER- VOPACK.	-

Continued from previous page.

Continued from previous page.				
Alarm Number: Alarm Name	Possible Cause	Confirmation	Correction	Reference
A.7Ab: SERVOPACK Built-in Fan Stopped	The fan inside the SERVOPACK stopped.	Check for foreign matter inside the SERVOPACK.	Remove foreign matter from the SERVOPACK. If an alarm still occurs, the SERVOPACK may be faulty. Replace the SER- VOPACK.	-
	The power to the absolute encoder was turned ON for the first time.	Check to see if the power supply was turned ON for the first time.	Set up the encoder.	
A.810:	The Encoder Cable was disconnected and then connected again.	Check to see if the power supply was turned ON for the first time.	Check the encoder con- nection and set up the encoder.	page 5-50
Encoder Backup Alarm (Detected at the encoder, but only when an abso- lute encoder is used.)	Power is not being supplied both from the control power supply (+5 V) from the SERVOPACK and from the battery power supply.	Check the encoder connector battery and the connector status.	Replace the battery or implement similar mea- sures to supply power to the encoder, and set up the encoder.	
	A failure occurred in the absolute encoder.	_	If the alarm still occurs after setting up the encoder again, replace the Servomotor.	-
	A failure occurred in the SERVOPACK.	-	The SERVOPACK may be faulty. Replace the SER- VOPACK.	-
A.820: Encoder Check- sum Alarm (Detected at the encoder.)	A failure occurred in the encoder.	_	 When Using an Absolute Encoder Set up the encoder again. If the alarm still occurs, the Servomotor may be faulty. Replace the Servomotor. When Using a Singleturn Absolute Encoder or Incremental Encoder The Servomotor may be faulty. Replace the Servomotor. The linear encoder may be faulty. Replace the linear encoder. 	page 5-50
	A failure occurred in the SERVOPACK.	-	The SERVOPACK may be faulty. Replace the SER- VOPACK.	-
A.830: Encoder Battery Alarm (The absolute encoder battery voltage was lower than the speci- fied level.)	The battery connec- tion is faulty or a bat- tery is not connected.	Check the battery con- nection.	Correct the battery con- nection.	page 4-23
	The battery voltage is lower than the specified value (2.7 V).	Measure the battery voltage.	Replace the battery.	page 12-3
	A failure occurred in the SERVOPACK.	-	The SERVOPACK may be faulty. Replace the SER- VOPACK.	-

Alarm Number: Alarm Name	Possible Cause	Confirmation	Correction	Reference
	The encoder malfunc- tioned.	_	Turn the power supply to the SERVOPACK OFF and ON again. If an alarm still occurs, the Servomotor or linear encoder may be faulty. Replace the Servo- motor or linear encoder.	-
	An error occurred in reading data from the linear encoder.	-	The linear encoder is not mounted within an appro- priate tolerance. Correct the mounting of the linear encoder.	-
A.840: Encoder Data Alarm (Detected at the encoder.)	Excessive speed occurred in the linear encoder.	_	Control the motor speed within the range specified by the linear encoder manufacturer and then turn ON the control power supply.	_
	The encoder malfunc- tioned due to noise.	_	Correct the wiring around the encoder by separating the Encoder Cable from the Servomotor Main Cir- cuit Cable or by ground- ing the encoder.	-
	The polarity sensor is not wired correctly.	Check the wiring of the polarity sensor.	Correct the wiring of the polarity sensor.	-
	The polarity sensor failed.	_	Replace the polarity sen- sor.	_
A.850: Encoder Over- speed (Detected at the encoder when the control power supply is turned ON.)	Rotary Servomotor: The Servomotor speed was 200 min ⁻¹ or higher when the control power supply was turned ON.	Check the motor speed when the power supply is turned ON.	Reduce the Servomotor speed to a value less than 200 min ⁻¹ , and turn ON the control power supply.	-
	Linear Servomotor: The Servomotor exceeded the speci- fied speed when the control power supply was turned ON.	Check the motor speed when the power supply is turned ON.	Control the motor speed within the range specified by the linear encoder manufacturer and then turn ON the control power supply.	-
	A failure occurred in the encoder.	_	Turn the power supply to the SERVOPACK OFF and ON again. If an alarm still occurs, the Servomotor or linear encoder may be faulty. Replace the Servo- motor or linear encoder.	-
	A failure occurred in the SERVOPACK.	-	Turn the power supply to the SERVOPACK OFF and ON again. If an alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK.	-

Continued from previous page.

Continued from previous page.				
Alarm Number: Alarm Name	Possible Cause	Confirmation	Correction	Reference
	The surrounding air temperature around the Servomotor is too high.	Measure the surround- ing air temperature around the Servomotor.	Reduce the surrounding air temperature of the Servomotor to 40°C or less.	-
A.860:	The Servomotor load is greater than the rated load.	Use the accumulated load ratio to check the load.	Operate the Servo Drive so that the motor load remains within the speci- fied range.	-
Encoder Over- heated (Detected at the encoder, but only when an abso- lute encoder is used.)	A failure occurred in the encoder.	_	Turn the power supply to the SERVOPACK OFF and ON again. If an alarm still occurs, the Servomotor or absolute linear encoder may be faulty. Replace the Servomotor or absolute linear encoder.	-
	A failure occurred in the SERVOPACK.	-	Turn the power supply to the SERVOPACK OFF and ON again. If an alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK.	-
	The surrounding tem- perature around the Servomotor is too high.	Measure the surround- ing temperature around the Servomotor.	Reduce the surrounding air temperature of the Servomotor to 40° or less.	-
	The motor load is greater than the rated load.	Check the load with the accumulated load ratio on the Motion Monitor Tab Page on the Sig- maWin+.	Operate the Servo Drive so that the motor load remains within the speci- fied range.	-
A.861: Motor Over- heated	A failure occurred in the Serial Converter Unit.	_	Turn the power supply to the SERVOPACK OFF and ON again. If an alarm still occurs, the Serial Con- verter Unit may be faulty. Replace the Serial Con- verter Unit.	-
	A failure occurred in the SERVOPACK.	_	Turn the power supply to the SERVOPACK OFF and ON again. If an alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK.	_
A.890: Encoder Scale Error	A failure occurred in the linear encoder.	-	The linear encoder may be faulty. Replace the linear encoder.	-
A.891: Encoder Module Error	A failure occurred in the linear encoder.	_	Turn the power supply to the SERVOPACK OFF and ON again. If an alarm still occurs, the linear encoder may be faulty. Replace the linear encoder.	-
A.8A0: External Encoder Error	Setting the origin of the absolute linear encoder failed because the motor moved.	Before you set the ori- gin, use the fully-closed feedback pulse counter to confirm that the motor is not moving.	The motor must be stopped while setting the origin position.	page 5-53
	A failure occurred in the external encoder.	-	Replace the external encoder.	-

Alarm Number: Alarm Name	Possible Cause	Confirmation	Correction	Reference
A.8A1:	A failure occurred in the external encoder.	-	Replace the external encoder.	-
External Encoder Module Error	A failure occurred in the Serial Converter Unit.	-	Replace the Serial Con- verter Unit.	-
A.8A2: External Incre- mental Encoder Sensor Error	A failure occurred in the external encoder.	-	Replace the external encoder.	-
A.8A3: External Abso- lute Encoder Position Error	A failure occurred in the external absolute encoder.	_	The external absolute encoder may be faulty. Refer to the encoder manufacturer's instruc- tion manual for correc- tions.	-
A.8A5: External Encoder Overspeed	An overspeed error was detected in the external encoder.	Check the maximum speed of the external encoder.	Keep the external encoder below its maxi- mum speed.	-
A.8A6: External Encoder Overheated	An overheating error was detected in the external encoder.	-	Replace the external encoder.	-
A.b10: Speed Reference	A malfunction occurred in the speed reference input sec- tion.	-	Reset the alarm and restart operation.	page 12-39
A/D Error (Detected when the servo is turned ON.)	A failure occurred in the SERVOPACK.	_	Turn the power supply to the SERVOPACK OFF and ON again. If an alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK.	-
A.b11:	A malfunction occurred in the speed reference input sec- tion.	_	Reset the alarm and restart operation.	page 12-39
Speed Reference A/D Data Error	A failure occurred in the SERVOPACK.	_	Turn the power supply to the SERVOPACK OFF and ON again. If an alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK.	-
A.b20: Torque Refer-	A malfunction occurred in the read- ing section for the torque reference input.	-	Reset the alarm and restart operation.	page 12-39
ence A/D Error (Detected when the servo is turned ON.)	A failure occurred in the SERVOPACK.	-	Turn the power supply to the SERVOPACK OFF and ON again. If an alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK.	-
A.b33: Current Detec- tion Error 3	A failure occurred in the current detection circuit.	-	Turn the power supply to the SERVOPACK OFF and ON again. If an alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK.	-
	The Servomotor Main Circuit Cable is dis- connected.	Check for a disconnec- tion in the Servomo- tor's Main Circuit Cables.	Correct the Servomotor wiring.	-

Continued from previous page.

Alarm Number: Alarm Name	Possible Cause	Confirmation	Correction	Reference
A.bF0: System Alarm 0	A failure occurred in the SERVOPACK.	_	Turn the power supply to the SERVOPACK OFF and ON again. If an alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK.	-
A.bF1: System Alarm 1	A failure occurred in the SERVOPACK.	-	Turn the power supply to the SERVOPACK OFF and ON again. If an alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK.	-
A.bF2: System Alarm 2	A failure occurred in the SERVOPACK.	-	Turn the power supply to the SERVOPACK OFF and ON again. If an alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK.	-
A.bF3: System Alarm 3	A failure occurred in the SERVOPACK.	-	Turn the power supply to the SERVOPACK OFF and ON again. If an alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK.	-
A.bF4: System Alarm 4	A failure occurred in the SERVOPACK.	-	Turn the power supply to the SERVOPACK OFF and ON again. If an alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK.	-
	The order of phases U, V, and W in the motor wiring is not correct.	Check the Servomotor wiring.	Make sure that the Servo- motor is correctly wired.	-
	There is an error in the setting of Pn080 = n.□□X□ (Motor Phase Selection).	Check the setting of Pn080 = $n.\Box\Box X\Box$.	Set Pn080 = $n.\Box\Box X\Box$ to an appropriate value.	page 5-23
A.C10: Servomotor Out of Control (Detected when the servo is turned ON.)	A failure occurred in the encoder.	_	If the motor wiring is cor- rect and an alarm still occurs after turning the power supply OFF and ON again, the Servomotor or linear encoder may be faulty. Replace the Servo- motor or linear encoder.	-
	A failure occurred in the SERVOPACK.	_	Turn the power supply to the SERVOPACK OFF and ON again. If an alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK.	-

Maintenance

Alarm Number: Alarm Name	Possible Cause	Confirmation	Correction	Reference
A.C20: Phase Detection Error	The linear encoder signal level is too low.	Check the voltage of the linear encoder sig- nal.	Fine-tune the mounting of the scale head. Or, replace the linear encoder.	-
	The count-up direc- tion of the linear encoder does not match the forward direction of the Mov- ing Coil in the motor.	Check the setting of Pn080 = $n.\Box\Box X\Box$ (Motor Phase Selec- tion). Check the installa- tion orientation for the linear encoder and Moving Coil.	Change the setting of Pn080 = $n.\Box\Box X\Box$. Correctly reinstall the lin- ear encoder or Moving Coil.	page 5-23
	The polarity sensor signal is being affected by noise.	_	Correct the FG wiring. Implement countermea- sures against noise for the polarity sensor wiring.	-
	The polarity sensor is protruding from the Magnetic Way of the motor.	Check the polarity sen- sor.	Correctly reinstall the Moving Coil or Magnetic Way of the motor.	-
A.C21: Polarity Sensor Error	The setting of Pn282 (Linear Encoder Pitch) is not correct.	Check the setting of Pn282 (Linear Encoder Pitch).	Check the specifications of the linear encoder and set a correct value.	page 5-18
	The polarity sensor is not wired correctly.	Check the wiring of the polarity sensor.	Correct the wiring of the polarity sensor.	-
	The polarity sensor failed.	-	Replace the polarity sen- sor.	-
A.C22: Phase Informa- tion Disagree- ment	The SERVOPACK phase information is different from the lin- ear encoder phase information.	-	Perform polarity detec- tion.	page 5-28

Continued from previous page.

Continued from previous page.				
Alarm Number: Alarm Name	Possible Cause	Confirmation	Correction	Reference
	The parameter set- tings are not correct.	Check the linear encoder specifications and feedback signal status.	The settings of Pn282 (Linear Encoder Pitch) and Pn080 = n. \Box \Box X (Motor Phase Selection) may not match the instal- lation. Set the parame- ters to correct values.	page 5-18, page 5-23
	There is noise on the scale signal.	Check to make sure that the frame grounds of the Serial Converter Unit and Servomotor are connected to the FG terminal on the SER- VOPACK and that the FG terminal on the SER- VOPACK is connected to the frame ground on the power supply. And, confirm that the shield is properly pro- cessed on the Linear Encoder Cable. Check to see if the detection reference is repeatedly output in one direction.	Implement appropriate countermeasures against noise for the Linear Encoder Cable.	_
A.C50: Polarity Detec- tion Failure	An external force was applied to the Moving Coil of the motor.	_	The polarity cannot be properly detected if the detection reference is 0 and the speed feedback is not 0 because of an external force, such as cable tension, applied to the Moving Coil. Imple- ment measures to reduce the external force so that the speed feedback goes to 0. If the external force cannot be reduced, increase the setting of Pn481 (Polarity Detection Speed Loop Gain).	_
	The linear encoder resolution is too low.	Check the linear encoder scale pitch to see if it is within 100 μm.	If the linear encoder scale pitch is 100 µm or higher, the SERVOPACK cannot detect the correct speed feedback. Use a linear encoder scale pitch with higher resolution. (We rec- ommend a pitch of 40 µm or less.) Or, increase the setting of Pn485 (Polarity Detection Reference Speed). However, increasing the setting of Pn485 will increase the Servomotor movement range that is required for polarity detection.	_
A.C51: Overtravel Detected during Polarity Detection	The overtravel signal was detected during polarity detection.	Check the overtravel position.	Wire the overtravel sig- nals. Execute polarity detection at a position where an overtravel sig- nal would not be detected.	page 4-34

Alarm Number: Alarm Name	Possible Cause	Confirmation	Correction	Reference
A.C52: Polarity Detec- tion Not Com- pleted	The servo was turned ON under the follow- ing circumstances. • Before polarity detection was com- pleted • Before /P-DET was input	_	Input the /P-DET signal.	page 5-27
A.C53: Out of Range of Motion for Polar- ity Detection	The travel distance exceeded the setting of Pn48E (Polarity Detection Range) in the middle of detec- tion.	_	Increase the setting of Pn48E (Polarity Detection Range). Or, increase the setting of Pn481 (Polarity Detection Speed Loop Gain).	-
A.C54: Polarity Detec- tion Failure 2	An external force was applied to the Servo- motor.	_	Increase the setting of Pn495 (Polarity Detection Confirmation Force Refer- ence). Increase the setting of Pn498 (Polarity Detec- tion Allowable Error Range). Increasing the allowable error will also increase the motor tem- perature.	_
A.C80: Encoder Clear	A failure occurred in the encoder.	_	Turn the power supply to the SERVOPACK OFF and ON again. If an alarm still occurs, the Servomotor or linear encoder may be faulty. Replace the Servo- motor or linear encoder.	-
Error or Multiturn Limit Setting Error	A failure occurred in the SERVOPACK.	-	Turn the power supply to the SERVOPACK OFF and ON again. If an alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK.	-

Alarm Number: Device Continued from previous page.				
Alarm Name	Possible Cause	Confirmation	Correction	Reference
	There is a faulty con- tact in the connector or the connector is not wired correctly for the encoder.	Check the condition of the encoder connector.	Reconnect the encoder connector and check the encoder wiring.	page 4-22
	There is a cable dis- connection or short- circuit in the encoder. Or, the cable imped- ance is outside the specified values.	Check the condition of the Encoder Cable.	Use the Encoder Cable within the specified specifications.	-
A.C90: Encoder Commu- nications Error	One of the following has occurred: corro- sion caused by improper tempera- ture, humidity, or gas, a short-circuit caused by entry of water drops or cutting oil, or faulty contact in con- nector caused by vibration.	Check the operating environment.	Improve the operating environmental, and replace the cable. If the alarm still occurs, replace the SERVOPACK.	page 3-2
	A malfunction was caused by noise.	_	Correct the wiring around the encoder by separating the Encoder Cable from the Servomotor Main Cir- cuit Cable or by ground- ing the encoder.	page 4-5
	A failure occurred in the SERVOPACK.	_	Connect the Servomotor to another SERVOPACK, and turn ON the control power supply. If no alarm occurs, the SERVOPACK may be faulty. Replace the SERVOPACK.	-
	Noise entered on the signal lines because the Encoder Cable is bent or the sheath is damaged.	Check the condition of the Encoder Cable and connectors.	Check the Encoder Cable to see if it is installed correctly.	page 4-8
A.C91: Encoder Commu- nications Posi- tion Data Acceleration Rate	The Encoder Cable is bundled with a high- current line or installed near a high- current line.	Check the installation condition of the Encoder Cable.	Confirm that there is no surge voltage on the Encoder Cable.	-
Error	There is variation in the FG potential because of the influ- ence of machines on the Servomotor side, such as a welder.	Check the installation condition of the Encoder Cable.	Properly ground the machine to separate it from the FG of the encoder.	-

Alarm Number: **Possible Cause** Confirmation Correction Reference Alarm Name Noise entered on the Implement countermeasignal line from the sures against noise for the page 4-5 _ encoder. encoder wiring. Reduce machine vibra-Excessive vibration or Check the operating tion. shock was applied to conditions. Correctly install the Serthe encoder. vomotor or linear encoder. Turn the power supply to A.C92: the SERVOPACK OFF and Encoder Commu-ON again. If an alarm still A failure occurred in nications Timer occurs, the Servomotor or _ the encoder. Error linear encoder may be faulty. Replace the Servomotor or linear encoder. Turn the power supply to the SERVOPACK OFF and ON again. If an alarm still A failure occurred in occurs, the SERVOPACK the SERVOPACK. may be faulty. Replace the SERVOPACK. Turn the power supply to the SERVOPACK OFF and ON again. If an alarm still A failure occurred in occurs, the Servomotor or the encoder. linear encoder may be faulty. Replace the Servo-A.CA0: Encoder Paramemotor or linear encoder. ter Error Turn the power supply to the SERVOPACK OFF and A failure occurred in ON again. If an alarm still the SERVOPACK. occurs, the SERVOPACK may be faulty. Replace the SERVOPACK.

Continued from previous page.

Continued from previous page.				
Alarm Number: Alarm Name	Possible Cause	Confirmation	Correction	Reference
	The encoder is wired incorrectly or there is faulty contact.	Check the wiring of the encoder.	Make sure that the encoder is correctly wired.	page 4-22
	The specifications of the Encoder Cable are not correct and noise entered on it.	_	Use a shielded twisted- pair wire cable or a screened twisted-pair cable with conductors of at least 0.12 mm ² .	-
	The Encoder Cable is too long and noise entered on it.	_	 Rotary Servomotors: The Encoder Cable wir- ing distance must be 50 m max. Linear Servomotors: The Encoder Cable wir- ing distance must be 20 m max. 	-
A.Cb0: Encoder Echo- back Error	There is variation in the FG potential because of the influ- ence of machines on the Servomotor side, such as a welder.	Check the condition of the Encoder Cable and connectors.	Properly ground the machine to separate it from the FG of the encoder.	-
	Excessive vibration or shock was applied to the encoder.	Check the operating conditions.	Reduce machine vibra- tion. Correctly install the Ser- vomotor or linear encoder.	-
	A failure occurred in the encoder.		Turn the power supply to the SERVOPACK OFF and ON again. If an alarm still occurs, the Servomotor or linear encoder may be faulty. Replace the Servo- motor or linear encoder.	-
	A failure occurred in the SERVOPACK.	_	Turn the power supply to the SERVOPACK OFF and ON again. If an alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK.	-
	When using a Direct Drive Servomotor, the setting of Pn205 (Mul- titurn Limit Setting) does not agree with the encoder.	Check the setting of Pn205.	Correct the setting of Pn205 (0 to 65,535).	page 6-83
A.CC0: Multiturn Limit Disagreement	The multiturn limit of the encoder is differ- ent from that of the SERVOPACK. Or, the multiturn limit of the SERVOPACK has been changed.	Check the setting of Pn205 in the SERVO- PACK.	Change the setting if the alarm occurs.	-
	A failure occurred in the SERVOPACK.	-	Turn the power supply to the SERVOPACK OFF and ON again. If an alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK.	-

Maintenance

Alarm Number: Alarm Name	Possible Cause	Confirmation	Correction	Reference
	The cable between the Serial Converter Unit and SERVOPACK is not wired correctly or there is a faulty contact.	Check the wiring of the external encoder.	Correctly wire the cable between the Serial Con- verter Unit and SERVO- PACK.	page 4-24
A.CF1: Reception Failed Error in Feed-	A specified cable is not being used between Serial Con- verter Unit and SER- VOPACK.	Check the wiring speci- fications of the external encoder.	Use a specified cable.	-
back Option Module Commu- nications	The cable between the Serial Converter Unit and SERVOPACK is too long.	Measure the length of the cable that connects the Serial Converter Unit.	The length of the cable between the Serial Con- verter Unit and SERVO- PACK must be 20 m or less.	-
	The sheath on cable between the Serial Converter Unit and SERVOPACK is bro- ken.	Check the cable that connects the Serial Converter Unit.	Replace the cable between the Serial Con- verter Unit and SERVO- PACK.	-
A.CF2: Timer Stopped Error in Feed-	Noise entered the cable between the Serial Converter Unit and SERVOPACK.	_	Correct the wiring around the Serial Converter Unit, e.g., separate I/O signal lines from the Main Circuit Cables or ground.	-
back Option Module Commu- nications	A failure occurred in the Serial Converter Unit.	_	Replace the Serial Con- verter Unit.	-
	A failure occurred in the SERVOPACK.	_	Replace the SERVO- PACK.	-
	The Servomotor U, V, and W wiring is not correct.	Check the wiring of the Servomotor's Main Cir- cuit Cables.	Make sure that there are no faulty contacts in the wiring for the Servomotor and encoder.	-
A.d00: Position Devia-	The frequency of the position reference pulse is too high.	Reduce the reference pulse frequency and try operating the SERVO- PACK.	Reduce the position refer- ence pulse frequency or the reference accelera- tion rate, or reconsider the electronic gear ratio.	page 5-46
tion Overflow (The setting of Pn520 (Exces- sive Position Deviation Alarm Level) was	The acceleration of the position reference is too high.	Reduce the reference acceleration and try operating the SERVO- PACK.	Apply smoothing, i.e., by using Pn216 (Position Reference Acceleration/ Deceleration Time Con- stant).	page 6-30
exceeded by the position devia- tion while the servo was ON.)	The setting of Pn520 (Excessive Position Deviation Alarm Level) is too low for the operating conditions.	Check Pn520 (Exces- sive Position Deviation Alarm Level) to see if it is set to an appropriate value.	Optimize the setting of Pn520.	page 8-8
	A failure occurred in the SERVOPACK.	_	Turn the power supply to the SERVOPACK OFF and ON again. If an alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK.	-

Continued from previous page.

Alarm Number:					
Alarm Name	Possible Cause	Confirmation	Correction	Reference	
A.d01: Position Devia- tion Overflow Alarm at Servo ON	The servo was turned ON after the position deviation exceeded the setting of Pn526 (Excessive Position Deviation Alarm Level at Servo ON) while the servo was OFF.	Check the position deviation while the servo is OFF.	Set the position deviation to be cleared while the servo is OFF. Optimize the setting of Pn526 (Excessive Position Deviation Alarm Level at Servo ON).		
A.d02:Pn584 (Speed Limit Level at Servo ON)to be cleared while servo is OFF.Position Devia- tion Overflowlimits the speed when the servo is turnedOptimize the settingAlarm for Speed Limit at Servo ONON. This alarm occurs if reference pulses are input and the setting–Pn520 (Excessive Limit adjust the setting–		Set the position deviation to be cleared while the servo is OFF. Optimize the setting of Pn520 (Excessive Position Deviation Alarm Level). Or, adjust the setting of Pn529 or Pn584 (Speed Limit Level at Servo ON).	page 8-8		
A.d10: Motor-Load Posi- tion Deviation	The motor direction and external encoder installation orientation are backward.	Check the motor direc- tion and the external encoder installation ori- entation.	Install the external encoder in the opposite direction, or change the setting of Pn002 = n.X□□□ (External Encoder Usage) to reverse the direction.	page 10-6	
Overflow	There is an error in the connection between the load (e.g., stage) and external encoder coupling.	Check the coupling of the external encoder.	Check the mechanical coupling.	-	
A.d30: Position Data Overflow	Position Data exceeded Check the input re		Reconsider the operating specifications.	-	
	There is a faulty con- nection between the SERVOPACK and the Safety Option Module.	Check the connection between the SERVO- PACK and the Safety Option Module.	Correctly connect the Safety Option Module.	-	
A.E71: Safety Option Module Detec- tion Failure	The Safety Option Module was discon- nected.	_	Execute Fn014 (Reset Option Module Configura- tion Error) from the Digital Operator or SigmaWin+ and then turn the power supply to the SERVO- PACK OFF and ON again.	_	
	A failure occurred in the Safety Option Module.	-	Replace the Safety Option Module.	-	
	A failure occurred in the SERVOPACK.	_	Replace the SERVO- PACK.	-	

Continued from previous page.				
Alarm Number: Alarm Name	Possible Cause	Confirmation	Correction	Reference
	There is a faulty con- nection between the SERVOPACK and the Feedback Option Module.	Check the connection between the SERVO- PACK and the Feed- back Option Module.	Correctly connect the Feedback Option Module.	-
A.E72: Feedback Option Module Detec- tion Failure	The Feedback Option Module was discon- nected.	_	Reset the Option Module configuration error and turn the power supply to the SERVOPACK OFF and ON again.	page 12-42
	A failure occurred in the Feedback Option Module.	_	Replace the Feedback Option Module.	-
	A failure occurred in the SERVOPACK.	-	Replace the SERVO- PACK.	-
A.E74: Unsupported	A failure occurred in the Safety Option Module.	_	Replace the Safety Option Module.	-
Safety Option Module	An unsupported Safety Option Module was connected.	Refer to the catalog of the connected Safety Option Module.	Connect a compatible Safety Option Module.	-
A.Eb1: Safety Function Signal Input Tim- ing Error	Safety Function Signal Input Tim- Was ten second or		The output signal circuits or devices for /HWBB1 and /HWBB2 or the SER- VOPACK input signal cir- cuits may be faulty. Alternatively, the input sig- nal cables may be discon- nected. Check to see if any of these items are faulty or have been dis- connected.	-
	A failure occurred in the SERVOPACK.	-	Replace the SERVO- PACK.	-
A.EC8: Gate Drive Error 1 (An error occurred in the gate drive circuit.) A.EC9: Gate Drive Error 2 (An error occurred in the gate drive circuit.)	A failure occurred in the SERVOPACK.	_	Turn the power supply to the SERVOPACK OFF and ON again. If an alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK.	_

Continued	from	previous	page.
0011111000		proviouo	page.

Continued from previous page.				
Alarm Number: Alarm Name	Possible Cause	Confirmation	Correction	Reference
	The three-phase power supply wiring is not correct. Check the power sup- ply wiring.		Make sure that the power supply is correctly wired.	page 4-11
A.F10: Power Supply Line Open Phase	The three-phase power supply is unbalanced.	Measure the voltage for each phase of the three-phase power sup- ply.	Balance the power sup- ply by changing phases.	-
(The voltage was low for more than one second for phase R, S, or T when the main power supply	A single-phase power supply was input with- out specifying a sig- nal-phase AC power supply input (Pn00B = $n.\Box 1\Box \Box$).	Check the power sup- ply and the parameter setting.	Match the parameter set- ting to the power supply.	page 4-11
was ON.)	A failure occurred in the SERVOPACK.	_	Turn the power supply to the SERVOPACK OFF and ON again. If an alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK.	-
A.F50: Servomotor Main Circuit Cable Dis-	pmotor Main A failure occurred in the SERVOPACK		The SERVOPACK may be faulty. Replace the SER- VOPACK.	-
connection (The Servomotor did not operate or power was not supplied to the Servomotor even though the /S-ON (Servo ON) signal was input when the Servomotor was ready to receive it.)	The wiring is not cor- rect or there is a faulty contact in the motor wiring.	Check the wiring.	Make sure that the Servo- motor is correctly wired.	page 4-22
FL-1*3:System AlarmFL-2*3:System AlarmFL-3*3:System AlarmFL-4*3:System AlarmFL-5*3:System Alarm	A failure occurred in the SERVOPACK.	_	Turn the power supply to the SERVOPACK OFF and ON again. If an alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK.	_
CPF00: Digital Operator	There is a faulty con- tact between the Digi- tal Operator and the SERVOPACK.	Check the connector contact.	Disconnect the connec- tor and insert it again. Or, replace the cable.	_
Communications Error 1	A malfunction was caused by noise.	-	Keep the Digital Operator or the cable away from sources of noise.	-

Maintenance

Continued from previous page. Alarm Number: **Possible Cause** Confirmation Correction Reference Alarm Name Disconnect the Digital Operator and then connect it again. If an alarm A failure occurred in still occurs, the Digital the Digital Operator. Operator may be faulty. CPF01: Replace the Digital Oper-**Digital Operator** ator. Communications Turn the power supply to Error 2 the SERVOPACK OFF and ON again. If an alarm still A failure occurred in _ the SERVOPACK. occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. *1. Detection Conditions · Rotary Servomotor If either of the following conditions is detected, an alarm will occur. Encoder resolution Pn20E Pn533 [min⁻¹] × _____ — ≤ · 6 × 10⁵ Pn210 Pn20E Encoder resolution Maximum motor speed [min⁻¹] × — - ≥ · Approx. 3.66 \times 10¹² Pn210 Linear Servomotor If either of the following conditions is detected, an alarm will occur. Pn585 [mm/s] × Resolution of Serial Converter Unit Pn20F \leq · Linear encoder pitch [µm] Pn210 10 Pn385 [100 mm/s] Linear encoder pitch [µm] Approx. 6.10 ×105 *2. Detection Conditions · Rotary Servomotor If either of the following conditions is detected, an alarm will occur. • Rated motor speed [min⁻¹] \times 1/3 \times Encoder resolution Pn20E 6×10⁵ Pn210 • Maximum motor speed [min⁻¹] $\times \frac{\text{Encoder resolution}}{\text{Approx. } 3.66 \times 10^{12}} \ge \frac{\text{Pn20E}}{\text{Pn210}}$ Linear Servomotor If either of the following conditions is detected, an alarm will occur. Rated motor speed [mm/s] \times 1/3 \times Resolution of Serial Converter Unit \leq Pn20E Pn210 Linear encoder pitch [µm] 10

Pn385 [100 mm/s]		Resolution of Serial Converter Unit		Pn20E
Linear encoder pitch [µm]	×	Approx. 6.10 ×10 ⁵	2	Pn210

*3. These alarms are not stored in the alarm history. They are only displayed on the panel display.

12.2.3 Resetting Alarms

If there is an ALM (Servo Alarm) signal, use one of the following methods to reset the alarm after eliminating the cause of the alarm.

The /ALM-RST (Alarm Reset) signal will not always reset encoder-related alarms. If you cannot reset an alarm with the /ALM-RST signal, turn OFF the control power supply to reset it.

Be sure to eliminate the cause of an alarm before you reset the alarm. If you reset the alarm and continue operation without eliminating the cause of the alarm, it may result in damage to the equipment or fire.

Resetting Alarms with the /ALM-RST (Alarm Reset Input) Signal

Туре	Signal	Connector Pin No.	Name
Input	/ALM-RST	CN1-44	Alarm Reset

Note: Use Pn50B = n. $\Box \Box X \Box$ (/ALM-RST (Alarm Reset) Signal Allocation) to allocate the /ALM-RST signal to other connector pins. Refer to the following section for details.

6.1.1 Input Signal Allocations on page 6-4

Resetting Alarms Using the Panel Operator

Simultaneously press the **UP** and the **DOWN** Keys on the Panel Operator.

Resetting Alarms Using the Digital Operator

Press the **ALARM RESET** Key on the Digital Operator. Refer to the following manual for details on resetting alarms.

Ω Σ-7-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33)

12.2.4 Displaying the Alarm History

12.2.4 Displaying the Alarm History

The alarm history displays up to the last ten alarms that have occurred in the SERVOPACK.

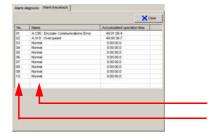
Preparations

No preparations are required.

Applicable Tools

The following table lists the tools that you can use to display the alarm history and the applicable tool functions.

Tool	Function	Reference
Panel Operator	Fn000	13.4.1 Display Alarm History (Fn000) on page 13-12
Digital Operator	Fn000	Chanal Σ-7-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33)
SigmaWin+	Alarm – Display Alarm	Operating Procedure on page 12-40


Operating Procedure

Use the following display procedure.

1. Select *Alarm - Display Alarm* from the menu bar of the Main Window of the SigmaWin+. The Alarm Display Dialog Box will be displayed.

2. Click the Alarm History Tab.

The following display will appear and you can check the alarms that occurred in the past.

Alarm number: Alarm name Alarms in order of occurrence (Older alarms have higher numbers.)

Information

- 1. If the same alarm occurs consecutively within one hour, it is not saved in the alarm history. If it occurs after an hour or more, it is saved.
- 2. You can clear the alarm history by clicking the **Clear** Button. The alarm history is not cleared when alarms are reset or when the SERVOPACK main circuit power is turned OFF.

12.2.5 Clearing the Alarm History

You can clear the alarm history that is recorded in the SERVOPACK.

The alarm history is not cleared when alarms are reset or when the SERVOPACK main circuit power is turned OFF. You must perform the following procedure.

Preparations

Check the following setting before you clear the alarm history.

• The parameters must not be write prohibited.

Applicable Tools

The following table lists the tools that you can use to clear the alarm history and the applicable tool functions.

Tool	Function	Reference
Panel Operator	Fn006	13.4.6 Clear Alarm History (Fn006) on page 13-15
Digital Operator	Fn006	Chanal Σ-7-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33)
SigmaWin+	Alarm – Display Alarm	Operating Procedure on page 12-41

Operating Procedure

Use the following procedure.

- 1. Select *Alarm Display Alarm* from the menu bar of the Main Window of the SigmaWin+. The Alarm Display Dialog Box will be displayed.
- 2. Click the Alarm History Tab.
- 3. Click the Clear Button.

Normal 0:00:00.0	lo.	Name	Accumulated operation time
Normal 0:00:00.0 Normal 0:00:00.0	1	A.C90 : Encoder Communications Error	49:01:06.4
Normal 0:00:00.0	2	A.510 : Overspeed	49:00:36.7
Normal 0:00:00.0 Normal 0:00:00.0 Normal 0:00:00.0 Normal 0:00:00.0 Normal 0:00:00.0 Normal 0:00:00.0	3	Normal	0:00:00.0
Normal 0:00:00.0 Normal 0:00:00.0 Normal 0:00:00.0 Normal 0:00:00.0	Ļ	Normal	0:00:00.0
Normal 0:00:00.0 Normal 0:00:00.0 Normal 0:00:00.0	5	Normal	0:00:00.0
Normal 0:00:00.0 Normal 0:00:00.0	6	Normal	0:00:00.0
Normal 0:00:00.0	7	Normal	0:00:00.0
	3	Normal	0:00:00.0
Normal 0:00:00.0	Э	Normal	0:00:00.0
)	Normal	0:00:00.0

12.2.6 Resetting Alarms Detected in Option Modules

12.2.6 Resetting Alarms Detected in Option Modules

If any Option Modules are attached to the SERVOPACK, the SERVOPACK detects the presence and models of the connected Option Modules. If it finds any errors, it outputs alarms.

You can delete those alarms with this operation.

- **Information** This operation is the only way to reset alarms for Option Modules. The alarms are not reset when you reset other alarms or when you turn OFF the power supply to the SERVOPACK.
 - Always remove the cause of an alarm before you reset the alarm.

Preparations

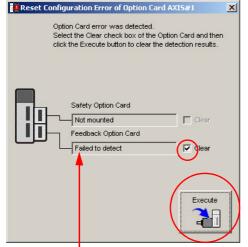
Confirm the following condition before you clear alarms that were detected in Option Module. • The parameters must not be write prohibited.

Applicable Tools

The following table lists the tools that you can use to reset Option Module configuration errors and the applicable tool functions.

Tool	Function	Reference
Panel Operator	Fn014	13.4.19 Reset Option Module Configuration Error (Fn014) on page 13-24
Digital Operator	Fn014	CT-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33)
SigmaWin+	Setup – Reset Configuration Error of Option Module	C Operating Procedure on page 12-42

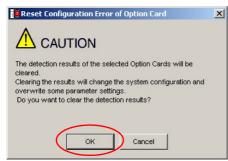
Operating Procedure


Use the following procedure.

1. Select *Setup – Reset Configuration Error of Option Module* from the menu bar of the Main Window of the SigmaWin+.

The Reset Configuration Error of Option Module Dialog Box will be displayed.

This dialog box will be displayed automatically when you start the SigmaWin+ if there is an error in an Option Module.


2. Select the Clear Check Box for the Option Modules from which to clear alarms and the click the Execute Button.

You cannot clear the **Error detected** detection result. Remove the Option Module, or check to see if the Option Module is correctly mounted.

12.2.7 Resetting Motor Type Alarms

3. Click the OK Button.

4. Click the OK Button.

Rese	t Configurati	ion Error of	Option Card		x
⚠	CAUTIC	ON			
			ed Option Cards ing the power o		
Reconn power.	ect, the Sigma'	Win+ to the S	ervopack after t	urning on the	
	(ок			

5. Turn the power supply to the SERVOPACK OFF and ON again.

12.2.7 Resetting Motor Type Alarms

The SERVOPACK automatically determines the type of motor that is connected to it. If the type of motor that is connected is changed, an A.070 alarm (Motor Type Change Detected) will occur the next time the SERVOPACK is started. If an A.070 alarm occurs, you must set the parameters to match the new type of motor.

An A.070 alarm is reset by executing the Reset Motor Type Alarm utility function.

- Information 1. This utility function is the only way to reset an A.070 alarm (Motor Type Change Detected). The errors are not reset when you reset alarms or turn OFF the power supply to the SER-VOPACK.
 - 2. If an A.070 alarm occurs, first set the parameters according to the newly connected motor type and then execute the Reset Motor Type Alarm utility function.

Preparations

Check the following setting before you execute the Reset Motor Type Alarm utility function. • The parameters must not be write prohibited.

Applicable Tools

The following table lists the tools that you can use to clear the motor type alarm and the applicable tool functions.

Tool	Function	Reference
Panel Operator	Fn021	13.4.24 Resetting Motor Type Alarms (Fn021) on page 13-27
Digital Operator	Fn021	$\bigcap \Sigma -7 - Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33)$
SigmaWin+	Alarm – Reset Motor Type Alarm	Gerating Procedure on page 12-44

12.2.7 Resetting Motor Type Alarms

Operating Procedure

Use the following procedure.

1. Select *Alarm - Reset Motor Type Alarm* from the menu bar of the Main Window of the SigmaWin+.

The Reset Motor Type Alarm Dialog Box will be displayed.

2. Click the Clear Button. The alarm will be cleared.

12.3 Warning Displays

If a warning occurs in the SERVOPACK, an alarm number will be displayed on the panel display. Warnings are displayed to warn you before an alarm occurs.

This section provides a list of warnings and the causes of and corrections for warnings.

12.3.1 List of Warnings

The list of warnings gives the warning name, warning meaning, and warning code in order of the warning numbers.

Warning	Warning Name	Warning Name Meaning		Warning Code Output		
Number	-			ALO2	ALO3	
A.900	Position Deviation Overflow	The position deviation exceeded the parameter settings (Pn520 \times Pn51E/100).	Н	Н	Н	
A.901	Position Deviation Overflow Alarm at Servo ON	The position deviation exceeded the parameter settings (Pn526 \times Pn528/100) when the servo was turned ON.	Н	Н	Н	
A.910	Overload	This warning occurs before an overload alarm (A.710 or A.720) occurs. If the warning is ignored and operation is continued, an alarm may occur.	L	Н	Н	
A.911	Vibration	Abnormal vibration was detected during motor operation. The detection level is the same as A.520. Set whether to output an alarm or a warn- ing by setting Pn310 (Vibration Detection Switch).	L	Н	Н	
A.912	Internal Temperature Warning 1 (Control Board Temperature Error)	The surrounding temperature of the control PCB is abnormal.	Н	L	н	
A.913	Internal Temperature Warning 2 (Power Board Temperature Error)	The surrounding temperature of the power PCB is abnormal.	Н	L	Н	
A.920	Regenerative Overload	This warning occurs before an A.320 alarm (Regenerative Overload) occurs. If the warning is ignored and operation is continued, an alarm may occur.	Н	L	н	
A.921	Dynamic Brake Over- load	This warning occurs before an A.731 alarm (Dynamic Brake Overload) occurs. If the warning is ignored and operation is continued, an alarm may occur.	Н	L	Н	
A.923	SERVOPACK Built-in Fan Stopped	The fan inside the SERVOPACK stopped.	Н	L	Н	
A.930	Absolute Encoder Bat- tery Error	This warning occurs when the voltage of absolute encoder's battery is low.	L	L	Н	
A.941	Change of Parameters Requires Restart	Parameters have been changed that require the power supply to be turned OFF and ON again.	Н	Н	L	
A.942	Speed Ripple Com- pensation Information Disagreement	The speed ripple compensation information stored in the encoder does not agree with the speed rip- ple compensation information stored in the SER- VOPACK.	Н	Н	L	
A.971	Undervoltage	This warning occurs before an A.410 alarm (Undervoltage) occurs. If the warning is ignored and operation is continued, an alarm may occur.	L	L	L	
A.9A0	Overtravel	Overtravel was detected while the servo was ON.	Н	L	L	
A.9b0	Preventative Mainte- nance Warning	One of the consumable parts has reached the end of its service life.	Н	L	Н	

- Note: 1. A warning code is not output unless you set Pn001 to n.1 (Output both alarm codes and warning codes).
 - 2. If you sent Pn008 to n.□1□□ (Do not detect warnings), no warnings will be detected except for A.971 warnings (Undervoltage).

12.3.2 Troubleshooting Warnings

The causes of and corrections for the warnings are given in the following table. Contact your Yaskawa representative if you cannot solve a problem with the correction given in the table.

Warning Number: Warning Name	Possible Cause	Confirmation	Correction	Reference
A.900: Position Deviation Overflow	The Servomotor U, V, and W wiring is not correct.	Check the wiring of the Servomotor's Main Cir- cuit Cables.	Make sure that there are no faulty connections in the wiring for the Servomotor and encoder.	-
	A SERVOPACK gain is too low.	Check the SERVO- PACK gains.	Increase the servo gain, e.g., by using autotuning without a host reference.	page 8-23
	The frequency of the position refer- ence pulse is too high.	Reduce the reference pulse frequency and try operating the SERVO- PACK.	Reduce the position refer- ence pulse frequency or the reference acceleration rate, or reconsider the electronic gear ratio.	page 5-46
	The acceleration of the position ref- erence is too high.	Reduce the reference acceleration and try operating the SERVO- PACK.	Apply smoothing, i.e., by using Pn216 (Position Ref- erence Acceleration/ Decel- eration Time Constant).	page 6-30
	The setting of Pn520 (Excessive Position Error Alarm Level) is too low for the operat- ing conditions.	Check Pn520 (Exces- sive Position Error Alarm Level) to see if it is set to an appropriate value.	Optimize the setting of Pn520.	page 8-8
	A failure occurred in the SERVO- PACK.	_	Turn the power supply to the SERVOPACK OFF and ON again. If an alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK.	-
A.901: Position Deviation Overflow Alarm at Servo ON	The position devi- ation exceeded the parameter set- tings (Pn526 × Pn528/100) when the servo was turned ON.	_	Set the position deviation to be cleared while the servo is OFF. Optimize the setting of Pn528 (Excessive Position Error Warning Level at Servo ON).	page 8-10

Continued from previous page.

Warning Number: Describle Course Confirmation Correction Deformer				
Warning Name	Possible Cause	Confirmation	Correction	Reference
	The wiring is not correct or there is a faulty contact in the motor or encoder wiring.	Check the wiring.	Make sure that the Servo- motor and encoder are cor- rectly wired.	-
A.910: Overload (warning before an A.710 or A.720 alarm occurs)	Operation was performed that exceeded the overload protec- tion characteris- tics.	Check the motor over- load characteristics and Run command.	Reconsider the load and operating conditions. Or, increase the motor capacity.	-
	An excessive load was applied during operation because the Ser- vomotor was not driven because of mechanical prob- lems.	Check the operation reference and motor speed.	Remove the mechanical problem.	-
	A failure occurred in the SERVO- PACK.	-	The SERVOPACK may be faulty. Replace the SERVO- PACK.	-
	Abnormal vibra- tion was detected during motor operation.	Check for abnormal motor noise, and check the speed and torque waveforms during oper- ation.	Reduce the motor speed. Or, reduce the servo gain with custom tuning.	page 8-42
A.911: Vibration	The setting of Pn103 (Moment of Inertia Ratio) is greater than the actual moment of inertia or was greatly changed.	Check the moment of inertia ratio or mass ratio.	Set Pn103 (Moment of Iner- tia Ratio) to an appropriate value.	-
	The surrounding temperature is too high.	Check the surrounding temperature using a thermostat. Or, check the operating status with the SERVOPACK installation environ- ment monitor.	Decrease the surrounding temperature by improving the SERVOPACK installa- tion conditions.	-
	An overload alarm was reset by turn- ing OFF the power supply too many times.	Check the alarm display to see if there is an overload alarm.	Change the method for resetting the alarm.	-
A.912: Internal Tempera- ture Warning 1 (Control Board Tem- perature Error)	There was an excessive load or operation was performed that exceeded the regenerative pro- cessing capacity.	Use the accumulated load ratio to check the load during operation, and use the regenera- tive load ratio to check the regenerative pro- cessing capacity.	Reconsider the load and operating conditions.	-
	The SERVOPACK installation orien- tation is not cor- rect or there is insufficient space around the SER- VOPACK.	Check the SERVO- PACK installation con- ditions.	Install the SERVOPACK according to specifications.	page 3-3, page 3-5
	A failure occurred in the SERVO- PACK.	-	The SERVOPACK may be faulty. Replace the SERVO- PACK.	-

Warning Number: Describe Course Confirmation Confirmation				
Warning Number. Warning Name	Possible Cause	Confirmation	Correction	Reference
	The surrounding temperature is too high.	Check the surrounding temperature using a thermostat. Or, check the operating status with the SERVOPACK installation environ- ment monitor.	Decrease the surrounding temperature by improving the SERVOPACK installa- tion conditions.	-
	An overload alarm was reset by turn- ing OFF the power supply too many times.	Check the alarm display to see if there is an overload alarm.	Change the method for resetting the alarm.	-
A.913: Internal Tempera- ture Warning 2 (Power Board Tem- perature Error)	There was an excessive load or operation was performed that exceeded the regenerative pro- cessing capacity.	Use the accumulated load ratio to check the load during operation, and use the regenera- tive load ratio to check the regenerative pro- cessing capacity.	Reconsider the load and operating conditions.	_
	The SERVOPACK installation orien- tation is not cor- rect or there is insufficient space around the SER- VOPACK.	Check the SERVO- PACK installation con- ditions.	Install the SERVOPACK according to specifications.	page 3-3, page 3-5
	A failure occurred in the SERVO- PACK.	-	The SERVOPACK may be faulty. Replace the SERVO- PACK.	-
	The power supply voltage exceeded the specified range.	Measure the power supply voltage.	Set the power supply volt- age within the specified range.	-
A.920: Regenerative Over- load (warning before an A.320 alarm occurs)	There is insuffi- cient external regenerative resis- tance, regenera- tive resistor capacity, or SER- VOPACK capac- ity, or there has been a continuous regeneration state.	Check the operating conditions or the capacity using the Sig- maJunmaSize+ Capac- ity Selection Software or another means.	Change the regenerative resistance value, regenera- tive resistance capacity, or SERVOPACK capacity. Reconsider the operating conditions using the Sigma- JunmaSize+ Capacity Selection Software or other means.	-
	There was a con- tinuous regenera- tion state because a negative load was continuously applied.	Check the load applied to the Servomotor during operation.	Reconsider the system including the servo, machine, and operating conditions.	-

Continued from previous page.

Warning Number:			Continued from pre	
Warning Name	Possible Cause	Confirmation	Correction	Reference
	The Servomotor was rotated by an external force.	Check the operation status.	Implement measures to ensure that the motor will not be rotated by an exter- nal force.	-
A.921: Dynamic Brake Overload (warning before an A.731 alarm occurs)	When the Servo- motor was stopped with the dynamic brake, the rotational or linear kinetic energy exceeded the capacity of the dynamic brake resistor.	Check the power con- sumed by the DB resis- tor to see how frequently the DB is being used.	 Reconsider the following: Reduce the Servomotor command speed. Decrease the moment of inertia or mass. Reduce the frequency of stopping with the dynamic brake. 	_
	A failure occurred in the SERVO- PACK.	-	The SERVOPACK may be faulty. Replace the SERVO- PACK.	-
A.923: SERVOPACK Built- in Fan Stopped	The fan inside the SERVOPACK stopped.	Check for foreign mat- ter inside the SERVO- PACK.	Remove foreign matter from the SERVOPACK. If an alarm still occurs, the SER- VOPACK may be faulty. Replace the SERVOPACK.	-
A.930: Absolute Encoder Battery Error (The	The battery con- nection is faulty or a battery is not connected.	Check the battery con- nection.	Correct the battery connec- tion.	page 4-23
absolute encoder battery voltage was lower than the spec- ified level.) (Detected only when an abso-	The battery volt- age is lower than the specified value (2.7 V).	Measure the battery voltage.	Replace the battery.	page 12-3
lute encoder is con- nected.)	A failure occurred in the SERVO- PACK.	-	The SERVOPACK may be faulty. Replace the SERVO- PACK.	-
A.941: Change of Parame- ters Requires Restart	Parameters have been changed that require the power supply to be turned OFF and ON again.	_	Turn the power supply to the SERVOPACK OFF and ON again.	-
	The speed ripple	-	Reset the speed ripple compensation value on the SigmaWin+.	page 8-60
A.942: Speed Ripple Com- pensation Informa-	compensation information stored in the encoder does not agree with the speed ripple compensa-	_	Set Pn423 to n. D 1 D (Do not detect A.942 alarms). However, changing the setting may increase the speed ripple.	-
tion Disagreement	tion information stored in the SER- VOPACK.	_	Set Pn423 to n. DDD (Disable torque ripple com- pensation). However, changing the setting may increase the speed ripple.	-

Maintenance

Warning Number: Warning Name	Possible Cause	Confirmation	Correction	Reference
	For a 200-V SER- VOPACK, the AC power supply volt- age dropped below 140 V.	Measure the power supply voltage.	Set the power supply volt- age within the specified range.	-
4.074	The power supply voltage dropped during operation.	Measure the power supply voltage.	Increase the power supply capacity.	-
A.971: Undervoltage	A momentary power interrup- tion occurred.	Measure the power supply voltage.	If you have changed the setting of Pn509 (Momen- tary Power Interruption Hold Time), decrease the setting.	page 6-12
	The SERVOPACK fuse is blown out.	_	Replace the SERVOPACK and connect a reactor.	page 4-21
	A failure occurred in the SERVO- PACK.	_	The SERVOPACK may be faulty. Replace the SERVO- PACK.	-
A.9A0: Overtravel (Over- travel status was detected.)	Overtravel was detected while the servo was ON.	Check the status of the overtravel signals on the input signal monitor.	 Even if an overtravel signal is not shown by the input signal monitor, momentary overtravel may have been detected. Take the following precautions. Do not specify move- ments that would cause overtravel from the host controller. Check the wiring of the overtravel signals. Implement countermea- sures against noise. 	_
A.9b0: Preventative Mainte- nance Warning	One of the con- sumable parts has reached the end of its service life.	-	Replace the part. Contact your Yaskawa representa- tive for replacement.	-

12.4 Troubleshooting Based on the Operation and Conditions of the Servomotor

This section provides troubleshooting based on the operation and conditions of the Servomotor, including causes and corrections.

Turn OFF the Servo System before troubleshooting the items shown in bold lines in the table.

Problem	Possible Cause	Confirmation	Correction	Reference
Servomotor Does Not Start	The control power supply is not turned ON.	Measure the voltage between control power supply terminals.	Correct the wiring so that the control power supply is turned ON.	-
	The main circuit power sup- ply is not turned ON.	Measure the voltage between the main circuit power input terminals.	Correct the wiring so that the main circuit power supply is turned ON.	-
	The I/O signal connector (CN1) pins are not wired cor- rectly or are disconnected.	Check the wiring condi- tion of the I/O signal con- nector (CN1) pins.	Correct the wiring of the I/O signal connector (CN1) pins.	page 4-30
	The wiring for the Servomo- tor Main Circuit Cables or Encoder Cable is discon- nected.	Check the wiring condi- tions.	Wire the cable cor- rectly.	-
	There is an overload on the Servomotor.	Operate the Servomotor with no load and check the load status.	Reduce the load or replace the Servomo- tor with a Servomotor with a larger capacity.	-
	The type of encoder that is being used does not agree with the setting of $Pn002 = n.\Box X \Box \Box$ (Encoder Usage).	Check the type of the encoder that is being used and the setting of $Pn002 = n.\Box X \Box \Box$.	Set Pn002 = $n.\Box X \Box \Box$ according to the type of the encoder that is being used.	page 6-73
	No speed or position refer- ence is input.	Check the allocation sta- tus of the input signals.	Allocate an input signal so that the speed and position references are input correctly.	page 6-4
	There is a mistake in the input signal allocations (Pn50A to Pn50D, Pn515, and Pn516).	Check the input signal allocations (Pn50A to Pn50D, Pn515, and Pn516).	Correctly allocate the input signals (Pn50A to Pn50D, Pn515, and Pn516).	page 6-4
	The /S-ON (Servo ON) signal is OFF.	Check the settings of Pn50A = n.□□□X (Input Signal Allocation Mode) and Pn50A =n.□□X□ (Servo ON (/S-ON) Signal Mapping).	Set Pn50A = n.□□XX correctly and turn ON the /S-ON signal.	page 5-16
	The function setting of the / P-CON (Proportional Con- trol) signal is not correct.	Check the setting of $Pn000 = n.\square\squareX\square$ (Control Method Selection).	Set the parameter to match the application.	page 5-12
	The SEN input is OFF.	Check the ON/OFF status of the SEN input.	If you are using an absolute encoder, turn ON the SEN signal.	page 6-73
	The reference pulse mode selection is not correct.	Check the setting of Pn200 =n. DDX (Refer- ence Pulse Form) and the reference pulse form.	Set Pn200 =n.	page 6-31
	Speed control: The speed reference input is not appropriate.	Check between the speed reference input (V- REF) and signal ground (SG) to see if the control method and the input agree.	Correctly set the con- trol method and input method.	_

Problem	Possible Cause	Confirmation	Correction	Reference
Servomotor Does Not Start	Torque control: The torque reference input is not appro- priate.	Check between the torque reference input (T- REF) and signal ground (SG) to see if the control method and the input agree.	Correctly set the con- trol method and input method.	-
	Position control: The refer- ence pulse input is not appropriate.	Check the setting of Pn200 =n. DDX (Refer- ence Pulse Form) and the sign and pulse signals.	Correctly set the con- trol method and input method.	page 6-31
	The /CLR (Position Deviation Clear) input signal has not been turned OFF.	Check the /CLR signal (CN1-14 and CN1-15).	Turn OFF the /CLR sig- nal.	-
	The P-OT (Forward Drive Prohibit) or N-OT (Reverse Drive Prohibit) signal is still OFF.	Check the P-OT and N- OT signals.	Turn ON the P-OT and N-OT signals.	-
	The safety input signals (/HWBB1 or /HWBB2) were not turned ON.	Check the /HWBB1 and /HWBB2 input signals.	Turn ON the /HWBB1 and /HWBB2 input sig- nals. If you are not using the safety function, con- nect the Safety Jumper Connector (provided as an accessory) to CN8.	-
	The FSTP (Forced Stop Input) signal is still OFF.	Check the FSTP signal.	 Turn ON the FSTP signal. If you will not use the function to force the motor to stop, set Pn516 = n. DDX (FSTP (Forced Stop Input) Signal Allocation) to disable the signal. 	-
	A failure occurred in the SER- VOPACK.	-	Replace the SERVO- PACK.	-
	The polarity detection was not executed.	Check the setting of Pn080 =n.□□□X (Polar- ity Sensor Selection).	Correct the parameter setting.	page 5-25
		Check the /S-ON (Servo ON) or /P-DET (Polarity Detection) input signal.	 If you are using an incremental linear encoder, turn ON the /S-ON or /P-DET signal. If you are using an absolute linear encoder, turn OFF the external /S-ON signal and execute polarity detection. 	page 5-26

Problem	Possible Cause	Confirmation	Correction	Reference
Servomotor Moves Instanta-	There is a mistake in the Ser- vomotor wiring.	Check the wiring.	Wire the Servomotor correctly.	-
	There is a mistake in the wir- ing of the encoder or Serial Converter Unit.	Check the wiring.	Wire the Serial Con- verter Unit correctly.	-
	There is a mistake in the lin- ear encoder wiring.	Check the wiring.	Wire the cable cor- rectly.	-
	The setting of Pn282 (Linear Encoder Pitch) is not correct.	Check the setting of Pn282.	Correct the setting of Pn282.	page 5-18
neously, and Then Stops	The count-up direction of the linear encoder does not match the forward direction of the Moving Coil in the motor.	Check the directions.	Change the setting of Pn080 = $n.\Box\BoxX\Box$ (Motor Phase Selec- tion). Place the linear encoder and motor in the same direction.	page 5-23
	Polarity detection was not performed correctly.	Check to see if electrical angle 2 (electrical angle from polarity origin) at any position is between ±10°.	Correct the settings for the polarity detection- related parameters.	-
Servomotor Speed Is Unstable	There is a faulty connection in the Servomotor wiring.	The connector connec- tions for the power line (U, V, and W phases) and the encoder or Serial Converter Unit may be unstable. Check the wir- ing.	Tighten any loose ter- minals or connectors and correct the wiring.	-
	Speed control: The speed reference input is not appropriate.	Check between the speed reference input (V- REF) and signal ground (SG) to see if the control method and the input agree.	Correctly set the con- trol method and input method.	-
	Torque control: The torque reference input is not appro- priate.	Check between the torque reference input (T- REF) and signal ground (SG) to see if the control method and the input agree.	Correctly set the con- trol method and input method.	-
Servomotor	The speed reference offset is not correct.	The SERVOPACK offset is adjusted incorrectly.	Adjust the SERVO- PACK offset.	page 6-19
Moves with- out a Refer- ence Input	Position control: The refer- ence pulse input is not appropriate.	Check the setting of Pn200 =n. DDX (Refer- ence Pulse Form) and the sign and pulse signals.	Correctly set the con- trol method and input method.	-
	A failure occurred in the SER- VOPACK.	_	Replace the SERVO- PACK.	-
	The count-up direction of the linear encoder does not match the forward direction of the Moving Coil in the motor.	Check the directions.	Change the setting of Pn080 = n. (Motor Phase Selec- tion). Match the linear encoder direction and Servomotor direction.	page 5-23
	Polarity detection was not performed correctly.	Check to see if electrical angle 2 (electrical angle from polarity origin) at any position is between ±10°.	Correct the settings for the polarity detection- related parameters.	-

Maintenance

Continued from previous page.

Problem	Possible Cause	Confirmation	Correction	Reference
	The setting of Pn001 = n.	Check the setting of Pn001 = $n.\Box\Box\BoxX$.	Set Pn001 = n.□□□X correctly.	-
Dynamic Brake Does Not Operate	The dynamic brake resistor is disconnected.	Check the moment of inertia, motor speed, and dynamic brake frequency of use. If the moment of inertia, motor speed, or dynamic brake frequency of use is excessive, the dynamic brake resis- tance may be discon- nected.	Replace the SERVO- PACK. To prevent dis- connection, reduce the load.	-
	There was a failure in the dynamic brake drive circuit.	_	There is a defective component in the dynamic brake circuit. Replace the SERVO- PACK.	-

			Continued from pre	vious page.
Problem	Possible Cause	Confirmation	Correction	Reference
	The Servomotor vibrated considerably while perform- ing the tuning-less function with the default settings.	Check the waveform of the motor speed.	Reduce the load so that the moment of inertia ratio or mass ratio is within the allow- able value, or increase the load level or reduce the rigidity level in the tuning-less level set- tings.	page 8-11
	The machine mounting is not secure.	Check to see if there are any loose mounting screws.	Tighten the mounting screws.	-
	The machine mounting is not secure.	Check to see if there is misalignment in the coupling.	Align the coupling.	-
		Check to see if the coupling is balanced.	Balance the coupling.	-
	The bearings are defective.	Check for noise and vibration around the bear- ings.	Replace the Servomo- tor.	-
	There is a vibration source at the driven machine.	Check for any foreign matter, damage, or defor- mation in the machine's moving parts.	Consult with the machine manufacturer.	-
Abnormal Noise from Servomotor	Noise interference occurred because of incorrect I/O signal cable specifications.	Check the I/O signal cables to see if they sat- isfy specifications. Use shielded twisted-pair wire cables or screened twisted-pair cables with conductors of at least 0.12 mm ² .	Use cables that satisfy the specifications.	-
	Noise interference occurred because an I/O signal cable is too long.	Check the lengths of the I/O signal cables.	The I/O signal cables must be no longer than 3 m.	-
	Noise interference occurred because of incorrect Encoder Cable specifications.	Make sure that the rotary or Linear Encoder Cable satisfies the specifica- tions. Use a shielded twisted-pair wire cable or a screened twisted-pair cable with a conductors of at least 0.12 mm ² .	Use cables that satisfy the specifications.	-
	Noise interference occurred because the Encoder Cable is too long.	Check the length of the Encoder Cable.	 Rotary Servomotors: The Encoder Cable length must be 50 m max. Linear Servomotors: Make sure that the Serial Converter Unit cable is no longer than 20 m and that the Linear Encoder Cable and the Sensor Cable are no longer than 15 m each. 	-
	Noise interference occurred because the Encoder Cable is damaged.	Check the Encoder Cable to see if it is pinched or the sheath is damaged.	Replace the Encoder Cable and correct the cable installation envi- ronment.	-

Continued from previou Problem Possible Cause Confirmation Correction Bet				
Problem	Possible Cause	Confirmation	Correction	Reference
	The Encoder Cable was sub- jected to excessive noise interference.	Check to see if the Encoder Cable is bundled with a high-current line or installed near a high-cur- rent line.	Correct the cable lay- out so that no surge is applied by high-current lines.	-
	There is variation in the FG potential because of the influence of machines on the Servomotor side, such as a welder.	Check to see if the machines are correctly grounded.	Properly ground the machines to separate them from the FG of the encoder.	-
	There is a SERVOPACK pulse counting error due to noise.	Check to see if there is noise interference on the signal line from the encoder.	Implement counter- measures against noise for the encoder wiring.	-
Abnormal Noise from Servomotor	The encoder was subjected to excessive vibration or shock.	Check to see if vibration from the machine occurred. Check the Ser- vomotor installation (mounting surface preci- sion, securing state, and alignment). Check the linear encoder installation (mounting sur- face precision and secur- ing method).	Reduce machine vibra- tion. Improve the mounting state of the Servomotor or linear encoder.	_
	A failure occurred in the encoder.	_	Replace the Servomo- tor.	-
	A failure occurred in the Serial Converter Unit.	-	Replace the Serial Con- verter Unit.	-
	A failure occurred in the linear encoder.	-	Replace the linear encoder.	-
	The servo gains are not bal- anced.	Check to see if the servo gains have been cor- rectly tuned.	Perform autotuning without a host reference.	page 8-23
Servomotor	The setting of Pn100 (Speed Loop Gain) is too high.	Check the setting of Pn100. The default setting is Kv = 40.0 Hz.	Set Pn100 to an appro- priate value.	-
Vibrates at Frequency of Approx. 200 to 400 Hz.	The setting of Pn102 (Posi- tion Loop Gain) is too high.	Check the setting of Pn102. The default setting is Kp = 40.0/s.	Set Pn102 to an appro- priate value.	-
	The setting of Pn101 (Speed Loop Integral Time Con- stant) is not appropriate.	Check the setting of Pn101. The default setting is Ti = 20.0 ms.	Set Pn101 to an appro- priate value.	-
	The setting of Pn103 (Moment of Inertia Ratio or Mass Ratio) is not appropri- ate.	Check the setting of Pn103.	Set Pn103 to an appro- priate value.	_

Continued from previous page.

Continued from previous page				
Problem	Possible Cause	Confirmation	Correction	Reference
	The servo gains are not bal- anced.	Check to see if the servo gains have been correctly tuned.	Perform autotuning without a host reference.	page 8-23
	The setting of Pn100 (Speed Loop Gain) is too high.	Check the setting of Pn100. The default setting is Kv = 40.0 Hz.	Set Pn100 to an appro- priate value.	-
Large Motor Speed	The setting of Pn102 (Posi- tion Loop Gain) is too high.	Check the setting of Pn102. The default setting is Kp = 40.0/s.	Set Pn102 to an appro- priate value.	-
Overshoot on Starting and Stop- ping	The setting of Pn101 (Speed Loop Integral Time Con- stant) is not appropriate.	Check the setting of Pn101. The default setting is Ti = 20.0 ms.	Set Pn101 to an appro- priate value.	-
	The setting of Pn103 (Moment of Inertia Ratio or Mass Ratio) is not appropri- ate.	Check the setting of Pn103.	Set Pn103 to an appro- priate value.	_
	The torque reference is saturated.	Check the waveform of the torque reference.	Use the mode switch.	-
	The force limits (Pn483 and Pn484) are set to the default values.	The default values of the force limits and Pn483 = 30% and Pn484 = 30%.	Set Pn483 and Pn484 to appropriate values.	page 6-63
	Noise interference occurred because of incorrect Encoder Cable specifications.	Check the Encoder Cable to see if it satisfies speci- fications. Use a shielded twisted- pair wire cable or a screened twisted-pair cable with conductors of at least 0.12 mm ² .	Use cables that satisfy the specifications.	-
Absolute Encoder Position Deviation Error (The position that was saved in the host con- troller when	Noise interference occurred because the Encoder Cable is too long.	Check the length of the Encoder Cable.	 Rotary Servomotors: The Encoder Cable length must be 50 m max. Linear Servomotors: Make sure that the Serial Converter Unit cable is no longer than 20 m and that the Linear Encoder Cable and the Sensor Cable are no longer than 15 m each. 	_
the power was turned OFF is dif- ferent from	Noise interference occurred because the Encoder Cable is damaged.	Check the Encoder Cable to see if it is pinched or the sheath is damaged.	Replace the Encoder Cable and correct the cable installation envi- ronment.	-
the posi- tion when the power was next turned ON.)	Replace the Encoder Cable and correct the cable instal- lation environment.	Check to see if the Encoder Cable is bundled with a high-current line or installed near a high-cur- rent line.	Correct the cable lay- out so that no surge is applied by high-current lines.	-
	There is variation in the FG potential because of the influence of machines on the Servomotor side, such as a welder.	Check to see if the machines are correctly grounded.	Properly ground the machines to separate them from the FG of the encoder.	-
	There is a SERVOPACK pulse counting error due to noise.	Check to see if there is noise interference on the I/O signal line from the encoder or Serial Con- verter Unit.	Implement counter- measures against noise for the encoder or Serial Converter Unit wiring.	-

ntinued from previo 0

	1	1	Continued from pre	vious page.
Problem	Possible Cause	Confirmation	Correction	Reference
Absolute Encoder Position Deviation Error (The position that was	The encoder was subjected to excessive vibration or shock.	Check to see if vibration from the machine occurred. Check the Servomotor installation (mounting sur- face precision, securing state, and alignment). Check the linear encoder installation (mounting sur- face precision and secur- ing method).	Reduce machine vibra- tion. Improve the mounting state of the Servomotor or linear encoder.	-
	A failure occurred in the encoder.	_	Replace the Servomo- tor or linear encoder.	-
saved in the host con- troller when	A failure occurred in the SER- VOPACK.	_	Replace the SERVO- PACK.	_
the power was turned OFF is dif-		Check the error detec- tion section of the host controller.	Correct the error detec- tion section of the host controller.	-
ferent from the posi- tion when the power	Host Controller Multiturn Data or Absolute Encoder	Check to see if the host controller is executing data parity checks.	Perform parity checks for the multiturn data or absolute encoder posi- tion data.	-
was next turned ON.)	Position Data Reading Error	Check for noise interfer- ence in the cable between the SERVO- PACK and the host con- troller.	Implement counter- measures against noise and then perform parity checks again for the multiturn data or abso- lute encoder position data.	-
		Check the external power supply (+24 V) voltage for the input signals.	Correct the external power supply (+24 V) voltage for the input signals.	-
	The P-OT/N-OT (Forward Drive Prohibit or Reverse Drive Prohibit) signal was input. The P-OT/N-OT (Forward Drive Prohibit or Reverse Drive Prohibit) signal mal- functioned.	Check the operating con- dition of the overtravel limit switches.	Make sure that the overtravel limit switches operate correctly.	-
		Check the wiring of the overtravel limit switches.	Correct the wiring of the overtravel limit switches.	page 5-30
		Check the settings of the overtravel input signal allocations (Pn50A/Pn50B).	Set the parameters to correct values.	page 5-30
Overtravel Occurred		Check for fluctuation in the external power supply (+24 V) voltage for the input signals.	Eliminate fluctuation from the external power supply (+24 V) voltage for the input signals.	-
		Check to see if the opera- tion of the overtravel limit switches is unstable.	Stabilize the operating condition of the over- travel limit switches.	-
		Check the wiring of the overtravel limit switches (e.g., check for cable damage and loose screws).	Correct the wiring of the overtravel limit switches.	-
	There is a mistake in the allo- cation of the P-OT or N-OT (Forward Drive Prohibit or	Check to see if the P-OT signal is allocated in Pn50A = $n.X\Box\Box\Box$.	If another signal is allo- cated in Pn50A =n.X□□□, allocate the P-OT signal instead.	page 5-30
	(Forward Drive Prohibit) or Reverse Drive Prohibit) sig- nal in Pn50A = $n.X\square\square\square$ or Pn50B = $n.\square\square\squareX$.	Check to see if the N-OT signal is allocated in Pn50B = $n.\Box\Box\BoxX$.	If another signal is allo- cated in Pn50B =n.□□□X, allocate the N-OT signal instead.	Page 0 00

Problem	Possible Cause	Confirmation	Continued from pre	Reference	
Overtravel	The selection of the Servo-	Check the servo OFF stopping method set in $Pn001 = n.\Box\BoxX$ or $Pn001 = n.\Box\BoxX\Box$.	Select a Servomotor stopping method other than coasting to a stop.	- page 5-32	
Occurred	motor stopping method is not correct.	Check the torque control stopping method set in Pn001 = $n.\Box\BoxX$ or Pn001 = $n.\Box\BoxX\Box$.	Select a Servomotor stopping method other than coasting to a stop.	- page 5-32	
Improper Stop Posi- tion for	The limit switch position and dog length are not appropriate.	_	Install the limit switch at the appropriate position.	_	
Overtravel (OT) Signal	The overtravel limit switch position is too close for the coasting distance.	_	Install the overtravel limit switch at the appropriate position.	_	
	Noise interference occurred because of incorrect Encoder Cable specifications.	Check the Encoder Cable to see if it satisfies speci- fications. Use a shielded twisted-pair wire cable or a screened twisted-pair cable with conductors of at least 0.12 mm ² .	Use cables that satisfy the specifications.	-	
Position Deviation	Noise interference occurred because the Encoder Cable is too long.	Check the length of the Encoder Cable.	 Rotary Servomotors: The Encoder Cable length must be 50 m max. Linear Servomotors: Make sure that the Serial Converter Unit cable is no longer than 20 m and that the Linear Encoder Cable and the Sensor Cable are no longer than 15 m each. 	-	
(without Alarm)	Noise interference occurred because the Encoder Cable is damaged.	Check the Encoder Cable to see if it is pinched or the sheath is damaged.	Replace the Encoder Cable and correct the cable installation envi- ronment.	-	
	The Encoder Cable was sub- jected to excessive noise interference.	Check to see if the Encoder Cable is bundled with a high-current line or installed near a high-cur- rent line.	Correct the cable lay- out so that no surge is applied by high-current lines.	-	
	There is variation in the FG potential because of the influence of machines on the Servomotor side, such as a welder.	Check to see if the machines are correctly grounded.	Properly ground the machines to separate them from the FG of the encoder.	-	
	There is a SERVOPACK pulse counting error due to noise.	Check to see if there is noise interference on the I/O signal line from the encoder or Serial Con- verter Unit.	Implement counter- measures against noise for the encoder wiring or Serial Converter Unit wiring.	-	

Maintenance

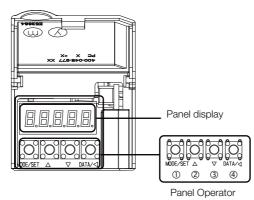
			Continued from pre	evious page.
Problem	Possible Cause	Confirmation	Correction	Reference
Position	The encoder was subjected to excessive vibration or shock.	Check to see if vibration from the machine occurred. Check the Servomotor installation (mounting sur- face precision, securing state, and alignment). Check the linear encoder installation (mounting sur- face precision and secur- ing method).	Reduce machine vibra- tion. Improve the mounting state of the Servomotor or linear encoder.	-
Deviation (without Alarm)	The coupling between the machine and Servomotor is not suitable.	Check to see if position offset occurs at the cou- pling between machine and Servomotor.	Correctly secure the coupling between the machine and Servomotor.	-
	Noise interference occurred because of incorrect I/O signal cable specifications.	Check the I/O signal cables to see if they sat- isfy specifications. Use a shielded twisted-pair wire cable or a screened twisted-pair cable with conductors of at least 0.12 mm ² .	Use cables that satisfy the specifications.	-
Position Deviation	If reference pulse input multi- plication switching is being used, noise may be causing the I/O signals used for this function (/PSEL and /PSELA) to be falsely detected.	Check the I/O signal cables to see if they sat- isfy specifications. Use a shielded twisted-pair wire cable or a screened twisted-pair cable with conductors of at least 0.12 mm ² .	Use cables that satisfy the specifications.	-
(without Alarm)	Noise interference occurred because an I/O signal cable is too long.	Check the lengths of the I/O signal cables.	The I/O signal cables must be no longer than 3 m.	-
	An encoder fault occurred. (The pulse count does not change.)	-	Replace the Servomo- tor or linear encoder.	-
	A failure occurred in the SER- VOPACK.	_	Replace the SERVO- PACK.	-
	The surrounding air tempera- ture is too high.	Measure the surrounding air temperature around the Servomotor.	Reduce the surround- ing air temperature to 40°C or less.	-
	The surface of the Servomo- tor is dirty.	Visually check the surface for dirt.	Clean dirt, dust, and oil from the surface.	-
Servomotor Overheated	There is an overload on the Servomotor.	Check the load status with a monitor.	If the Servomotor is overloaded, reduce the load or replace the Servo Drive with a SERVOPACK and Ser- vomotor with larger capacities.	-
	Polarity detection was not performed correctly.	Check to see if electrical angle 2 (electrical angle from polarity origin) at any position is between ±10°.	Correct the settings for the polarity detection- related parameters.	-

Panel Displays and Panel Operator Procedures

13

This chapter describes how to interpret panel displays and the operation of the Panel Operator.

13.1	Panel	Operator13-3
	13.1.1 13.1.2 13.1.3	Panel Operator Key Names and Functions13-3Changing Modes13-3Status Displays13-4
13.2	Parame	eter (Pn $\Box\Box\Box$) Operations on the Panel Operator 13-6
	13.2.1 13.2.2	Setting Parameters That Require Numeric Settings
13.3	Monitor	Display (Un
	13.3.1 13.3.2 13.3.3 13.3.4 13.3.5 13.3.6	Basic Monitor Display Operations13-8Input Signal Monitor (Un005)13-8Output Signal Monitor (Un006)13-9Safety Input Signal Monitor (Un015)13-10Upper Limit Setting Monitor for Maximum MotorSpeed/Upper Limit Setting for Encoder OutputResolution (Un010)13-11Polarity Sensor Signal Monitor (Un011)13-11
13.4	Utility Fu	unction (Fn D D) Operations on the Panel Operator 13-12
	13.4.1 13.4.2 13.4.3 13.4.4 13.4.5 13.4.6 13.4.7	Display Alarm History (Fn000) 13-12 Jog (Fn002) 13-13 Origin Search (Fn003) 13-13 Jog Program (Fn004) 13-14 Initialize Parameters (Fn005) 13-15 Clear Alarm History (Fn006) 13-15 Reset Absolute Encoder (Fn008) 13-16

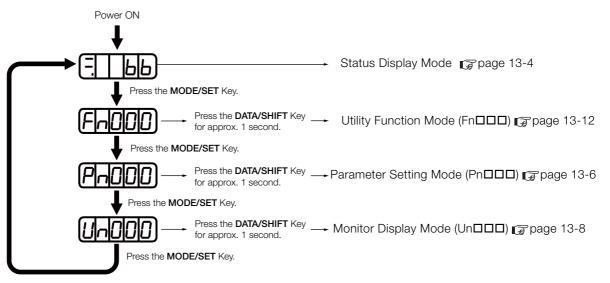

13.4.8	Autotune Analog (Speed/Torque) Reference	
	Offset (Fn009)	.13-17
13.4.9	Manually Adjust Speed Reference Offset	
	(Fn00A)	.13-17
13.4.10	Manually Adjust Torque Reference Offset	
	(Fn00B)	.13-18
13.4.11	Adjust Analog Monitor Output Offset (Fn00C)	.13-18
	Adjust Analog Monitor Output Gain (Fn00D)	
13.4.13	Autotune Motor Current Detection Signal Offse	et
	(Fn00E)	.13-20
13.4.14	Manually Adjust Motor Current Detection Signa	al
	Offset (Fn00F)	
13.4.15	Write Prohibition Setting (Fn010)	.13-21
	Display Servomotor Model (Fn011)	
13.4.17	Display Software Version (Fn012)	.13-23
13.4.18	Multiturn Limit Setting after Multiturn Limit	
	Disagreement Alarm (Fn013)	.13-24
13.4.19	Reset Option Module Configuration Error	
	(Fn014)	.13-24
	Initialize Vibration Detection Level (Fn01B)	.13-25
13.4.21	Display SERVOPACK and Servomotor IDs	
	(Fn01E)	.13-26
13.4.22	Display Servomotor ID from Feedback Option	
	Module (Fn01F)	
	Set Absolute Linear Encoder Origin (Fn020)	
	Resetting Motor Type Alarms (Fn021)	
	Software Reset (Fn030)	
	Polarity Detection (Fn080)	
	Tuning-less Level Setting (Fn200)	.13-28
13.4.28	Advanced Autotuning without Reference	
	(Fn201)	
	Advanced Autotuning with Reference (Fn202)	
	One-Parameter Tuning (Fn203)	
	Adjust Anti-resonance Control (Fn204)	
	Vibration Suppression (Fn205)	
13.4.33	Easy FFT (Fn206)	.13-30

13.1 Panel Operator

13.1.1 Panel Operator Key Names and Functions

The Panel Operator consists of a panel display and Panel Operator keys. You can use the Panel Operator to set parameters, display status, execute utility functions, and monitor SERVOPACK operation.

The Panel Operator key names and functions are given below.

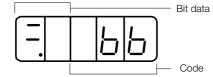


	ley Io.	Key Name	Function	
(0	MODE/SET Key	Changes the display.Confirms settings.	
(2	UP Key	Increases the setting.	
(3	DOWN Key	Decreases the setting.	
(4	DATA/SHIFT Key	 Displays the setting. To display the setting, press the DATA/SHIFT Key for approximately one second. Moves to the next digit on the left when a digit is flashing. 	

13.1.2 Changing Modes

Press the **MODE/SET** Key to change between the modes as shown below.

Refer to the reference pages for the operating procedures in each function mode.


Information You can change the setting of Pn52F (Monitor Display at Startup) to display the Monitor Display Mode instead of the Status Display Mode after the power supply is turned ON. Set Pn52F to the Un number of the monitor display to display after the power supply is turned ON.

	Monitor Displa	y at Startup		Speed	Position Torque
Pn52F	Setting Range	Setting Unit	Default Setting	When Enabled	Classification
	0000 to 0FFF	-	OFFF	Immediately	Setup

If 0FFF is set (default setting), the SERVOPACK will enter the Status Display Mode after the power supply is turned ON.

13.1.3 Status Displays

The status is displayed as described below.

Interpreting Bit Data

Display	Meaning
8.8	Control Power ON Display Lit while the SERVOPACK control power is ON. Not lit if the SERVOPACK control power is OFF.
8.8	Base Block Display Lit if the servo is OFF. Not lit while the servo is ON.
8.8	During Speed Control: /V-CMP (Speed Coincidence Detection) Signal DisplayLit if the difference between the Servomotor speed and the reference speed is the same as or less than the setting of Pn503 or Pn582. (The default setting is 10 min ⁻¹ or 10 mm/s.)Always lit during torque control. Additional InformationIf there is noise in the reference voltage during speed control, the horizontal segment (-) on the top of the leftmost digit on the Panel Operator display may flash. Refer to the following section and implement countermeasures against noise.If al. 2 Countermeasures against Noise on page 4-5During Position Control: /COIN (Positioning Completion) Signal Display Lit if the deviation between the position reference and actual motor position is equal to or less than the setting of Pn522. (The default setting is 7 reference units.) Not lit it the devia-
88.	 tion exceeds the setting. /TGON (Rotation Detection) Signal Display Lit if the Servomotor speed is higher than the setting of Pn502 or Pn581 and not lit if the speed is lower than the setting. (The default setting is 20 min⁻¹ or 20 mm/s.)
88.	During Speed Control: Speed Reference Input Display Lit if the current input reference is larger than the setting of Pn502 or Pn581 and not lit if the reference is smaller than the setting. (The default setting is 20 min ⁻¹ or 20 mm/s.) During Position Control: Reference Pulse Input Display Lit while reference pulses are being input. Not lit if reference pulses are not being input.
88.	During Torque Control: Torque Reference Input DisplayLit if the current input torque reference is larger than the specified value (10% of the rated torque) and not lit if the reference is smaller than the specified value.During Position Control: Clear Signal Input DisplayLit while the clear signal is being input. Not lit if the clear signal is not being input.
88.	Power Ready Display Lit while the main circuit power supply is ON. Not lit if the main circuit power supply is OFF.

13.1.3 Status Displays

Interpreting Codes

Display	Meaning	Display	Meaning
БР	Base Block Active Indicates that the servo is OFF.		Safety Function Indicates that the SERVOPACK is in
run	Operation in Progress Indicates that the servo is ON.	<u>טוטוייו</u>	the hard wire base block state due to a safety function.
Pot	Forward Drive Prohibited Indicates that the P-OT (Forward Drive Prohibit) signal is open.	(Example: Operation in Progress Status)	Test without Motor in Progress Indicates that the test without a motor is in progress. The status display changes according
hot	Reverse Drive Prohibited Indicates that the N-OT (Reverse Drive Prohibit) signal is open.	(Displayed alternately.)	to the status of Servomotor and SER- VOPACK. However, tSt will not be dis- played during a test without a motor even if an alarm occurs.
FSE	Forced Stop Status Indicates that the FSTP (Force Stop Input) signal forced the Servomotor to stop.	020	Alarm Status Flashes the alarm number.

13.2.1 Setting Parameters That Require Numeric Settings

13.2 Parameter (Pn DD) Operations on the Panel Operator

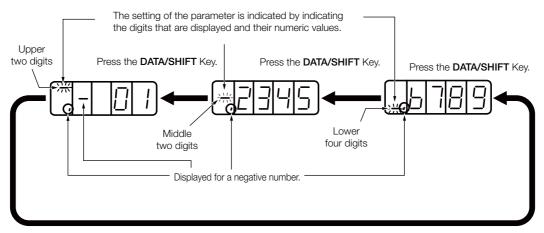
This section describes the procedures for setting the parameters that are used in this manual. Refer to the following sections for details on parameter classifications and notation. \bigcirc 5.1.1 Parameter Classification on page 5-3

[₹ 5.1.2 Notation for Parameters on page 5-4

13.2.1 Setting Parameters That Require Numeric Settings

The following procedure shows how to change the setting of Pn100 (Speed Loop Gain) from 40.0 to 100.0 as an example of a parameter that requires a numeric setting.

Step	Panel Display after Operation	Keys	Operation
1	Pn 100	MODE/SET	Press the MODE/SET Key to enter Parameter Setting Mode. If Pn100 is not displayed, press the UP Key or DOWN Key to display Pn100 .
2	00400	MODE/SET A DATA/	Press the DATA/SHIFT Key for approximately one second. The current setting of Pn100 will be displayed.
3	00400	MODE/SET	Press the DATA/SHIFT Key to move the digit that is flashing to "4". (You can change the value of the digit that is flashing.)
4	0 100.0	Mode/set	 Press the UP Key six times to change the setting to 100.0. Refer to the following section for the operating procedure for settings with more than five digits. <i>Parameters with Settings of More Than Five Digits</i> on page 13-7
5	(Flashing)	MODE/SET A V DATA/	Press the MODE/SET Key. The display will flash. The setting has now been changed from 40.0 to 100.0.
6	Pn 100	MODE/SET	Press the DATA/SHIFT Key for approximately one second to return the display to Pn100 .


Information Setting Negative Numbers

- For parameters that accept a negative setting, display **00000** and then press the **DOWN** Key to set a negative number.
- For a negative number, the value increases when the **DOWN** Key is pressed and decreases when the **UP** Key is pressed.

13.2.2 Setting Parameters That Require Selection of Functions

Parameters with Settings of More Than Five Digits

The Panel Operator displays five digits. Settings of more than five digits are displayed as shown in the following figure.

13.2.2 Setting Parameters That Require Selection of Functions

For parameters that require selection of functions, you can select the individual digits of the numbers displayed on the Panel Operator to set the functions assigned to them.

The following example shows how to change the setting of $Pn000 = n.\Box\Box X\Box$ (Control Method Selection) in Pn000 (Basic Function Selections 0) from speed control to position control.

Step	Panel Display after Operation	Keys	Operation	
1	Pn000	MODE/SET	Press the MODE/SET Key to enter Parameter Setting Mode. If Pn000 is not displayed, press the UP Key or DOWN Key to display Pn000 .	
2	n.0000	MODE/SET	Press the DATA/SHIFT Key for approximately one second. The current setting of Pn000 will be displayed.	
3	-0000	MODE/SET	Press the DATA/SHIFT Key to move the digit that is flashing. (You can change the value of the digit that is flash-ing.)	
4		MODE/SET	Press the UP Key once to change the display to n.0010 . (This changes the control method from speed control to position control.)	
5	(Flashing)	MODE/SET A V DATA/4	Press the MODE/SET Key. The display will flash. The control method has now been changed from speed control to position control.	
6	PrOOD	MODE/SET	Press the DATA/SHIFT Key for approximately one second. Pn000 is displayed again.	
7	7 To enable the change to the setting, turn the power supply to the SERVOPACK OFF and ON again.			

13.3.1 Basic Monitor Display Operations

13.3 Monitor Display (Un DD) Operations on the Panel Operator

You can monitor the status of the reference values and I/O signals that are set in the SERVO-PACK and the internal status of the SERVOPACK with monitor displays.

The Panel Operator displays numbers beginning with "Un."

Display Example for Motor Speed

This section describes the basic operations for monitor displays and how to interpret some special monitor displays.

13.3.1 Basic Monitor Display Operations

The procedure for Un000 (Motor Speed) is described here as an example.

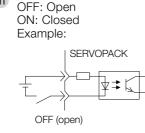
Step	Panel Display after Operation	Keys	Operation
1	U-000	MODE/SET	Press the MODE/SET Key to enter Monitor Display Mode.
2	U-000	MODE/SET	Press the UP Key or DOWN Key to select the Un number of the item that you want to monitor.
3		Mode/set	 Press the DATA/SHIFT Key for approximately one second. The contents of the monitor display for the specified Un number will appear. Refer to the following section for the operating procedure for displays with more than five digits. Parameters with Settings of More Than Five Digits on page 13-7
4	Un000	MODE/SET	Press the DATA/SHIFT Key for approximately one second. The display shown for step 1 will appear again.

13.3.2 Input Signal Monitor (Un005)

You can use Un005 to display the status of allocated signals on the LED segments of the Panel Operator.

Interpreting the Display

LED Segments


- If the input signal that corresponds to the display digit number is OFF, the top LED segment will be lit.
- If the input signal that corresponds to the display digit number is ON, the bottom LED segment will be lit.

13.3.3 Output Signal Monitor (Un006)

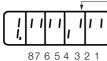
Display Digit Number	Input Pin Number	Signal Name (Default Setting)
1	CN1-40	/SI0 (/S-ON)
2	CN1-41	/SI3 (/P-CON)
3	CN1-42	/SI1 (P-OT)
4	CN1-43	/SI2 (N-OT)
5	CN1-44	/SI4 (/ALM-RST)
6	CN1-45	/SI5 (/P-CL)
7	CN1-46	/SI6 (/N-CL)
8	CN1-4	SEN

The allocations are given in the following table.

Information The configuration of the input circuits is shown below.

♦ Display Examples

Display examples for input signals are shown below.


• When the /S-ON (Servo ON) Signal Is ON

The bottom segment of digit 1 is lit.
$$87654321$$

• When the /S-ON (Servo ON) Signal Is OFF

• When the P-OT (Forward Drive Prohibit) Signal Is Active

The top segment of digit 3 is lit.

13.3.3 Output Signal Monitor (Un006)

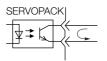
You can use Un006 to display the status of allocated signals on the LED segments of the Panel Operator.

LED Segments

- If the output signal that corresponds to the display digit number is OFF, the top LED segment will be lit.
- If the output signal that corresponds to the display digit number is ON, the bottom LED segment will be lit.

13.3 Monitor Display (UnDDD) Operations on the Panel Operator

13.3.4 Safety Input Signal Monitor (Un015)


Display Digit Number	Output Pin Numbers	Signal Name (Default Setting)
1	CN1-31and CN1-32	ALM+ÅCALM-
2	CN1-25 and CN1-26	/SO1+ (/COIN+ or /V-CMP+) and /SO1- (/COIN- or /V-CMP-)
3	CN1-27 and CN1-28	/SO2+ (/TGON+) /SO2- (/TGON-)
4	CN1-29 and CN1-30	/SO3+ (/S-RDY+) /SO3- (/S-RDY-)
5	CN1-37	ALO1
6	CN1-38	ALO2
7	CN1-39	ALO3
8	_	Reserved.

The allocations are given in the following table.

Information

The configuration of the output circuits is shown below. OFF: Transistor OFF ON: Transistor ON

Example:

ON (transistor ON)

Display Examples

A display example for output signals is shown below.

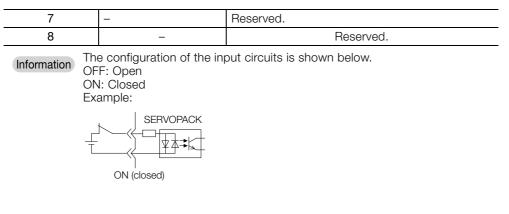
· When the ALM (Servo Alarm) Signal Is OFF

The top segment of digit 1 is lit.

13.3.4 Safety Input Signal Monitor (Un015)

Interpreting the Display

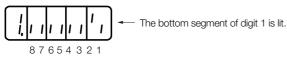
You can display the status of allocated signals on the LED segments of the Panel Operator. LED Segments



- If the signal that corresponds to the display digit number is ON, the top LED segment will be lit.
- If the signal that corresponds to the display digit number is OFF, the bottom LED segment will be lit.

Display Digit Number	Input Pin Numbers	Signal
1	CN8-3 and CN8-4	/HWBB1
2	CN8-5 and CN8-6	/HWBB2
3	-	Reserved.
4	-	Reserved.
5	-	Reserved.
6	_	Reserved.

The allocations are given in the following table.


13.3.5 Upper Limit Setting Monitor for Maximum Motor Speed/Upper Limit Setting for Encoder Output Resolution (Un010)

Display Example

A display example for safety input signals is shown below.

• When the /HWBB1 Signal Turns OFF to Activate a HWBB

13.3.5 Upper Limit Setting Monitor for Maximum Motor Speed/ Upper Limit Setting for Encoder Output Resolution (Un010)

You can use Un010 to monitor the upper limit setting for the maximum motor speed or the upper limit setting for the encoder output resolution.

You can monitor the upper limit of the encoder output resolution setting (Pn281) for the current maximum motor speed setting (Pn385), or you can monitor the upper limit of the maximum motor speed setting for the current encoder output resolution setting.

Select which signal to monitor with $Pn080 = n.X \square \square \square$ (Calculation Method for Maximum Speed or Divided Output Pulses).

- If $Pn080 = n.0 \square \square \square$, the encoder output resolution (Pn281) that can be set is displayed.
- If Pn080 = n.1 □□□, the maximum motor speed (Pn385) that can be set is displayed in mm/s.

13.3.6 Polarity Sensor Signal Monitor (Un011)

You can use Un011 to monitor the signal pattern of the polarity sensor.

Press the **DATA/SHIFT** Key for approximately one second to display the polarity sensor signal pattern.

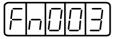
\bigcap		1	T	– Тор
I. I.		1	11.	

Top segment: ON (high level) Bottom segment: OFF (low level)

Phase-W signal monitor

-Phase-U signal monitor

Polarity Sensor	Signal Monitor		
Signal Pattern	Phase U	Phase V	Phase W
0	L	L	L
1	L	L	Н
2	L	Н	L
3	L	Н	Н
4	Н	L	L
5	Н	L	Н
6	Н	Н	L
7	Н	Н	Н


13.4.1 Display Alarm History (Fn000)

13.4 Utility Function (Fn 2) Operations on the Panel Operator

Utility functions are used to set up and tune the SERVOPACK.

The Panel Operator displays numbers beginning with "Fn."

Display Example: Origin Search

The operating procedures from the Panel Operator are described here. Refer to the descriptions of individual utility functions for preparations and related parameters.

13.4.1 Display Alarm History (Fn000)

Refer to the following section for information on this utility function other than the procedure. *12.2.4 Displaying the Alarm History* on page 12-40

Step	Panel Display after Operation	Keys	Operation
1	F-000	MODE/SET A V DATA/4	Press the MODE/SET Key to enter Utility Function Mode. If Fn000 is not displayed, press the UP Key or DOWN Key to display Fn000 .
2	0, 8 ; 0	MODE/SET	Press the DATA/SHIFT Key for approximately one second. The most recent alarm will be displayed.
3	Alarm number	Mode/set	Press the DOWN Key to display the next older alarm. Press the UP Key to display the next newer alarm. The higher the far-left segment is, the older the alarm is. Refer to the following section for information on alarms. 12.2.1 List of Alarms on page 12-5
4	_3456	MODE/SET	Press the DATA/SHIFT Key. The lower four digits of the time stamp will be displayed.
5	- 7890)	MODE/SET A DATA/	Press the DATA/SHIFT Key. The middle four digits of the time stamp will be displayed.
6		MODE/SET A DATA/	Press the DATA/SHIFT Key. The upper two digits of the time stamp will be displayed.
7		MODE/SET	Press the DATA/SHIFT Key. The alarm number will flash on the display.
8	FnDDD	MODE/SET	Press the DATA/SHIFT Key again for approximately one second to return the display to Fn000 .

13.4.2 Jog (Fn002)

Refer to the following section for information on this utility function other than the procedure. 7.3 Trial Operation for the Servomotor without a Load on page 7-7

Step	Panel Display after Operation	Keys	Operation
1	FnCCC	MODE/SET	Press the MODE/SET Key to enter Utility Function Mode.
2	Fn002		Press the UP Key or DOWN Key to display Fn002 .
3		MODE/SET	Press the DATA/SHIFT Key for approximately one second. The display shown at the left will appear.
4		MODE/SET A V DATA/4	Press the MODE/SET Key to turn ON the servo.
5		MODE/SET	The Servomotor will operate at the speed set in Pn304 or Pn383 while the UP Key (for forward operation) or DOWN Key (for reverse operation) is pressed.
6		MODE/SET A DATA/	Press the MODE/SET Key to turn OFF the servo. Additional Information You can turn OFF the servo by pressing the DATA/ SHIFT Key for approximately one second.
7	Fn002	MODE/SET	Press the DATA/SHIFT Key for approximately one second to return the display to Fn002 .
8	Turn the power supply	to the SERVOPACK O	FF and ON again after you finish jogging.

13.4.3 Origin Search (Fn003)

Refer to the following section for information on this utility function other than the procedure. 7.6.2 Origin Search on page 7-25

Step	Panel Display after Operation	Keys	Operation
1	Fallo	MODE/SET	Press the MODE/SET Key to enter Utility Function Mode.
2	Fn003	MODE/SET	Press the UP Key or DOWN Key to display Fn003 .
3		MODE/SET A V DATA/	Press the DATA/SHIFT Key for approximately one second. The display shown on the left will appear.
4	. <u>.</u> [5r	MODE/SET	Press the MODE/SET Key to turn ON the servo. The display shown on the left will appear.

13.4.4 Jog Program (Fn004)

Continued from previous page.

Step	Panel Display after Operation	Keys			Operation		
			Press the UP Key to operate the Servomotor in th ward direction. Press the DOWN Key to operate the Servomotor in reverse direction. The rotation direction of the Servomotor changes according to the setting of Pn000 = n.□□□X as shown in the following table. • Rotary Servomotors Parameter UP Key DOWN Ker				
			Pn000	n.🗆 🗆 🗆 🛛	CCW	CW	
			FIIUUU	n.□□□1	CW	CCW	
5	[5-	MODE/SET A V DATA/4	Note: This is the direction when viewed from the load side of the Servomotor. • Linear Servomotors				
			Para	ameter	UP Key	DOWN Key	
			Pn000	n.□□□0	Linear encoder counts up.	Linear encoder counts down.	
			FIIUUU	n.□□□1	Linear encoder counts down.	Linear encoder counts up.	
			the for	forward dire details.		ncoder counts up is e following section on page 5-17	
6	(Flashing)	-	pleted, the	e display w o-locked a		has been com- ime, the Servomo- n one rotation of	
7	Fn003	MODE/SET			FT Key for appropriate FT Key for appropriate FT Key for approximate FT	oximately one sec-	
8	Turn the power supply	to the SERVOPACK OI	FF and ON	again after	you finish the o	rigin search.	

13.4.4 Jog Program (Fn004)

Refer to the following section for information on this utility function other than the procedure.

Step	Panel Display after Operation	Keys	Operation
1	Fn000	MODE/SET A DATA/	Press the MODE/SET Key to enter Utility Function Mode.
2	F_{n}		Press the UP Key or DOWN Key to display Fn004 .
3	-,P,J0G	MODE/SET	Press the DATA/SHIFT Key for approximately one second. The display shown on the left will appear.
4	<u> </u>	MODE/SET A DATA/	Press the MODE/SET Key to turn ON the servo. The display shown on the left will appear.

13.4.5 Initialize Parameters (Fn005)

Step	Panel Display after Operation	Keys	Operation
5		Mode/set	 Press the UP Key or DOWN Key according to the initial movement direction of the operation pattern. The operation will start after the preset waiting time. Additional Information Press the MODE/SET Key during operation. The servo will turn OFF and the Servomotor will stop. Press the DATA/SHIFT Key for approximately one second during operation. The display shown for step 2 will appear again.
6	<u> </u>	_	 When program jogging has been completed, End will flash on the display, and then the display shown on the left will appear again. Additional Information Press the MODE/SET Key during operation to turn OFF the servo and return to the display shown for step 3. Press the DATA/SHIFT Key for approximately one second during operation to return to the display shown for step 2.
7	Turn the power supply	to the SERVOPACK O	FF and ON again after you finish program operation.

13.4.5 Initialize Parameters (Fn005)

Refer to the following section for information on this utility function other than the procedure. 5.1.5 Initializing Parameter Settings on page 5-9

Step	Panel Display after Operation	Keys	Operation	
1	Fn000	MODE/SET A DATA/	Press the MODE/SET Key to enter Utility Function Mode.	
2	FnOOS		Press the UP Key or DOWN Key to display Fn005.	
3	P. In IL	MODE/SET	Press the DATA/SHIFT Key for approximately one second. The display shown at the left will appear.	
4	P. In IL	MODE/SET A V DATA/	Press the MODE/SET Key to initialize the parameters. When the initialization has been completed, donE will flash on the display, and then the display shown on the left will appear again.	
5	To enable the change to the setting, turn the power supply to the SERVOPACK OFF and ON again after the initialization of the parameter settings has been completed.			

13.4.6 Clear Alarm History (Fn006)

Refer to the following section for information on this utility function other than the procedure. *12.2.5 Clearing the Alarm History* on page 12-41

Step	Panel Display after Operation	Keys	Operation	
1	Fallo	MODE/SET	Press the MODE/SET Key to enter Utility Function Mode.	-
2	Fn005	MODE/SET	Press the UP Key or DOWN Key to display Fn006 .	_

13.4.7 Reset Absolute Encoder (Fn008)

Step	Panel Display after Operation	Keys	Operation
3		MODE/SET	Press the DATA/SHIFT Key for approximately one second. The display shown at the left will appear.
4		MODE/SET A V DATA/	Press the MODE/SET Key to clear the alarm history. When deleting the alarms has been completed, donE will flash on the display, and then the display shown on the left will appear again.
5	Fn005		Press the DATA/SHIFT Key for approximately one second to return the display to Fn006 .

13.4.7 Reset Absolute Encoder (Fn008)

Refer to the following section for information on this utility function other than the procedure. 5.17 Resetting the Absolute Encoder on page 5-50

Step	Panel Display after Operation	Keys	Operation
1	Fn000	MODE/SET	Press the MODE/SET Key to enter Utility Function Mode.
2	Fn008		Press the UP Key or DOWN Key to display Fn008 .
3	PGCL I		Press the DATA/SHIFT Key for approximately one second. PGCL1 will be displayed.
4	PEELS	MODE/SET	Continue pressing the UP Key until PGCL5 is displayed. Note: If you press the wrong key, no-oP will flash on the display for approximately one sec- ond and the display will return to the origi- nal Utility Function Mode display. Repeat the operation from the beginning.
5	ConE)	MODE/SET A DATA/	Press the MODE/SET Key. The absolute encoder will be initialized. When initialization has been completed, donE will flash on the display for approximately one second.
6	PULLS	Ι	After displaying donE , the display will return to the PGCL5 display.
7	FnCC8		Press the DATA/SHIFT Key for approximately one second to return the display to Fn008 .
8	To enable the change again.	to the settings, turn the	e power supply to the SERVOPACK OFF and ON

13.4.8 Autotune Analog (Speed/Torque) Reference Offset (Fn009)

13.4.8 Autotune Analog (Speed/Torque) Reference Offset (Fn009)

Refer to the following section for information on this utility function other than the procedure.

- G ◆ Automatically Adjusting the Speed Reference Offset on page 6-19
- Automatically Adjusting the Torque Reference Offset on page 6-41

Step	Panel Display after Operation	Keys	Operation
1	_	-	Turn OFF the servo, and input a 0-V reference volt- age from the host controller or an external circuit.
2	FnCCC	MODE/SET	Press the MODE/SET Key to enter Utility Function Mode.
3	Fn009		Press the UP Key or DOWN Key to display Fn009 .
4	<u>- 27 - 0</u>	MODE/SET	Press the DATA/SHIFT Key for approximately one second. rEF_o will be displayed.
5	<u>- EF_0</u>		Press the MODE/SET Key. donE will flash on the display for approximately one second, and then the display shown on the left will appear.
6	Fn009		Press the DATA/SHIFT Key for approximately one second to return the display to Fn009 .

13.4.9 Manually Adjust Speed Reference Offset (Fn00A)

Refer to the following section for information on this utility function other than the procedure. *→ Manually Adjusting the Speed Reference Offset* on page 6-21

Step	Panel Display after Operation	Keys	Operation
1	Fn000	MODE/SET	Press the MODE/SET Key to enter Utility Function Mode.
2	FnDDA	MODE/SET	Press the UP Key or DOWN Key to display Fn00A .
3			Press the DATA/SHIFT Key for approximately one second. The display shown on the left will appear.
3	(<u>-, ,5)2</u> (<u></u>)		Note: If write protection is set, no_oP will flash on the display for approximately one second. Change the setting of Fn010 to enable writ- ing.
4	<u> </u>	_	Turn ON the servo from an external device. The display shown on the left will appear.
5	00000	NODE/SET A V DATA	Press the DATA/SHIFT Key for approximately one second. The current amount of offset will be displayed.
6	Example:	MODE/SET	Press the UP Key or DOWN Key to adjust the offset until the motor stops. The displayed value is the amount of the offset.

13.4.10 Manually Adjust Torque Reference Offset (Fn00B)

Step	Panel Display after Operation	Keys	Operation
7	<u> </u>	MODE/SET	Press the MODE/SET Key. donE will flash on the display, and then the display shown on the left will appear.
8	FnDDA	MODE/SET	Press the DATA/SHIFT Key for approximately one second to return the display to Fn00A .

13.4.10 Manually Adjust Torque Reference Offset (Fn00B)

Refer to the following section for information on this utility function other than the procedure. *Manually Adjusting the Torque Reference Offset* on page 6-43

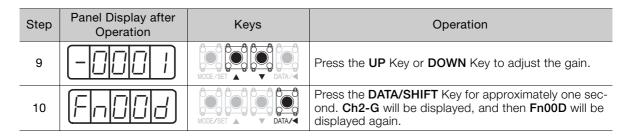
Step	Panel Display after Operation	Keys	Operation
1	Fn000	MODE/SET	Press the MODE/SET Key to enter Utility Function Mode.
2	Fallb		Press the UP Key or DOWN Key to display Fn00b .
3	-	MODE/SET	Press the DATA/SHIFT Key for approximately one second. The display shown on the left will appear. Note: If write protection is set, no_oP will flash on the display for approximately one second. Change the setting of Fn010 to enable writing.
4		-	Turn ON the servo. The display shown on the left will appear.
5	00000	MODE/SET	Press the DATA/SHIFT Key for approximately one second. The current amount of offset will be displayed.
6	Example:	MODE/SET	Press the UP Key or DOWN Key to adjust the amount of offset.
7		MODE/SET	Press the MODE/SET Key. donE will flash on the display, and then the display shown on the left will appear.
8	Fallb	MODE/SET A V DATA/	Press the DATA/SHIFT Key for approximately one second to return the display to Fn00b .

13.4.11 Adjust Analog Monitor Output Offset (Fn00C)

Refer to the following section for information on this utility function other than the procedure. *Adjusting the Analog Monitor Output* on page 9-10

Step	Panel Display after Operation	Keys	Operation
1	FnDDD	MODE/SET	Press the MODE/SET Key to enter Utility Function Mode.

13.4.12 Adjust Analog Monitor Output Gain (Fn00D)


Step	Panel Display after Operation	Keys	Operation
2	FnCC	MODE/SET	Press the UP Key or DOWN Key to display Fn00C .
3	[h _o	MODE/SET	Press the DATA/SHIFT Key for approximately one second. The display shown at the left will appear.
4		MODE/SET	Press the DATA/SHIFT Key. The offset will be displayed as shown on the left.
5		MODE/SET	Press the UP Key or DOWN Key to adjust the offset.
6	[h _o		Press the DATA/SHIFT Key. The display shown on the left will appear again.
7	[h2_o]	MODE/SET A DATA/	Press the MODE/SET Key. The display will change to the monitor output for channel 2 (analog monitor 2 output).
8		MODE/SET	Press the DATA/SHIFT Key. The offset will be displayed as shown on the left.
9		MODE/SET	Press the UP Key or DOWN Key to adjust the offset.
10	FnDDE	MODE/SET	Press the DATA/SHIFT Key for approximately one sec- ond. Ch2-o will be displayed, and then Fn00C will be displayed again.

13.4.12 Adjust Analog Monitor Output Gain (Fn00D)

Refer to the following section for information on this utility function other than the procedure. *Adjusting the Analog Monitor Output* on page 9-10

Step	Panel Display after Operation	Keys	Operation
1	FnCCC	MODE/SET	Press the MODE/SET Key to enter Utility Function Mode.
2	FnCCd	MODE/SET	Press the UP Key or DOWN Key to display Fn00D .
3		MODE/SET	Press the DATA/SHIFT Key for approximately one second. The display shown at the left will appear.
4		MODE/SET	Press the DATA/SHIFT Key. The gain adjustment will be displayed as shown on the left.
5		MODE/SET	Press the UP Key or DOWN Key to adjust the gain.
6		MODE/SET	Press the DATA/SHIFT Key. The display shown on the left will appear again.
7		MODE/SET A V DATA/	Press the MODE/SET Key. The display will change from the monitor output for channel 1 to the monitor output for channel 2.
8		MODE/SET	Press the DATA/SHIFT Key. The gain adjustment will be displayed as shown on the left.

13.4.13 Autotune Motor Current Detection Signal Offset (Fn00E)

13.4.13 Autotune Motor Current Detection Signal Offset (Fn00E)

Refer to the following section for information on this utility function other than the procedure. *6.16.1 Automatic Adjustment* on page 6-100

Step	Panel Display after Operation	Keys	Operation
1	FnDDD	MODE/SET A V DATA/	Press the MODE/SET Key to enter Utility Function Mode.
2	FADDE		Press the UP Key or DOWN Key to display Fn00E .
3			Press the DATA/SHIFT Key for approximately one second. The display shown at the left will appear.
4	Cur_o	MODE/SET A V DATA/	Press the MODE/SET Key to perform automatic off- set-signal adjustment. When the adjustment has been completed, donE will flash on the display, and then the display shown on the left will appear again.
5	FnOOE		Press the DATA/SHIFT Key for approximately one second to return the display to Fn00E .

13.4.14 Manually Adjust Motor Current Detection Signal Offset (Fn00F)

Refer to the following section for information on this utility function other than the procedure. *6.16.2 Manual Adjustment* on page 6-101

Step	Panel Display after Operation	Keys	Operation
1	FnDDD	MODE/SET	Press the MODE/SET Key to enter Utility Function Mode.
2	FhOOF	MODE/SET A V DATA/	Press the UP Key or DOWN Key to display Fn00F.
3	[] _]	MODE/SET	First you adjust the offset for phase U (Cu1-o). Press the DATA/SHIFT Key for approximately one second. The display shown at the left will appear.
4		MODE/SET	Press the DATA/SHIFT Key. The amount of offset for phase U will be displayed.
5		MODE/SET	Press the UP Key or DOWN Key to change the amount of offset. Change the setting by approximately 10 units at a time in the direction that reduces the torque ripple to find the value that minimizes the torque ripple, and set that value. Adjustment range: -512 to +511

13.4.15 Write Prohibition Setting (Fn010)

Step	Panel Display after Operation	Keys	Operation	
6		MODE/SET	Press the DATA/SHIFT Key. The display shown on the left will appear again.	
7	[]]]	MODE/SET	Next you adjust the offset for phase V (Cu2-o). Press the MODE/SET Key for approximately one second. The display shown at the left will appear.	
8		MODE/SET	Press the DATA/SHIFT Key. The amount of offset for phase V will be displayed.	
9		Mode/set	Press the UP Key or DOWN Key to change the amount of offset. In the same way as for the phase-U adjustment, change the setting by approximately 10 units at a time in the direction that reduces the torque ripple to find the value that minimizes the torque ripple, and set that value. Adjustment range: -512 to +511	
10	FADDF	MODE/SET	Press the DATA/SHIFT Key for approximately one sec- ond. Cu2-o will be displayed, and then Fn00F will be displayed again.	
11	Reduce the amount by the amounts of offset.	Reduce the amount by which you change the offsets each time and repeat steps 3 to 10* to fine-tune the amounts of offset.		

* Examples of the Amount of Change to Adjust Offsets

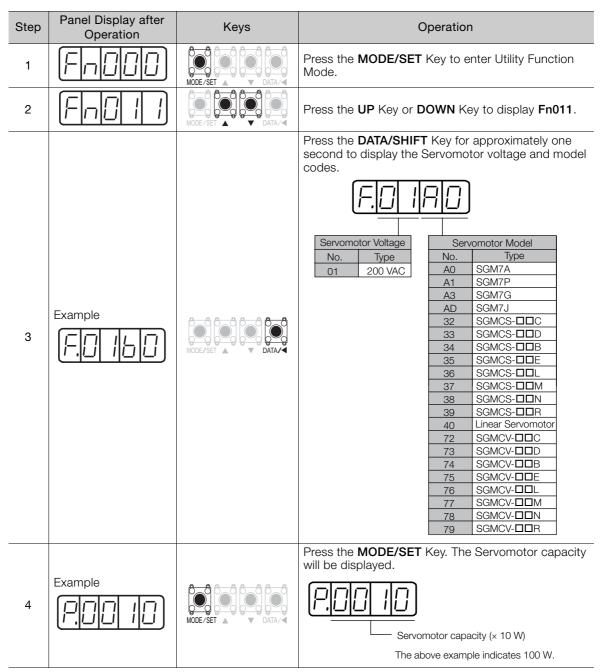
First time: 10 units at a time

· Second time: 5 units at a time

Third time: 1 unit at a time

The above values are guidelines. Vary the amount of change and the number of repetitions according to your system.

13.4.15 Write Prohibition Setting (Fn010)


Refer to the following section for information on this utility function other than the procedure. 5.1.4 Write Prohibition Setting for Parameters on page 5-6

Step	Panel Display after Operation	Keys	Operation	
1	Falle	MODE/SET A V DATA/	Press the MODE/SET Key to enter Utility Function Mode.	
2			Press the UP Key or DOWN Key to display Fn010 .	
3	<u> </u>	MODE/SET	Press the DATA/SHIFT Key for approximately one second. The display shown at the left will appear.	
4	P.000 I	MODE/SET	Press the UP Key or DOWN Key and set one of the fol- lowing. P.0000: Write permitted (default setting) P.0001: Write prohibited	
5	P.000 I	MODE/SET A V DATA/	Press the MODE/SET Key to enter the value. When the setting has been completed, donE will flash on the display, and then the display shown on the left will appear again. Note: If you set any value other than P.0000 or P.0001 , Error will be displayed.	
6	To enable the change to the setting, turn the power supply to the SERVOPACK OFF and ON again after write protection has been set or cleared.			

13.4.16 Display Servomotor Model (Fn011)

13.4.16 Display Servomotor Model (Fn011)

Refer to the following section for information on this utility function other than the procedure. **9.1** Monitoring Product Information on page 9-2

13.4.17 Display Software Version (Fn012)

Step	Panel Display after Operation	Keys	Operation
5	Example	MODE/SET A V DATA/	 Rotary Servomotors Press the MODE/SET Key. The encoder type and resolution codes will be displayed. Encoder Type Encoder Type Encoder Type No. Type O0 Incremental O1 Multiturn absolute* *A single-turn absolute encoder is used only for a Direct Drive Servomotor. Linear Servomotors Press the MODE/SET Key. The encoder type and linear encoder scale pitch resolution codes will be displayed. Encoder Type No. Resolution O2 20 bits O2 4 bits
6	9000	MODE/SET A DATA/	Press the MODE/SET Key. The code for custom SERVOPACK specifications will be displayed. y.0000 indicates a standard model. If anything other than y.0000 is displayed, a customized SERVOPACK is being used.
7	FnDII		Press the DATA/SHIFT Key for approximately one second to return the display to Fn011 .

13.4.17 Display Software Version (Fn012)

Refer to the following section for information on this utility function other than the procedure. (3) 9.1 Monitoring Product Information on page 9-2

Step	Panel Display after Operation	Keys	Operation
1	Falle	MODE/SET	Press the MODE/SET Key to enter Utility Function Mode.
2		MODE/SET	Press the UP Key or DOWN Key to display Fn012 .
3	(000 !)	MODE/SET	Press the DATA/SHIFT Key for approximately one second. The software version of the SERVOPACK will be displayed.

13.4.18 Multiturn Limit Setting after Multiturn Limit Disagreement Alarm (Fn013)

Step	Panel Display after Operation	Keys	Operation
4	E.000 I	MODE/SET A V DATA/	Press the MODE/SET Key. The software version of the encoder will be displayed. Additional Information If you press the MODE/SET Key again, a pre-pro- grammed display will appear. The display will change as follows: $0.0000 \rightarrow S.FFFF \rightarrow F.FFFF.$
5		MODE/SET A DATA/	Press the DATA/SHIFT Key for approximately one second to return the display to Fn012 .

13.4.18 Multiturn Limit Setting after Multiturn Limit Disagreement Alarm (Fn013)

Refer to the following section for information on this utility function other than the procedure. (3) 6.12.9 Multiturn Limit Disagreement Alarm (A.CCO) on page 6-83

Step	Panel Display after Operation	Keys	Operation
1	Fn000	MODE/SET	Press the MODE/SET Key to enter Utility Function Mode.
2			Press the UP Key or DOWN Key to display Fn013 .
3	PGSEL	MODE/SET	Press the DATA/SHIFT Key for approximately one second. PGSEt will be displayed.
4	ConE)	MODE/SET	Press the MODE/SET Key. The value of the multiturn limit setting in the absolute encoder will be made the same as the setting of Pn205. When unifying the values has been completed, donE will flash on the display for approximately one second.
5	PESEE	Ι	After displaying donE , the display will return to the PGSEt display.
6	Fn0 13	MODE/SET	Press the DATA/SHIFT Key for approximately one second to return the display to Fn013 .
7	To enable the change to the settings, turn the power supply to the SERVOPACK OFF and ON again.		

13.4.19 Reset Option Module Configuration Error (Fn014)

Refer to the following section for information on this utility function other than the procedure. *12.2.6 Resetting Alarms Detected in Option Modules* on page 12-42

Step	Panel Display after Operation	Keys	Operation
1	FnOOD	MODE/SET	Press the MODE/SET Key to enter Utility Function Mode.

13.4.20 Initialize Vibration Detection Level (Fn01B)

Step	Panel Display after Operation	Keys	Operation
2			Press the UP Key or DOWN Key to display Fn014.
3	O,SAFE		Press the DATA/SHIFT Key for approximately one second. The display shown at the left will appear.
4	o,FEEd	MODE/SET A V DATA/4	Press the UP Key or DOWN Key to select the Option Module to be cleared.
5	<u>o, in il-</u>	MODE/SET	Press the MODE/SET Key for approximately one second. The display shown at the left will appear.
6	o,FEEd	MODE/SET A V DATA/4	Press the MODE/SET Key again. The alarms in the Option Module will be cleared. donE will flash on the display and the display shown on the left will appear again.
7		MODE/SET	Press the DATA/SHIFT Key for approximately one second to return the display to Fn014 .
8	To enable the change to the setting, turn the power supply to the SERVOPACK OFF and ON again after clearing detected Option Module alarms has been completed.		

13.4.20 Initialize Vibration Detection Level (Fn01B)

Refer to the following section for information on this utility function other than the procedure. (3) 6.15 Initializing the Vibration Detection Level on page 6-96

Step	Panel Display after Operation	Keys	Operation
1	FnCCC	MODE/SET A DATA/	Press the MODE/SET Key to enter Utility Function Mode.
2	Fn[] Ib		Press the UP Key or DOWN Key to display Fn01b .
3		MODE/SET	Press the DATA/SHIFT Key for approximately one second. The display shown at the left will appear.
4	(Flashing)	MODE/SET	 Press the MODE/SET Key for approximately one second. The display shown on the left will flash and the vibration level will be detected and updated. Note: 1. Operate the SERVOPACK with the references that will be used for actual operation. 2. If the Servomotor operates at 10% or less of the maximum speed, Error will be displayed.
5	ColonE	MODE/SET	Wait for a period of time and then press the MODE / SET Key again to complete vibration detection and updating the setting. This will enable the setting. If the setting is completed normally, donE will be displayed. If there was an error in making the setting, Error will be displayed.
6	FnD Ib	MODE/SET	Press the DATA/SHIFT Key for approximately one second to return the display to Fn01b .

13.4.21 Display SERVOPACK and Servomotor IDs (Fn01E)

13.4.21 Display SERVOPACK and Servomotor IDs (Fn01E)

This function cannot be executed from the Panel Operator on the SERVOPACK.

13.4.22 Display Servomotor ID from Feedback Option Module (Fn01F)

This function cannot be executed from the Panel Operator on the SERVOPACK.

13.4.23 Set Absolute Linear Encoder Origin (Fn020)

Refer to the following section for information on this utility function other than the procedure. 5.18.1 Setting the Origin of the Absolute Linear Encoder on page 5-53

Step	Panel Display after Operation	Keys	Operation
1	FnDDD	MODE/SET	Press the MODE/SET Key to enter Utility Function Mode.
2	F-020	MODE/SET A V DATA/	Press the UP Key or DOWN Key to display Fn020 .
3	OSEL I		Press the DATA/SHIFT Key for approximately one second. The display shown at the left will appear.
4	05865	MODE/SET	Continue pressing the UP Key until 0SET5 is displayed. Note: If you make a mistake during key operations, no_oP will flash on the display for approximately one second and then Fn000 will be displayed again.
5	05885	MODE/SET	Press the MODE/SET Key to set the origin of the absolute linear encoder. When the setting has been completed, donE will flash on the display, and then the display shown on the left will appear again.
6	Fn020		Press the DATA/SHIFT Key for approximately one second to return the display to Fn020 .
7	To enable the change to the settings, turn the power supply to the SERVOPACK OFF and ON again.		

13.4.24 Resetting Motor Type Alarms (Fn021)

13.4.24 Resetting Motor Type Alarms (Fn021)

Refer to the following section for information on this utility function other than the procedure. 12.2.7 Resetting Motor Type Alarms on page 12-43

Step	Panel Display after Operation	Keys	Operation
1	Fn000	MODE/SET	Press the MODE/SET Key to enter Utility Function Mode.
2	FnOZI	MODE/SET	Press the UP Key or DOWN Key to display Fn021.
3	E. In IL	MODE SET A V DATA -	Press the DATA/SHIFT Key for approximately one second. The display shown at the left will appear.
4	E. In IL	MODE/SET	Press the MODE/SET Key to reset the motor type alarm. donE will flash on the display and the display shown on the left will appear again.
5	FnOZI	MODE SET A V DATA -	Press the DATA/SHIFT Key for approximately one second to return the display to Fn021 .
6	To enable the change to the settings, turn the power supply to the SERVOPACK OFF and ON again.		

13.4.25 Software Reset (Fn030)

Refer to the following section for information on this utility function other than the procedure.

Step	Panel Display after Operation	Keys	Operation
1	FnCCC	MODE/SET	Press the MODE/SET Key to enter Utility Function Mode.
2	Fn030	MODE/SET	Press the UP Key or DOWN Key to display Fn030 .
3		MODE/SET	Press the DATA/SHIFT Key for approximately one second. The display shown at the left will appear.
4	5-565	MODE/SET	Continue pressing the UP Key until the display shown on the left appears. Note: If you make a mistake during key operations, no_oP will flash on the display for approximately one second.
5		MODE/SET A V DATA/4	Press the MODE/SET Key. The panel display will go blank and then will change to the same initial status display as when the power supply is turned ON.

13.4.26 Polarity Detection (Fn080)

Refer to the following section for information on this utility function other than the procedure. 5.11 Polarity Detection on page 5-26

Step	Panel Display after Operation	Keys	Operation
1	FnCCC	MODE/SET A DATA/	Press the MODE/SET Key to enter Utility Function Mode.

13.4.27 Tuning-less Level Setting (Fn200)

Step	Panel Display after Operation	Keys	Operation
2	Fn080	MODE/SET	Press the UP Key or DOWN Key to display Fn080.
3	[-,P d		Press the DATA/SHIFT Key for approximately one second. The display shown at the left will appear.
4	$\square P - d E$	MODE/SET A V DATA/	Press the MODE/SET Key to start polarity detection.
5	- <i>P-dE</i>	_	After polarity detection has been completed, the dis- play shown on the left will appear. The Servomotor will enter the servo OFF state.
6	Fn080	MODE/SET	Press the DATA/SHIFT Key for approximately one second to return the display to Fn080.

13.4.27 Tuning-less Level Setting (Fn200)

Refer to the following section for information on this utility function other than the procedure. *8.4 Tuning-less Function* on page 8-11

Step	Panel Display after Oper- ation	Keys	Operation
1	FnDDD	MODE/SET A V DATA/4	Press the MODE/SET Key to enter Utility Function Mode.
2	Fn200	MODE/SET A V DATA/4	Press the UP Key or DOWN Key to display Fn200 .
3		MODE/SET	Press the DATA/SHIFT Key for approximately one second. The load level setting display for the tun- ing-less levels will appear. Note: If the response waveform shows overshooting, if the load moment of inertia exceeds the allowable level (i.e., outside the scope of product warranty), or if the mass ratio is 30 or higher (i.e., outside the scope of product warranty), press the UP Key and change the load level to 2.
4	L0004	MODE/SET	Press the MODE/SET Key to display. The tuning- less level setting display for the tuning-less levels will appear.
5	Rigidity level		Press the UP Key or DOWN Key to set the rigidity level. Set the rigidity level to between 0 and 4. The larger the value is, the higher the gain is and the better response performance will be. (The default setting is 4.) Note: Vibration may occur if the rigidity level is too high. Lower the rigidity level if vibration occurs. If high- frequency noise is generated, press the DATA / SHIFT Key to automatically set a notch filter for the vibration frequency.
6	L0004	MODE/SET	Press the MODE/SET Key. "donE" will flash for approximately one second and then L0004 will be displayed. The settings will be saved in the SERVOPACK.
7	Fn2CC	MODE/SET	Press the DATA/SHIFT Key for approximately one second to return the display to Fn200 .

13.4.28 Advanced Autotuning without Reference (Fn201)

13.4.28 Advanced Autotuning without Reference (Fn201)

This function cannot be executed from the Panel Operator on the SERVOPACK.

13.4.29 Advanced Autotuning with Reference (Fn202)

This function cannot be executed from the Panel Operator on the SERVOPACK.

13.4.30 One-Parameter Tuning (Fn203)

Refer to the following section for information on this utility function other than the procedure. *8.8 Custom Tuning* on page 8-42

Step	Panel Display after Operation	Keys	Operation
1	FnDDD	MODE/SET	Press the MODE/SET Key to enter Utility Function Mode.
2	Fn203		Press the UP Key or DOWN Key to display Fn203 .
3		MODE/SET	Press the DATA/SHIFT Key for approximately one second. The display shown at the left will appear.
4		MODE/SET	Press the UP Key or DOWN Key to enter Tuning Mode. Tuning Mode (Strength of Tuning Setting) 0: Performs tuning giving priority to stability. 1: Performs tuning giving priority to response. Note: The rigidity type is always 2.
5		_	If the servo is OFF (i.e., if power is not supplied to the Servomotor), input the /S-ON (Servo ON) from the host controller. If the servo is ON, go to step 6.
6	LOOHO	MODE/SET	Press the DATA/SHIFT Key for less than one sec- ond. The one-parameter gain will be displayed as shown on the left.
7	10055	MODE/SET	Press the UP Key or DOWN Key to change the one- parameter gain value and change the actual servo gains (Pn100, Pn101, Pn102, and Pn401) at the same time. You end this tuning function when you decide that the response is satisfactory.
8	L0055	MODE/SET	Press the MODE/SET Key to save the four calcu- lated gains to the parameters. When tuning has been completed, donE will flash on the display, and then the display shown on the left will appear again. Note: To end operation without saving the calculated gains, go to step 9.
9	Fn203	MODE/SET	Press the DATA/SHIF T Key for approximately one second to return the display to Fn203 .

13.4.31 Adjust Anti-resonance Control (Fn204)

13.4.31 Adjust Anti-resonance Control (Fn204)

This function cannot be executed from the Panel Operator on the SERVOPACK.

13.4.32 Vibration Suppression (Fn205)

This function cannot be executed from the Panel Operator on the SERVOPACK.

13.4.33 Easy FFT (Fn206)

Refer to the following section for information on this utility function other than the procedure. 8.14.2 Easy FFT on page 8-92

Step	Panel Display after Operation	Keys	Operation
1	Fn000	MODE/SET	Press the MODE/SET Key to enter Utility Function Mode.
2	Fn206	MODE/SET	Press the UP Key or DOWN Key to display Fn206 .
3	(Reference amplitude setting)	MODE/SET	Press the DATA/SHIFT Key for approximately one sec- ond. The display shown on the left will appear and the Panel Operator will enter Reference Amplitude Setting Mode.
4	(† m. † 15	MODE/SET	Press the UP Key or DOWN Key to set the reference amplitude. Reference amplitude setting range: 1 to 800 Note: 1. If you are setting Easy FFT for the first time, do not change the reference amplitude setting, but rather start from the default value of 15. Although increasing the reference amplitude will increase the detection accuracy, the vibration and noise in the machine will increase momentarily. Increase the reference ampli- tude a little at a time and observe the results. 2. The set reference amplitude will be stored in Pn456.
5	(Ready to operate sta- tus)	MODE/SET A V DATA/	Press the DATA/SHIFT Key for approximately one second. The ready to operate status will be entered.
6		MODE/SET A V DATA/	Press the MODE/SET Key to turn ON the servo. Additional Information Press the MODE/SET Key again to turn OFF the servo. Return to step 5.
7	(Flashing) (Flashing)	MODE/SET	 While the servo is ON, press the UP Key (forward) or the DOWN Key (reverse). The Servomotor will automatically perform round-trip operation, moving in forward and reverse several times for 1/4th of a rotation for a Rotary Servomotor and 10 mm or less for a Linear Servomotor. The Servomotor performs this operation for approximately 2 seconds. During this operation, the display shown on the left will flash. Note: 1. Press the MODE/SET Key to cancel the operation. Return to step 5. 2. The Servomotor will move slightly. Also at the same time, the Servomotor will emit noise. To ensure safety, do not approach or enter the range of machine motion.

13.4.33 Easy FFT (Fn206)

Step	Panel Display after Operation	Keys	Operation
8	(Detection result display example)	_	If detection is completed normally, E_FFt will stop flashing and the detected resonance frequency will be displayed. If detection fails, F will be displayed. To check the results, go to step 9. To monitor the reso- nance frequency without setting the detection result, press the DATA/SHIFT Key for approximately one sec- ond and return to step 2. IMPORTANT If the operation ended normally but it took two sec- onds or longer, the detection accuracy may not be suf- ficient. Increase the reference amplitude to a value higher than 15 to increase the detection accuracy. Although increasing the reference amplitude will increase the detection accuracy, the vibration and noise in the machine will increase momentarily. Increase the reference amplitude a little at a time and observe the results.
9	<u></u>	MODE/SET A V DATA/	 Press the MODE/SET Key. The optimum notch filter for the detected resonance frequency will automatically be set. If the notch filter is set correctly, donE will flash on the display, and then the display shown on the left will appear. If the 1st notch filter frequency is already set (Pn408 = n.□□□1), the 2nd notch filter frequency will be automatically set (Pn40C). Press the MODE/SET Key to return to step 5. Note: 1. If both the 1st and 2nd notch filter frequencies are already set (Pn408 = n.□1□1), no more notch filter frequencies can be set. 2. If the frequency detected by this function is not to be used, set Pn408 to n.□□□0 (Disable notch filter).
10	Fn206	MODE/SET	Press the DATA/SHIFT Key for approximately one second to return the display to Fn206 .
11	Turn the power supply	to the SERVOPACK O	FF and ON again after you finish executing Easy FFT.

Parameter Lists

(14)

This chapter provides information on the parameters.

14.1	List o	f Parameters 14-2
		Interpreting the Parameter Lists14-2List of Parameters14-3
14.2	Paran	neter Recording Table

14.1.1 Interpreting the Parameter Lists

14.1 List of Parameters

14.1.1 Interpreting the Parameter Lists

	 All: The parar Rotary: The Linear: The Rotary Servor to all Servorm interpret the t details. 	neter is used for bo parameter is us parameter is us motor terms are ptors. If you are erms according	the parameter appli- bith Rotary Servomotors sed for only Rotary S used for only Linear Servo used for parameters using a Linear Servo ly. Refer to the follow <i>ms for Rotary Servors</i> on page vii	and Linear Se Servomotors ervomotors. s that are ap pmotor, you ving section	pplicable need to for		es when a char ter will be effec			
Parameter No.	Size	Name	Setting Range	Setting Unit	Default Setting	Applica- ble Motors	When Enabled	Classi- fication	Refer- ence	
	2 Basic Fu	nction Selection	ns 0 0000 to 10B1	-	0000	All	After restart	Setup	Ι	
	Serv prov • 7	vomotor and Lin vided for both. Top row: For Rot	es in the parameters ear Servomotor, info tary Servomotors Linear Servomotors	ormation is	• Se	tup ning to the followir	ving two classing section for o	details.	e 5-3	
			rection Selection					Referenc	e	
	n.000X		Sprection Selection se CCW as the for se the direction in ard direction. se CW as the forw	ward direc which the	inear enco	- page 5-1	page 5-17			
			forward direction. (Reverse Movement Mode)							
		Control Met	hod Selection					Reference	e	
			beed control with a	0				-		
			osition control with			S				
			rque control with ternal set speed c	0		mmands		-		
Pn000			witching between inces and speed co	internal set	speed cor	ntrol with cor	ntact refer-	_		
			witching between inces and position				ntact refer-			
	n.🗆🗆 X 🗆		witching between inces and torque co				ntact refer-	page 5-1	2	
		7 SV	witching between p beed control with a	position co	ntrol with p		erences and	Page o 1	_	
			witching between p rque control with a			ulse train refe	erences and			
			witching between to beed control with a			alog referen	ces and			
		A sp	witching between beed control with z	ero clampi	ng	0				
		B Sv								
	n.¤X¤¤									
	Rotary/Linear Servomotor Startup Selection When Encoder Is Not Connected									
	n.X000	0 W	hen an encoder is otary Servomotor.					Referenc		
			hen an encoder is ar Servomotor.	not conne	cted, start	as SERVOP	ACK for Lin-	Lin- page 5-15		

Parameter No.	Size	N	ame		Setting Range	Setting Unit	Default Setting	Applicable Motors	When Enabled	Classi- fication	Refer- ence
	2	Basic Func tions 0	tion Selec	-	0000 to 10B1	-	0000	All	After restart	Setup	-
		n.□□□X	Moveme 0 1 Control N	nt Die Use Ward Use Use forw	ction Selection rection Select CCW as the fi the direction i d direction. CW as the for the direction i vard direction.	ion orward dir n which th ward diree n which th (Reverse I	ne linear er ction. (Rev ne linear er Movement	erse Rotation	up as the fo Mode)	page 8	5-17
Pn000		n.00X0	0 1 2 3 4 5 6 7 8 9	Pos Torcc Intee Switt encc Switt encc Switt spee Switt torq Switt spee	ed control with ition control with rnal set speed ching between es and speed ching between es and position ching between es and torque ching between ed control with ching between te control with ching between ed control with ching between ed control with ching between ed control with ching between ed control with ching between	th pulse ti analog r control w control with control with control with control with control with analog re analog re analog re torque c analog re	rain references eferences ith contact set speed th analog r set speed vith pulse set speed th analog control with eferences ontrol with eferences	control with c eferences control with c train reference control with c references h pulse train re h pulse train re analog refere	ontact refer- es ontact refer- eferences and ences and		5-12
			A B	spee Swit	ching between ad control with ching between ition control wi	zero clan	nping control wit	h pulse train n		k	
		n.¤X¤¤	Reserved	d par	ameter (Do no	ot change.)				
			Rotary/Li nected	inear	Servomotor S	Startup Se	election W	hen Encoder	Is Not Con-	Refere	ence
		n.X000	0	Rota	en an encoder ary Servomoto	r.	,			— page {	5-15
			1		en an encoder Servomotor.	is not cor	inected, st	art as SERVC	PACK for Lir	-	

Continued from previous page.

Parameter No.	Size	Ν	lame	Setting Range	Setting Unit	Default Setting	Applicable Motors	When Enabled	Classi- fication	Refer- ence	
	2	Applicatio Selections	n Function 1	0000 to 1142	-	0000	All	After restart	Setup	-	
		n.000X	0 St	bing Method for op the motor by	applying	the dynam	ic brake.		Refere	ence	
			the the	Stop the motor by the applying dynamic brake and then release the dynamic brake. Coast the motor to a stop without the dynamic brake.							
			Overtravel S	topping Metho	d				Refere	ence	
		n.00X0		ply the dynamic pping method				op (use the			
					celerate the mo maximum torg						
				celerate the mo maximum torg				in Pn406 as	page 5	5-32	
Pn001			° Pr	celerate the mc 30A and then s	ervo-lock	the motor.					
111001			4 De Pr	celerate the mo 30A and then le	otor to a st et the moto	or to a stop using the deceleration time set in the motor coast.					
			Main Circuit Power Supply AC/DC Input Selection						Refere	ence	
		n.OXOO		out AC power as d L3 terminals (ng the L1, L2	<u>)</u> ,		
			1Input DC power as the main circuit power supply using the B1/ and \ominus 2 terminals or the B1 and \ominus 2 terminals (use an extern converter or the shared converter).							5-13	
			Warning Code Output Selection					Refere	ence		
			0 na	-			,				
		n.XDDD Output both warning codes and alarm codes on the ALO1, ALO2, and ALO3 terminals. However, while an warning code is being output, the ALM (Servo Alarm) output signal will remain ON (nor- mal state).							page	6-9	

Continued from previous page.

								Continued fro			
Parameter No.	Size	N	ame	Setting Range	Setting Unit	Default Setting	Applicable Motors	When Enabled	Classi- fication	Refe enc	
	2	Application Selections	Function 2	0000 to 4213	_	0000	-	After restart	Setup	_	
			Speed/Pc	sition Control Op	tion (T-RE	F Input Al	location)	Applicable Motors	Refere	ence	
			0	Do not use T-REF.				WOUTS	_		
		n.DDDX	-			nout		page 6	5-67		
		11.0007	X 1 Use T-REF as an external torque limit input. 2 Use T-REF as a torque feedback input.					All	page 8		
				Use T-REF as an e							
				/P-CL or /N-CL is					page 6	6-69	
			Torque Co	ontrol Option (V-F	EF Input /	Allocation)		Applicable Motors	Refere	Reference	
Pn002		n.🗆🗆 X 🗆	0	Do not use V-REF		All	0000	D000 6 15			
			1	Use V-REF as an	All	page 6-45					
			Encoder l	Jsage				Applicable Motors	Refere	ence	
		n.0X00					Use the encoder according to encoder specifica- tions.				
		n.¤X¤¤			according	to encode	r specifica-	All			
		n.¤X¤¤	0		Ç			All	page 6	6-73	
		n.¤X¤¤	0 1 2	tions.	as an incre	emental en	coder.	All Rotary	page 6	6-73	
		n.□X□□	0 1 2	tions. Use the encoder a Use the encoder a	as an incre	emental en	coder.				
		n.□X□□	1 2 External E	tions. Use the encoder a Use the encoder a encoder.	as an incre as a single	emental en -turn abso	coder.	Rotary			
		n.0X00	0 1 2 External E 0 1	tions. Use the encoder a encoder. Encoder Usage	as an incre as a single ernal encc der moves	emental en -turn abso oder. s in the for	coder. lute	Rotary			
			012External E01	tions. Use the encoder a encoder. Encoder Usage Do not use an ext The external enco	ernal enco der moves or rotation	emental en -turn abso oder. s in the fon	coder. lute	Rotary		ence	
			0 1 2 External E 0 1 2 3	tions. Use the encoder a encoder. Encoder Usage Do not use an ext The external enco tion for CCW mot	ernal encoder der moves or rotation (Do not us der moves	emental en -turn abso oder. s in the fon e.) s in the rev	coder. lute ward direc-	Rotary Applicable Motors	Refere	ence	

								Continued fr		
Parameter No.	Size	N	lame	Setting Range	Setting Unit	Default Setting	Applicable Motors	When Enabled	Classi- fication	Refer- ence
	2	Application Selections		0000 to 105F	-	0002	All	Immedi- ately	Setup	page 9-6
Pn006	2		6		V/1,000 m V/1,000 m (V/1,000 m (1 V/1,00 (1 V/1,00 (1 V/100 (1 V/100 (1 V/100 (1 V/100 (1 V/100 (1 V/100 (2 speed (g (Do not u ition devia pletion (po ard (1 V/1 ard (1 V/1 ard (1 V/1 rard (1 V/1 gain: 1 V, osition ref er speed (1 er speed (1	nin ⁻¹) nm/s) 0 min ⁻¹) 0 mm/s) % rated to 6 rated form (reference n (after elean (after elean (after elean (after elean n (after	rque) ce) unit) ctronic gear) (min ⁻¹) mm/s) V/reference u completed: 5 ⁻¹) s) I torque) force) 2 V) tribution (com nin ⁻¹ : value at	ately 0.05 V/encc 0.05 V/linea nit) V, positionin pleted: 5 V,	der pulse r encoder	9-6
			11 to 5F	Reserved setting		,				
		n.¤X¤¤		parameter (Do no		,				
		n.XDDD	Reserved p	parameter (Do no	ot change					

Continued from previous page.

								Continued fr	om previou	is page
Parameter No.	Size	N	ame	Setting Range	Setting Unit	Default Setting	Applicable Motors	When Enabled	Classi- fication	Refer- ence
	2	Application Selections		0000 to 105F	-	0000	All	Immedi- ately	Setup	page 9-6
			Analog Mo	nitor 2 Signal Se	election					
			00	Motor speed (1	V/1,000 m	nin ⁻¹)				
			00	Motor speed (1	V/1,000 m	nm/s)				
			01	Speed reference	e (1 V/1,00	00 min ⁻¹)				
				Speed reference	e (1 V/1,00)0 mm/s)				
			00	Torque reference	e (1 V/100	% rated to	rque)			
			02	Force reference	(1 V/100%	6 rated for	ce)			
			03	Position deviation	on (0.05 V/	/reference	unit)			
				Position amplifie	er deviatior	n (after ele	ctronic gear) (0.05 V/enco	der pulse	unit)
		04	Position amplifie pulse unit)	er deviation	n (after ele	ctronic gear) (0.05 V/linea	r encoder		
		05	Position referen	ce speed (1 V/1,000	min⁻¹)				
		05	05 Position reference speed (1 V/1,000 mm/s)							
		06	Reserved setting (Do not use.)							
Pn007		n.🗆🗆XX	07	Load-motor position deviation (0.01 V/reference unit)						
Pn007			08	Positioning com pleted: 0 V)	itioning completion (positioning completed: 5 V, posi ed: 0 V)			V, positionin	g not com	-
			09	Speed feedforw	ard (1 V/1	,000 min ⁻¹				
			09	Speed feedforward (1 V/1,000 mm/s)						
			0.0	Torque feedforward (1 V/100% rated torque)						
			0A	Force feedforwa	ard (1 V/10	0% rated	force)			
			0B	Active gain (1st	gain: 1 V,	2nd gain: 3	2 V)			
			0C	Completion of p pleted: 0 V)	osition ref	erence dis	tribution (com	pleted: 5 V,	not com-	
			0D	External encode	er speed (1	V/1,000 r	nin ⁻¹ : value at	the motor s	shaft)	
			0E	Position amplifie	er deviation	n (0.05 V/r	eference unit)			
			0F	Reserved setting	g (Do not i	use.)				
			10	Main circuit DC	voltage					
			11 to 5F	Reserved setting	gs (Do not	use.)				
		n.🗆X🗆	Reserved	parameter (Do no	ot change	.)				
	n.XDDD Reserved parameter (Do not change.)									
	-				en ango	/				

							(Continued fr	om previou	is page	
Parameter No.	Size	N	ame	Setting Range	Setting Unit	Default Setting	Applicable Motors	When Enabled	Classi- fication	Refer- ence	
	2	Application Selections		0000 to 7121	-	0000	Rotary	After restart	Setup	Ι	
			Low Battery	Voltage Alarm	/Warning s	Selection			Refere	ence	
		n.🗆🗆 🗆 X		tput alarm (A.8	•		oltage.				
				tput warning (A	,		0		page 1	2-2	
			Function Se	ection for Und	ervoltage				Refere	ence	
D 000			0 Do	0 Do not detect undervoltage.							
Pn008		n.🗆🗆 X 🗆	1 De	tect undervolta	ge warning	g and limit	torque at hos	st controller.	page 6	3-13	
				Detect undervoltage warning and limit torque with Pn424 and Pn425 (i.e., only in SERVOPACK).							
			Warning Det	ection Selectio	n				Refere	ence	
		n.¤X¤¤		0 Detect warnings.							
	1 Do not detect warnings except for A.971.								45	45	
	n.XDDD Reserved parameter (Do not change.)										
	2	Application Selections	n Function 9	0000 to 0121	_	0010	All	After restart	Tuning	_	
		1					1	I	1		
		n.DDDX	Reserved pa	rameter (Do no	ot change.)					
			Current Con	rol Mode Sele	ction				Refere	nce	
			0 Us	e current contro	ol mode 1.						
Pn009		n.OOXO	1 5 • S	 SERVOPACK Models SGD7S-R70A, -R90A, -1R6A, -2R8A, - 5R5A, and -7R6A: Use current control mode 1. SERVOPACK Models SGD7S-120A, -180A, -200A, -330A, - 470A, -550A, -590A, and -780A: Use current control mode 2. 						6-71	
			2 Us	e current contro	ol mode 2.						
			Speed Detec	tion Method S	election				Refere	nce	
		n.¤X¤¤	0 Us	e speed detecti	on 1.				noge 0	70	
			1 Use speed detection 2.						page 8	-12	
		n.XDDD	Reserved pa	rameter (Do no	t change.)					

Continued from previous page.

							(Continued fro	om previou	us page
Parameter No.	Size	N	ame	Setting Range	Setting Unit	Default Setting	Applicable Motors	When Enabled	Classi- fication	Refer- ence
	2	Application Selections		0000 to 0044	-	0001	All	After restart	Setup	-
						1		I		
			Motor Sto	pping Method fo	r Group 2	Alarms			Refer	ence
				Apply the dynami	•		motor to a st	op (use the	TICICI	chee
			0 8	stopping method	set in Pn0	01 = n. □ [⊐□X).			
			1 t	Decelerate the me he maximum tore status after stopp	que. Use tl					
		n.DDDX		Decelerate the me he maximum tore				in Pn406 as	page	5-41
			3 1	Decelerate the me Pn30A. Use the s stopping.						
				Decelerate the m Pn30A and then I			the deceleration	on time set i	n	
Pn00A			Stopping I	Method for Force	ed Stops				Refer	ence
				Apply the dynami stopping method				op (use the		
		n.00X0	1 t	Decelerate the me he maximum tore status after stopp	que. Use t					
		n.□□X□		Decelerate the motor to a stop using the torque set in Pn406 as the maximum torque and then let the motor coast.						
			3 1	Decelerate the me Pn30A. Use the s stopping.						
				Decelerate the m Pn30A and then I			the deceleration	on time set i	n	
		n.¤X¤¤	Reserved	parameter (Do n	ot change	e.)				
		n.XDDD	Reserved	parameter (Do n	ot change	e.)				
	2	Application Selections	Function B	0000 to 1121	-	0000	All	After restart	Setup	-
			Operator Pa	arameter Display	Selection	า			Refere	nce
		n.DDDX	0 D	isplay only setup	paramete	rs.			page {	5-3
			1 D	isplay all parame	ters.				page	
			Motor Stop	ping Method for	Group 2	Alarms			Refere	nce
				top the motor by	Ũ					
Pn00B		n.□□X□		pply the dynamic topping method s				p (use the	page 5	5-41
				et the stopping n						
			Power Inpu	t Selection for T	hree-phas	e SERVO	PACK		Refere	nce
		n.0X00		se a three-phase						
				Jse a three-phase power supply input as a single-phase power supply input.					page 5	-13
		n.X000	Reserved p	arameter (Do no	t change.)					
	-									

-				-				Continued fr					
Parameter No.	Size	N	ame	Setting Range	Setting Unit	Default Setting	Applicable Motors	When Enabled	Classi- fication	Refer- ence			
	2	Application Selections		0000 to 0131	-	0000	-	After restart	Setup	page 7-26			
							<u> </u>	Tootait					
		n.DDDX		election for Test					Applica Motor				
				sable tests with hable tests with					All				
			Encoder Re	solution for Tes	ts without	a Motor			Applica Motor				
Pn00C			0 U:	se 13 bits.									
		n.¤¤X¤	-	se 20 bits.					Rotar	/			
			-	se 22 bits. se 24 bits.									
			3 0:	Se 24 Dits.									
		n.¤X¤¤		be Selection for			tor		Applica Motor				
				se an increment					All				
	1 Use an absolute encoder. n.X□□□ Reserved parameter (Do not change.)												
	2	Application Selections	n Function D	0000 to 1001	-	0000	All	After restart	Setup	page 5-33			
		n.🗆🗆 🛛 X	Reserved parameter (Do not change.)										
		n.00X0	Reserved p	Reserved parameter (Do not change.)									
Pn00D													
		n.¤X¤¤	Reserved p	arameter (Do no	ot change)							
		n.OXOO		arameter (Do no Varning Detecti	-								
		n.0X00	Overtravel \		on Select	ion							
			Overtravel V	Varning Detecti	on Select	ion							
			Overtravel V	Warning Detection not detect over	on Select	ion							
	2		Overtravel I 0 Du 1 Du	Warning Detection not detect over	on Select	ion	All	After restart	Setup				
	2	n.X□□□	Overtravel I 0 Du 1 Du	Varning Detection on the detect over the detec	on Select	on rnings.	All		Setup				
	2	n.X□□□	Overtravel N 0 Du 1 Du n Function F	Varning Detection of detect over etect overtravel	on Select ertravel wa warnings.	ion rnings. 0000	All		Setup				
	2	n.X□□□	Overtravel N 0 Divertravel N 1 Divertravel N n Function F Preventative	Varning Detection on the detect over the detec	on Select ertravel wa warnings.	on rnings. 0000			Setup	-			
Pn00F	2	n.XDDD Application Selections	Overtravel N 0 Di 1 Di n Function F Preventative 0 Di	Varning Detection not detect over etect overtravel	on Select ertravel wa warnings. – Warning S ventative r	on rnings. 0000 election naintenanc	ce warnings.		Setup				
		n.XDDD Application Selections	Overtravel N 0 Dial 1 Dial n Function F Preventative 0 Dial 1 Dial	Varning Detection on to detect over etect overtravel 00000 to 2011 e Maintenance V on to detect pre	on Select ertravel wa warnings. – Warning S ventative r ventative r ve mainten	on rnings. 0000 election naintenanc ance warn	ce warnings.		Setup				
		n.XDDD Application Selections	Overtravel N 0 Dial 1 Dial n Function F Preventative 0 Dial 1 Dial Reserved p	Varning Detection on to detect over etect overtravel 00000 to 2011 e Maintenance V on to detect pre etect preventative	on Select ertravel wa warnings. – Warning S ventative r ve mainten ot change	on rnings. 0000 relection naintenanc ance warn)	ce warnings.		Setup				
		n.XDDD Application Selections n.DDX n.DDX	Overtravel N 0 Divertravel N 1 Divertravel N 1 Divertravel N Preventative 0 Divertravel N 1 Divertravel N Reserved p Reserved p	Varning Detection not detect over etect overtravel	on Select ertravel wa warnings. – Warning S ventative r ve mainten ot change ot change	on rnings. 0000 eelection naintenanc ance warn)	ce warnings.		Setup				
		n.XDDD Application Selections n.DDX n.DDX n.DXD n.XDD n.XDD	Overtravel N 0 Divertravel N 1 Divertravel N 1 Divertravel N Preventative 0 Divertravel N 1 Divertravel N Reserved p Reserved p	Varning Detection on to detect over etect overtravel 00000 to 2011 e Maintenance Vo on to detect pre etect preventative arameter (Do no arameter (Do no arameter (Do no	on Select ertravel wa warnings. – Warning S ventative r ve mainten ot change ot change	on rnings. 0000 eelection naintenanc ance warn)	ce warnings.		Setup				

14-10

Continued from previous page.

									Continued fro	om previou	us page.			
Parameter No.	Size		lame		Setting Range	Setting Unit	Default Setting	Applicable Motors	When Enabled	Classi- fication	Refer- ence			
	2	Σ-V Comp tion Switcl		IC-	0000 to 2111	-	0000	-	After restart	Setup	-			
	n.		Reserved	para	meter (Do not	change.)								
		I	Encoder I	Resol	ution Compati	bility Sele	ction			Applica Moto				
Pn040	n.		0	Use a	he encoder res a resolution of 2 7A, SGM7P, or	20 bits wh	en connec	ted to an SG	M7J,	Rotar	у			
	n.		Reserved		meter (Do not			1.			_			
					meter (Do not	ζ,								
	2	Application Selections		l	0000 to 1111	-	0000	Linear	After restart	Setup	-			
					I	1			1					
			,		or Selection					Refere	ence			
	n	1.000X	0 1		polarity sensor not use polarity					— page 5	5-25			
			Motor P	hase	Sequence Sele	ection				Refere	ence			
Pn080	n	0.00X0	0		a phase-A leac a phase-B leac	•				– page 5	5-23			
21060	n													
	Ē		Pulses	Refere	ence									
	n	.X000	0 Calculate the encoder output pulse setting for a fixed maximum speed.								45.0			
			1	Calc setti	culate the maxing.	— page 15-9								
										·				
	2	Application Selections		١	0000 to 1111	-	0000	All	After restart	Setup	page 6-47			
	_										_			
		n.000X	Phase-0	-	se Output Sele tput phase-C p		in the forv	vard direction	l.					
Pn081			1	Out	tput phase-C p	ulses in b	oth the for	ward and reve	erse directior	ns.				
		n.DDXD	-		rameter (Do no		,							
	_	n.¤X¤¤			rameter (Do no									
		n.XDDD	Reserve	ed pai	rameter (Do no	ot change.)							
Pn100	2	Speed Loc	op Gain		10 to 20,000	0.1 Hz	400	All	Immedi- ately	Tuning	page 8-66			
Pn101	2	Speed Loc Time Cons	op Integra stant	l	15 to 51,200	0.01 ms	2000	All	Immedi- ately	Tuning	page 8-66			
Pn102	2	Position Lo	oop Gain		10 to 20,000	0.1/s	400	All	Immedi- ately	Tuning	page 8-66			
Pn103	2	Moment o	f Inertia R	atio	0 to 20,000	1%	100	All	Immedi- ately	Tuning	page 8-66			
Pn104	2	Second Sp Gain	beed Loo	0	10 to 20,000	0.1 Hz	400	All	Immedi- ately	Tuning	page 8-66			
									acory					

	1							C	Continued fro	om previou	us page
Parameter No.	Size	N	lame		Setting Range	Setting Unit	Default Setting	Applicable Motors	When Enabled	Classi- fication	Refer- ence
Pn106	2	Second Po Gain	osition Loc	р	10 to 20,000	0.1/s	400	All	Immedi- ately	Tuning	page 8-66
Pn109	2	Feedforwa	ard		0 to 100	1%	0	All	Immedi- ately	Tuning	page 8-84
Pn10A	2	Feedforwa Constant	ard Filter Ti	ime	0 to 6,400	0.01 ms	0	All	Immedi- ately	Tuning	page 8-84
	2	Gain Appli tions	cation Sel	ec-	0000 to 5334	-	0000	All	-	Setup	-
	Γ.										
			Mode Sv	1	ing Selection				When Enabled	Refere	ence
			0		e the internal to el setting: Pn10		e condition				
					the speed ref : Pn10D).	erence as	the condit	ion (level set-			
		n.000X	1		the speed ref : Pn181).	erence as					
	2 Use the acceleration reference as the condition (level setting: Pn10E). Use the acceleration reference as the condition (level setting: Pn182).									page 8	8-86
Pn10B											
THIOD			3	Use	the position c : Pn10F).	leviation a	s the cond	ition (level set	-		
			4	- U	not use mode	switching.					
			Speed L	.oop (Control Metho	d			When Enabled	Refere	ence
		n.🗆 🗆 X 🗆	0		ontrol		After				
			1 2 to 3		control erved settings	(Do not u	restart	-			
		n.¤X¤¤	Reserve	d par	ameter (Do no	ot change.)				
		n.XDDD	Reserve	d par	ameter (Do no	ot change.)				
				. 1							
Pn10C	2	Mode Swith for Torque	Reference	e	0 to 800	1%	200	All	Immedi- ately	Tuning	page 8-86
Pn10D	2	Mode Swi [*] for Speed	Reference)	0 to 10,000	1 min ⁻¹	0	Rotary	Immedi- ately	Tuning	page 8-86
Pn10E	2	Mode Swit		el	0 to 30,000	1 min ⁻¹ /s	0	Rotary	Immedi- ately	Tuning	page 8-86
Pn10F	2	Mode Swith for Position			0 to 10,000	1 refer- ence unit	0	All	Immedi- ately	Tuning	page 8-86
Pn11F	2	Position In Constant	itegral Tim	e	0 to 50,000	0.1 ms	0	All	Immedi- ately	Tuning	page 8-89
Pn121	2	Friction Co Gain	ompensatio	on	10 to 1,000	1%	100	All	Immedi- ately	Tuning	page 8-66, page 8-69
Pn122	2	Second Fr pensation		n-	10 to 1,000	1%	100	All	Immedi- ately	Tuning	page 8-66, page 8-69
Pn123	2	Friction Co Coefficient		on	0 to 100	1%	0	All	Immedi- ately	Tuning	page 8-69
Pn124	2	Friction Co Frequency			-10,000 to 10,000	0.1 Hz	0	All	Immedi- ately	Tuning	page 8-69
	2	Friction Co Gain Corre	ompensatio	on	1 to 1,000	1%	100	All	Immedi- ately	Tuning	page 8-69
Pn125	2	0.0	500001								
Pn125 Pn131	2	Gain Swite		e 1	0 to 65,535	1 ms	0	All	Immedi- ately	Tuning	page 8-66

							(Continued fro	om previoi	us page.					
Parameter No.	Size	N	ame	Setting Range	Setting Unit	Default Setting	Applicable Motors	When Enabled	Classi- fication	Refer- ence					
Pn135	2	Gain Switc Time 1	hing Waiting	0 to 65,535	1 ms	0	All	Immedi- ately	Tuning	page 8-66					
Pn136	2	Gain Switc Time 2	hing Waiting	0 to 65,535	1 ms	0	All	Immedi- ately	Tuning	page 8-66					
	2	Automatic ing Selection	Gain Switch- ons 1	0000 to 0052	-	0000	All	Immedi- ately	Tuning	page 8-66					
				ng Selection											
			U The	e manual gain s e gain is switch	ed manua	,	/G-SEL (Gai	n Selection) s	signal.						
		n.🗆🗆 🗆 X		served setting (
			2 The sw	e automatic gai e gain is switch itching conditio cond gain to the	ed automa n A is sati	atically fron sfied. The	n the first gair gain is switch	ed automatio	cally from	hen the					
Pn139	1		Gain Switchi	ng Condition A	1										
11100				OIN (Positioning		ion Output) signal turns	ON							
				OIN (Positioning	, i		, 0								
		n.🗆 🗆 X 🗆		EAR (Near Outp	, ,		,								
		/		EAR (Near Outp	, 0										
				sition reference	, 0			Ilse input is C	DFF.						
				sition reference											
		n.¤X¤¤													
		n.XOOO	Reserved parameter (Do not change.)												
Pn13D	2	Current Ga	ain Level	100 to 2,000	1%	2000	All	Immedi- ately	Tuning	page 8-71					
	2		owing Con- d Selections	0000 to 1121	_	0100	All	Immedi- ately	Tuning	_					
			Model Follow	ving Control Se	election										
		n.🗆🗆 🗆 X	0 Do	not use model	following	control.									
			1 Us	e model followi	ng control	•									
			Vibration Su	ppression Sele	ction										
				not perform vil		opression									
		n.🗆🗆 X 🗆		rform vibration			ecific frequen	ICV.							
				rform vibration		•		,							
Pn140									D (
				ppression Adju			tomotically		Refere	ence					
			0 tion	not adjust vibr n of autotuning	without a	host refere			st						
		n.¤X¤¤		erence, and cus just vibration su		0	ally during	vocution of	page 8	3-30					
			1 aut	totuning withou	t a host re				-						
							()								
				forward (VFF)/1			, ,		Refere	ence					
		n.XDDD		not use model jether.	tollowing	control and	speed/torqu	e teedtorwar	a						
			1 Us	e model followi gether.	ng control	and speed	d/torque feed	forward	page 8	3-30					
			100												
Pn141	2	Model Follo trol Gain	owing Con-	10 to 20,000	0.1/s	500	All	Immedi- ately	Tuning	-					
Pn142	2	Model Follo trol Gain C	owing Con-	500 to 2,000	0.1%	1000	All	Immedi- ately	Tuning	-					
				1	1	1	1		1						

Parameter No.	Size	N	ame		Setting Range	Setting Unit	Default Setting	Applicable Motors	Continued fro When Enabled	om previou Classi- fication	us page. Refer- ence	
Pn143	2	Model Folle trol Bias in Direction			0 to 10,000	0.1%	1000	All	Immedi- ately	Tuning	-	
Pn144	2	Model Follo trol Bias in Direction			0 to 10,000	0.1%	1000	All	Immedi- ately	Tuning	_	
Pn145	2	Vibration S Frequency	uppressio	n 1	10 to 2,500	0.1 Hz	500	All	Immedi- ately	Tuning	_	
Pn146	2	Vibration S Frequency	uppressio	n 1	10 to 2,500	0.1 Hz	700	All	Immedi- ately	Tuning	_	
Pn147	2	Model Follo trol Speed Compensa	Feedforw		0 to 10,000	0.1%	1000	All	Immedi- ately	Tuning	_	
Pn148	2	Second Me ing Contro	del Follov	N-	10 to 20,000	0.1/s	500	All	Immedi- ately	Tuning	_	
Pn149	2	Second Mo ing Contro tion			500 to 2,000	0.1%	1000	All	Immedi- ately	Tuning	_	
Pn14A	2	Vibration S Frequency	uppressio	n 2	10 to 2,000	0.1 Hz	800	All	Immedi- ately	Tuning	-	
Pn14B	2	Vibration S Correction	uppressio	n 2	10 to 1,000	1%	100	All	Immedi- ately	Tuning	_	
	2	Control-Re tions	lated Sele	eC-	0000 to 0021	-	0021	All	After restart	Tuning	-	
Pn14F		n.000X		1 Use model following control type 2. page 8-8 ing-less Type Selection Reference								
1 111-1		n.OOXO	0 1 2	Use tuning-less type 1. Use tuning-less type 2. Use tuning-less type 2.								
		n.¤X¤¤		Use tuning-less type 3. ed parameter (Do not change.)								
	-	n.X000			rameter (Do no						_	
						, e en ange	7					
	2	Anti-Resor trol-Related			0000 to 0011	_	0010	All	Immedi- ately	Tuning	_	
	_											
		n.000X	Anti-Res	1	nce Control Se		pontrol					
			1		e anti-resonanc		control.					
			Anti Doo		nce Control Ac		Solaation			Refere	2200	
Pn160		n.00X0	0	Do tior	not adjust anti- n of autotuning erence, and cus	-resonanc without a	e control a host refere			-		
			1	Adj aut	ust anti-resona otuning withou ce, and custom	nce contr t a host re	ol automat			— page { r-	3-30	
		n.0X00	Reserve	d pa	rameter (Do no	ot change)					
		n.XOOO			rameter (Do no		,					
Pn161	2	Anti-Resor	ance Fre-		10 to 20,000	0.1 Hz	1000	All	Immedi-	Tuning	_	
		quency Anti-Resor	ance Gair	<u></u> ז					ately Immedi-	0		
Pn162	2	Correction			1 to 1,000	1%	100	All	ately	Tuning	-	

			Continue								us page.
Parameter No.	Size	N	ame		Setting Range	Setting Unit	Default Setting	Applicable Motors	When Enabled	Classi- fication	Refer- ence
Pn163	2	Anti-Reson ing Gain	ance Dan	np-	0 to 300	1%	0	All	Immedi- ately	Tuning	-
Pn164	2	Anti-Reson Time Cons rection			-1,000 to 1,000	0.01 ms	0	All	Immedi- ately	Tuning	_
Pn165	2	Anti-Reson Time Cons rection			-1,000 to 1,000	0.01 ms	0	All	Immedi- ately	Tuning	-
Pn166	2	Anti-Reson ing Gain 2	ance Dan	np-	0 to 1,000	1%	0	All	Immedi- ately	Tuning	-
	2	Tuning-less Related Se	s Function lections	-	0000 to 2711	-	1401	All	-	Setup	page 8-11
		n.DDDX	Tuning-le	Dis	Selection able tuning-les able tuning-less					Whe Enab Afte resta	led er
		n.00X0	Speed C	T	ol Method	ntrol.				Whe Enab Afte	led
Pn170			1		e for speed cor		se host co	ntroller for po	sition contro		
		n.¤X¤¤	Rigidity	Leve	I					Whe Enab	
			0 to 7	Set	the rigidity lev	el.				Imme atel	
	Ī	n.X000	Tuning-le	ess L	oad Level					Whe Enab	
		0 to 2 Set the load level for the tuning-less function.									edi- ly
Pn181	2	Mode Swite for Speed	ching Level 0 to 10,000 1 mm/s 0 Linear Immedi- Reference 0 to 10,000 1 mm/s 0							Tuning	page 8-86
Pn182	2	Mode Swite for Acceler		el	0 to 30,000	1 mm/s ²	0	Linear	Immedi- ately	Tuning	page 8-86

Continued from previous page.

								(Continued fro	om previou	us page		
Parameter No.	Size	N	lame		Setting Range	Setting Unit	Default Setting	Applicable Motors	When Enabled	Classi- fication	Refer- ence		
	2	Position C ence For S	ontrol Refe Selections	er-	0000 to 2236	-	0000	All	After restart	Setup	-		
			Referenc	e Pu	Ilse Form					Refere	ence		
			0	Sigr	n and pulse tra	ain, positiv	e logic.						
			1	CW	and CCW pul	se trains,	oositive log	gic					
			2		o-phase pulse ise B) ×1, posi		90° phase	e differential (p	bhase A and				
		n.□□□X	3	pha	o-phase pulse ise B) ×2, posi	tive logic				page 6	6-30		
			4		o-phase pulse ise B) ×4, posi		90° phase	e differential (p	hase A and				
			5	Ű	n and pulse tra	. 0	0						
			6	CW	and CCW pul	se trains,	negative lo	gic					
			Clear Sig		Refere	ence							
Pn200			0										
		n.🗆 🗆 X 🗆	1	Clea	page 6	5-33							
				 Clear position deviation when the signal is at low level. Clear position deviation on the falling edge of the signal 									
			3	3 Clear position deviation on the falling edge of the signal.									
			Clear Op	erati	on					Refere	ence		
			0		ar position dev m occurs).	iation at a	base bloc	k (at servo Of	F or when				
		n.¤X¤¤	1	Do not clear position error (cleared only with CLB (Clear Position									
			2	Clea	ar position dev	iation whe	n an alarm	occurs.					
			Filter Sel	Selection									
			0	Use	e the reference	input filter	for a line-	driver signal.	(1 Mpps max	(.)			
		n.XOOO	1	1 Use the reference input filter for an open-collector signal. (200 kpps max.)									
			2	2 Use reference input filter 2 for a line-driver signal. (1 to 4 Mpps)									
Pn205	2	Multiturn L	imit		0 to 65,535	1 rev	65535	Rotary	After restart	Setup	page 6-82		
	2	Position C tion Select	ontrol Fund ions	C-	0000 to 2210	_	0000	All	After restart	Setup	-		
						1							
		n.□□□X	Reserved	d par	ameter (Do no	ot change)						
			Position	Cont	trol Option					Refere	ence		
		n.🗆🗆 X 🗆	0	Do	not use V-REF					page 8	3-86		
			1	Use	V-REF as a s	beed feed	back input			page	00		
		n.¤X¤¤	Reserved	d par	rameter (Do no	ot change)						
Pn207			/COIN (P	ositi	oning Comple	tion Outp	ut) Signal	Output Timin	g	Refe			
			0	0 Output when the absolute value of the position deviation is the same or less than the setting of Pn522 (Positioning Completed Width).									
		n.X□□□	1	or le	r is the same leted Width) s 0.								
				and the reference after the position reference filter is 0. Output when the absolute value of the position error is the same or less than the setting of Pn522 (Positioning Completed Width) and the reference input is 0.									

Continued from previous page.

						(Continued fro	om previou	us page.
Parameter No.	Size	Name	Setting Range	Setting Unit	Default Setting	Applicable Motors	When Enabled	Classi- fication	Refer- ence
Pn20A	4	Number of External Encoder Scale Pitches	4 to 1,048,576	1 scale pitch/ revolu- tion	32768	Rotary	After restart	Setup	page 10-7
Pn20E	4	Electronic Gear Ratio (Numerator)	1 to 1,073,741,824	1	64	All	After restart	Setup	page 5-45
Pn210	4	Electronic Gear Ratio (Denominator)	1 to 1,073,741,824	1	1	All	After restart	Setup	page 5-45
Pn212	4	Number of Encoder Output Pulses	16 to 1,073,741,824	1 P/Rev	2048	Rotary	After restart	Setup	page 6-52
Pn216	2	Position Reference Acceleration/Decelera- tion Time Constant	0 to 65,535	0.1 ms	0	All	Immedi- ately after the motor stops	Setup	page 6-35
Pn217	2	Average Position Refer- ence Movement Time	0 to 10,000	0.1 ms	0	All	Immedi- ately after the motor stops	Setup	page 6-35
Pn218	2	Reference Pulse Input Multiplier	1 to 100	× 1	1	All	Immedi- ately	Setup	page 6-34
	2	Fully-closed Control Selections	0000 to 1003	-	0000	Rotary	After restart	Setup	page 10-9
Pn22A			arameter (Do no arameter (Do no		,				
	1	n.□X□□ Reserved pa	arameter (Do no	ot change.)				
			Control Speed		k Selectio	n			
			e motor encode e external enco		l.				
						[
Pn281	2	Encoder Output Resolu- tion	1 10 4,090	1 edge/ pitch	20	All	After restart	Setup	page 6-52
Pn282	4	Linear Encoder Scale Pitch	0 to 6,553,600	0.01 μm	0	Linear	After restart	Setup	page 5-18
Pn300	2	Speed Reference Input Gain	150 to 3,000	0.01 V/ Rated motor speed	600	All	Immedi- ately	Setup	page 6-18, page 6-46, page 8-86
Pn301	2	Internal Set Speed 1	0 to 10,000	Rotary: 1 min ⁻¹ Direct Drive: 0.1 min ⁻¹	100	Rotary	Immedi- ately	Setup	page 6-54
Pn302	2	Internal Set Speed 2	0 to 10,000	Rotary: 1 min ⁻¹ Direct Drive: 0.1 min ⁻¹	200	Rotary	Immedi- ately	Setup	page 6-54
Pn303	2	Internal Set Speed 3	0 to 10,000	Rotary: 1 min ⁻¹ Direct Drive: 0.1 min ⁻¹	300	Rotary	Immedi- ately	Setup	page 6-54
Pn304	2	Jogging Speed	0 to 10,000	Rotary: 1 min ⁻¹ Direct Drive: 0.1 min ⁻¹	500	Rotary	Immedi- ately	Setup	page 7-7

Parameter No.	Size	Na	ame	Setting Range	Setting Unit	Default Setting	Applicable Motors	Continued fro When Enabled	om previou Classi- fication	Refer- ence
Pn305	2	Soft Start A Time	Acceleration	0 to 10,000	1 ms	0	All	Immedi- ately	Setup	page 6-23
Pn306	2	Soft Start D Time	Deceleration	0 to 10,000	1 ms	0	All	Immedi- ately	Setup	page 6-23
Pn307	2	Speed Refe Time Const	erence Filter tant	0 to 65,535	0.01 ms	40	All	Immedi- ately	Setup	page 6-24
Pn308	2	Speed Feed Time Const	dback Filter tant	0 to 65,535	0.01 ms	0	All	Immedi- ately	Setup	page 8-74
Pn30A	2	Deceleratio Servo OFF Stops	n Time for and Forced	0 to 10,000	1 ms	0	All	Immedi- ately	Setup	page 5-32
Pn30C	2	Speed Feed Average Mo Time		0 to 5,100	0.1 ms	0	All	Immedi- ately	Setup	-
	2	Vibration D Selections	etection	0000 to 0002	-	0000	All	Immedi- ately	Setup	page 6-96
Pn310		n.000X	0 Do 1 Out	ection Selection not detect vibr tput a warning put an alarm (/	ration. (A.911) if v					
		n.OOXO	Reserved par	rameter (Do no	ot change.)				
	1	n.OXOO	Reserved par	rameter (Do no	ot change.)				
		n.X000	Reserved par	rameter (Do no	ot change.)				
Pn311	2	Vibration D sitivity	etection Sen-	50 to 500	1%	100	All	Immedi- ately	Tuning	page 6-96
Pn312	2	Vibration D Level	etection	0 to 5,000	1 min ⁻¹	50	Rotary	Immedi- ately	Tuning	page 6-96
Pn316	2	Maximum N	Notor Speed	0 to 65,535	1 min ⁻¹	10000	Rotary	After restart	Setup	page 6-15
Pn324	2	Moment of culation Sta	Inertia Cal- arting Level	0 to 20,000	1%	300	All	Immedi- ately	Setup	page 8-30
Pn380	2	Internal Set	Speed 1	0 to 10,000	1 mm/s	10	Linear	Immedi- ately	Setup	page 6-54
Pn381	2	Internal Set	Speed 2	0 to 10,000	1 mm/s	20	Linear	Immedi- ately	Setup	page 6-54
Pn382	2	Internal Set	Speed 3	0 to 10,000	1 mm/s	30	Linear	Immedi- ately	Setup	page 6-54
Pn383	2	Jogging Sp		0 to 10,000	1 mm/s	50	Linear	Immedi- ately	Setup	page 7-7
Pn384	2	Vibration D Level		0 to 5,000	1 mm/s	10	Linear	Immedi- ately	Tuning	page 6-96
Pn385	2	Maximum N	Notor Speed	1 to 100	100 mm/s	50	Linear	After restart	Setup	page 6-15
Pn400	2	Torque Refe Gain	erence Input	10 to 100	0.1 V/ rated torque	30	All	Immedi- ately	Setup	page 6-40, page 8-85
Pn401	2	First Stage Reference I Constant	First Torque Filter Time	0 to 65,535	0.01 ms	100	All	Immedi- ately	Tuning	page 8-76
Pn402	2	Forward To	rque Limit	0 to 800	1% ^{*1}	800	Rotary	Immedi- ately	Setup	page 6-63
Pn403	2	Reverse To	rque Limit	0 to 800	1% ^{*1}	800	Rotary	Immedi- ately	Setup	page 6-63
Pn404	2	Forward Ex Limit	ternal Torque	0 to 800	1% ^{*1}	100	All	Immedi- ately	Setup	page 6-64, page 6-69

								I	Continued fro	· ·	
Parameter No.	Size	N	ame		Setting Range	Setting Unit	Default Setting	Applicable Motors	When Enabled	Classi- fication	Refer- ence
Pn405	2	Reverse Ex Limit	ternal Tor	que	0 to 800	1% ^{*1}	100	All	Immedi- ately	Setup	page 6-64, page 6-69
Pn406	2	Emergency	y Stop Tor	que	0 to 800	1% ^{*1}	800	All	Immedi- ately	Setup	page 5-32
Pn407	2	Speed Lim Torque Cor			0 to 10,000	1 min ⁻¹	10000	Rotary	Immedi- ately	Setup	page 6-45
	2	Torque-Rel tion Select		D-	0000 to 1111	-	0000	All	-	Setup	-
			Notch Fi	ilter S	Selection 1				When Enabled	Refere	ence
		n.□□□X	0		able first stage		Immedi	- page 8	3-76		
			1	Ena	able first stage	notch filte		ately	13		
			Speed L	imit \$	Selection			When Enabled	Refere	ence	
					e the smaller of ting of Pn407 a			speed and the	e		
		n.🗆🗆 X 🗆	0	Use	e the smaller of ting of Pn480 a	the maxim	num motor	speed and the			
Pn408				Use	the smaller of	the overs	peed alarr	n detection	After restart	page 6	8-45
			1	<u> </u>	ed and the set the smaller of	•			_		
	_				ed and the set						
			Notch Fi	ilter S	Selection 2	When Enabled	Refere	ence			
		n.¤X¤¤	0		able second st		Immedi- ately	- page 8	8-76		
	-			1 Enable second stage notch filter.							
		n.X000	Friction	Com	pensation Fun	ction Sele	ection		When Enabled	Reference	
			0		able friction co able friction cor	•			Immedi- ately	- page 8	3-69
				LIIC		ripensatio					
Pn409	2	First Stage Frequency	Notch Fil	ter	50 to 5,000	1 Hz	5000	All	Immedi- ately	Tuning	page 8-76
Pn40A	2	First Stage Q Value	Notch Fil	ter	50 to 1,000	0.01	70	All	Immedi- ately	Tuning	page 8-76
Pn40B	2	First Stage Depth	Notch Fil	ter	0 to 1,000	0.001	0	All	Immedi- ately	Tuning	page 8-76
Pn40C	2	Second Stater Frequer		n Fil-	50 to 5,000	1 Hz	5000	All	Immedi- ately	Tuning	page 8-76
Pn40D	2	Second Sta ter Q Value	, ,		50 to 1,000	0.01	70	All	Immedi- ately	Tuning	page 8-76
Pn40E	2	Second Sta ter Depth	0		0 to 1,000	0.001	0	All	Immedi- ately	Tuning	page 8-76
Pn40F	2	Second St Torque Ref Frequency	ference Fil	nd ter	100 to 5,000	1 Hz	5000	All	Immedi- ately	Tuning	page 8-76
Pn410	2	Second St Notch Filte	age Seco r Q Value	nd	50 to 100	0.01	50	All	Immedi- ately	Tuning	page 8-76
Pn412	2	First Stage Torque Ref Time Cons	ference Fil	ter	0 to 65,535	0.01 ms	100	All	Immedi- ately	Tuning	page 8-66
Pn415	2	T-REF Filte stant	r Time Co	n-	0 to 65,535	0.01 ms	0	All	Immedi- ately	Setup	page 6-45

								(Continued fro	om previou	us page.	
Parameter No.	Size	N	ame		Setting Range	Setting Unit	Default Setting	Applicable Motors	When Enabled	Classi- fication	Refer- ence	
110.	2	Torque-Re tion Select	lated Func	-	0000 to 1111	-	0000	All	Immedi-	Setup	page 8-79	
		tion Select							ately	•	0-79	
			Notch Fil	tor 9	Selection 3							
		n.000X	0		able third stage	e notch filt	er.					
			1	Ena	ble third stage	notch filte	er.					
			Notch Fil	Iter S	Selection 4							
Pn416		n.DDXD	0		able fourth stag	<i>,</i>						
			1		ble fourth stag	e notch fil	ter.					
		n.¤X¤¤	-		Selection 5	notob filte						
			0 Disable fifth stage notch filter. 1 Enable fifth stage notch filter.									
		n.X000	Reserved	d par	ameter (Do no	ot change.)					
				- pu.		it onlange.	.,					
Pn417	2	Third Stag Frequency		lter	50 to 5,000	1 Hz	5000	All	Immedi- ately	Tuning	page 8-79	
Pn418	2	Third Stag Q Value	e Notch Fil	lter	50 to 1,000	0.01	70	All	Immedi- ately	Tuning	page 8-79	
Pn419	2	Third Stag Depth	e Notch Fil	lter	0 to 1,000	0.001	0	All	Immedi- ately	Tuning	page 8-79	
Pn41A	2	Fourth Sta ter Freque	ncy		50 to 5,000	1 Hz	5000	All	Immedi- ately	Tuning	page 8-79	
Pn41B	2	Fourth Sta ter Q Value		-il-	50 to 1,000	0.01	70	All	Immedi- ately	Tuning	page 8-79	
Pn41C	2	Fourth Sta ter Depth	-		0 to 1,000	0.001	0	All	Immedi- ately	Tuning	page 8-79	
Pn41D	2	Fifth Stage Frequency			50 to 5,000	1 Hz	5000	All	Immedi- ately	Tuning	page 8-79	
Pn41E	2	Fifth Stage Q Value	Notch Filt	er	50 to 1,000	0.01	70	All	Immedi- ately	Tuning	page 8-79	
Pn41F	2	Fifth Stage Depth			0 to 1,000	0.001	0	All	Immedi- ately	Tuning	page 8-78	
	2	Speed Rip sation Sele	ple Compe ections	en-	0000 to 1111	-	0000	Rotary	-	Setup	-	
			Speed Ri	ipple	Compensatio	on Functio	n Selectio	n		Whe Enab		
		n.000X	0	Disa	able speed ripp	ole compe	nsation.			Imme		
			1	Ena	ble speed ripp	le comper	nsation.			ate		
Pn423			Speed Rition Sele		e Compensatio	on Informa	tion Disag	greement Wa	rning Detec-	Whe Enab		
111720		n.□□X□	0		ect A.942 aları not detect A.9					Afte		
			Speed Ri	ipple	Compensatio	on Enable	Condition	Selection		Whe Enab		
		n.OXOO	0	Spe	ed reference					Afte		
			1	Mot	or speed					resta	art	
		n.XDDD	Reserved	d par	ameter (Do no	ot change.)					
Pn424	2	Torque Lim cuit Voltag		Cir-	0 to 100	1% ^{*1}	50	All	Immedi- ately	Setup	page 6-13	
Pn425	2	Release Ti Limit at Ma Voltage Dr	me for Torc ain Circuit	que	0 to 1,000	1 ms	100	All	Immedi- ately	Setup	page 6-13	

							Continued fro	om previou	us page.
Parameter No.	Size	Name	Setting Range	Setting Unit	Default Setting	Applicable Motors	When Enabled	Classi- fication	Refer- ence
Pn426	2	Torque Feedforward Average Movement Time	0 to 5,100	0.1 ms	0	All	Immedi- ately	Setup	_
Pn427	2	Speed Ripple Compen- sation Enable Speed	. 0 to 10,000	1 min ⁻¹	0	Rotary Ser- vomotor	Immedi- ately	Tuning	_
Pn456	2	Sweep Torque Refer- ence Amplitude	1 to 800	1%	15	All	Immedi- ately	Tuning	page 8-92
	2	Notch Filter Adjustmen Selections 1	t 0000 to 0101	-	0101	All	Immedi- ately	Tuning	page 8-11, page 8-23, page 8-42
			r Adjustment Se						
		ο ΠΠΠΧ Ο τι	o not adjust the Ining without a h Ining.						
Pn460		1 A	djust the first sta ithout a host refe	0		,	0		0
11100		n.DDXD Reserved p	arameter (Do no	ot change	.)				
	l 1	Notch Filte	r Adjustment Se	lection 2					
		C	o not adjust the	second st					
	1		utotuning withou ustom tuning.	t a host re	ference, a	utotuning with	n a host refei	rence, and	1
			djust the second						
			ining.		, aatota m	ig mara noor			
		n.XDDD Reserved p	arameter (Do no	ot change	.)				
Pn480	2	Speed Limit during Force Control	0 to 10,000	1 mm/s	10000	Linear	Immedi- ately	Setup	page 6-45
Pn481	2	Polarity Detection Speed Loop Gain	10 to 20,000	0.1 Hz	400	Linear	Immedi- ately	Tuning	_
Pn482	2	Polarity Detection Speed Loop Integral Time Constant	15 to 51,200	0.01 ms	3000	Linear	Immedi- ately	Tuning	_
Pn483	2	Forward Force Limit	0 to 800	1% ^{*1}	30	Linear	Immedi- ately	Setup	page 6-63
Pn484	2	Reverse Force Limit	0 to 800	1% ^{*1}	30	Linear	Immedi- ately	Setup	page 6-63
Pn485	2	Polarity Detection Refe ence Speed	0 to 100	1 mm/s	20	Linear	Immedi- ately	Tuning	-
Pn486	2	Polarity Detection Refe ence Acceleration/ Deceleration Time	0 to 100	1 ms	25	Linear	Immedi- ately	Tuning	_
Pn487	2	Polarity Detection Con- stant Speed Time	0 to 300	1 ms	0	Linear	Immedi- ately	Tuning	-
Pn488	2	Polarity Detection Refe ence Waiting Time	⁻ 50 to 500	1 ms	100	Linear	Immedi- ately	Tuning	-
Pn48E	2	Polarity Detection Range	1 to 65,535	1 mm	10	Linear	Immedi- ately	Tuning	-
Pn490	2	Polarity Detection Loac Level	0 to 20,000	1%	100	Linear	Immedi- ately	Tuning	-
Pn495	2	Polarity Detection Con- firmation Force Refer- ence	0 to 200	1%	100	Linear	Immedi- ately	Tuning	_
Pn498	2	Polarity Detection Allow able Error Range	/- 0 to 30	1 deg	10	Linear	Immedi- ately	Tuning	-
Pn49F	2	Speed Ripple Compen- sation Enable Speed	. 0 to 10,000	1 mm/s	0	Linear	Immedi- ately	Tuning	-
Pn501	2	Zero Clamping Level	0 to 10,000	1 min ⁻¹	10	Rotary	Immedi- ately	Setup	page 6-24
	•	•	+	•		•	• •	-	

						(Continued fro	om previou	us page.
Parameter No.	Size	Name	Setting Range	Setting Unit	Default Setting	Applicable Motors	When Enabled	Classi- fication	Refer- ence
Pn502	2	Rotation Detection Level	1 to 10,000	1 min ⁻¹	20	Rotary	Immedi- ately	Setup	page 6-10
Pn503	2	Speed Coincidence Detection Signal Output Width	0 to 100	1 min ⁻¹	10	Rotary	Immedi- ately	Setup	page 6-26
Pn506	2	Brake Reference-Servo OFF Delay Time	0 to 50	10 ms	0	All	Immedi- ately	Setup	page 5-35
Pn507	2	Brake Reference Out- put Speed Level	0 to 10,000	1 min ⁻¹	100	Rotary	Immedi- ately	Setup	page 5-35
Pn508	2	Servo OFF-Brake Com- mand Waiting Time	10 to 100	10 ms	50	All	Immedi- ately	Setup	page 5-35
Pn509	2 Momentary Power Inter- ruption Hold Time		20 to 50,000	1 ms	20	All	Immedi- ately	Setup	page 6-12

Continued from previous page.

Parameter No.	Size	N	lame		Setting Range	Setting Unit	Default Setting	Applicable Motors	When Enabled	Classi- fication	Refe enc
	2	Input Sign	al Selectio	ns	0000 to FFF2	_	2100	All	After restart	Setup	_
		1.						ļ	rootait		
			Input Sig		Allocation Mo					Refere	ence
		n.000X	0	Use tion	the sequences.	e input sigr	hal termina	ls with the de	fault alloca-		
			1		ange the seque	ence input	signal allo	cations.		page	6-4
			2		erved setting		U			_	
			/S-ON (S	Servo	ON) Signal A	llocation				Refere	ence
			0		ve when CN1		signal is Of	l (closed).		Tierere	
			1		ve when CN1		-				
			2		ve when CN1		0	. ,		_	
			3	Act	ve when CN1	-43 input s	signal is Of	V (closed).			
			4	Act	ve when CN1	-44 input s	signal is Of	V (closed).			
			5	Act	ve when CN1	-45 input s	signal is Of	V (closed).			
			6	Act	ive when CN1	-46 input s	signal is Ol	V (closed).			
		n.🗆🗆 X 🗆	7	The	signal is alwa	iys active.				nago l	5 16
			8	The	signal is alwa	iys inactive).			page &	5-10
			9	Act	ve when CN1	-40 input s	signal is OF	FF (open).			
			Α	Act	ve when CN1	-41 input s	signal is OF	FF (open).			
			В	Act	ve when CN1	-42 input s	signal is OF	FF (open).			
			С	Act	ive when CN1	-43 input s	signal is OF	F (open).			
			D	Act	ive when CN1	-44 input s	signal is OF	F (open).			
Pn50A			E	Act	ive when CN1	-45 input s	signal is OF	F (open).			
			F	Act	ve when CN1	-46 input s	signal is Of	FF (open).			
			/P-CON	(Prop	oortional Cont	trol) Signa	I Allocatio	n		Refere	ence
		n.¤X¤¤	0 to F		allocations ar ons.	re the sam	e as the /S	-ON (Servo C)N) signal allo	- page 8	3-72
			P-OT (Fo	orwai	d Drive Prohi	bit) Signal	Allocation	1		Refere	ence
			0	Ena	ble forward di	rive when (CN1-40 inp	out signal is C	N (closed).		
			1	Ena	ble forward di	rive when (CN1-41 inp	out signal is C	N (closed).		
			2	Ena	ble forward di	rive when (CN1-42 inp	out signal is C	N (closed).		
			3	Ena	ble forward di	rive when (CN1-43 inp	out signal is C	N (closed).		
			4	Ena	ble forward di	rive when (CN1-44 inp	out signal is C	N (closed).		
			5	Ena	ble forward di	rive when (CN1-45 inp	out signal is C	N (closed).		
			6	Ena	ble forward di	rive when (CN1-46 inp	out signal is C	N (closed).		
		n.XDDD	7	Set	the signal to a	always pro	hibit forwa	rd drive.		page (5-30
			8		the signal to a					pago	
			9		ble forward dr			-		_	
			A		ble forward dr			-			
			В		ble forward dr			8	(1)	_	
			С		ble forward dr					_	
			D		ble forward dr		-	÷		_	
			E		ble forward di					_	
			F	Ena	ble forward dr	rive when (CN1-46 inp	out signal is C	PFF (open).		

								Continued fro	m previo	us pag
Parameter No.	Size	N	lame	Setting Range	Setting Unit	Default Setting	Applicable Motors	When Enabled	Classi- fication	Refe ence
	2	Input Sign 2	al Selectior	ns 0000 to FFFF	-	6543	All	After restart	Setup	-
				everse Drive Prohi	hit) Signal	Allocation		· · ·	Refere	2200
			0	Enable reverse dr	, 0			N (closed)	neien	ence
			1	Enable reverse dr			0	· ,	_	
			2	Enable reverse dr			0	, ,	_	
			3	Enable reverse dr			0	, ,	_	
			4	Enable reverse dr			0	· ,	_	
			5	Enable reverse dr	ive when (CN1-45 inp	out signal is O	N (closed).		
			6	Enable reverse dr	ive when (CN1-46 inp	out signal is O	N (closed).		
		n.🗆🗆 🗆 X	7	Set the signal to a	always pro	hibit revers	e drive.		naga	5 20
			8	Set the signal to a	always ena	ble reverse	e drive.		page	5-30
			9	Enable reverse dr	ive when (CN1-40 inp	out signal is O	FF (open).		
			A	Enable reverse dr	ive when (CN1-41 inp	out signal is O	FF (open).	_	
			В	Enable reverse dr			0	,	_	
			С	Enable reverse dr			0		_	
			D	Enable reverse dr			0		_	
			E	Enable reverse dr			0	,	_	
			F	Enable reverse dr	ive when (CN1-46 inp	out signal is O	FF (open).		
			/ALM-RS	T (Alarm Reset) S	ignal Alloo	ation			Refere	ence
			0	Active on signal e OFF (open) to ON		CN1-40 in	put signal ch	anges from		
			1	Active on signal e OFF (open) to ON		CN1-41 in	put signal ch	anges from		
			2	Active on signal e OFF (open) to ON		CN1-42 in	put signal ch	anges from		
150B			3	Active on signal e OFF (open) to ON		CN1-43 in	put signal ch	anges from		
			4	Active on signal e OFF (open) to ON		CN1-44 in	put signal ch	anges from		
			5	Active on signal e OFF (open) to ON		CN1-45 in	put signal ch	anges from		
			6	Active on signal e OFF (open) to ON	l (closed).		put signal ch	anges from		
		n.🗆🗆 X 🗆	7	Reserved setting		,			page 39	
			8	The signal is alwa	,				_	9
			9	Active on signal e (closed) to OFF (c	ppen).		0	0		
			A	Active on signal e (closed) to OFF (c	ppen).		-			
			В	Active on signal e (closed) to OFF (c	ppen).		Ū.	0	_	
			С	Active on signal e (closed) to OFF (c Active on signal e	ppen).		Ū.	0	_	
			D	(closed) to OFF (c Active on signal e	open).		Ū.	0	_	
			E	(closed) to OFF (c Active on signal e	open).		Ū.	0	_	
			F	(closed) to OFF (c						
		n.¤X¤¤	· ·	orward External To	•	. , ,	5		Refere	
			0 to F	The allocations are	the same a	s the /S-ON	I (Servo ON) si	gnal allocations	. page	6-64
		n.XDDD	/N-CL (R	everse External To	orque Limi	t Input) Sig	gnal Allocatio	on	Refere	ence
			0 to F	The allocations are	the same a	s the /S-ON	l (Servo ON) si	gnal allocations	. page	6-64

Continued from previous page.

						-			Continued fro		uo pug
Parameter No.	Size	N	ame		Setting Range	Setting Unit	Default Setting	Applicable Motors	When Enabled	Classi- fication	Refe ence
	2	Input Signa 3	al Selectio	ns	0000 to FFFF	-	8888	All	After restart	Setup	_
				(Mot	or Direction) S		ation			Refere	
			0	Ì	ive when CN1-	•		l (closed)		TIEIEIG	fille
			1		ive when CN1-		0	, ,			
			2		ive when CN1-		-				
			3		ive when CN1-		-				
			4		ive when CN1-		-				
							-				
			5 Active when CN1-45 input signal is ON (closed).6 Active when CN1-46 input signal is ON (closed).								
		n.DDDX	7		signal is alway		igna io oi	(0.0000).			
			8		signal is alwa	,				page (6-54
			9		ive when CN1-	<i>.</i>		F (open).			
			A		ive when CN1-		-				
Pn50C			В	Act	ive when CN1-	42 input s	ignal is OF	F (open).			
			С	Act	ive when CN1-	-43 input s	ignal is OF	F (open).			
			D	Act	ive when CN1-	44 input s	ignal is OF	F (open).			
			E	Act	ive when CN1-	45 input s	ignal is OF	F (open).			
			F	Act	ive when CN1-	46 input s	ignal is OF	F (open).			
			/SPD-A ((Inter	nal Set Speed	Selectior	n Input) Sig	gnal Allocatio	on	Refere	ence
		n.□□X□	0 to F		allocations are allocations.	e the same	e as the /S	PD-D (Motor	Direction) sig	- page (6-54
	li		/SPD-B	(Inter	nal Set Speed	d Selection	n Input) Si	gnal Allocatio	on	Refere	ence
		n.¤X¤¤	0 to F		allocations are allocations.	e the same	e as the /S	PD-D (Motor	Direction) sig	- page 6	6-54
	1		/C-SEL (Cont	rol Selection I	nput) Sigr	nal Allocat	ion		Refere	ence
		n.XDDD	0 to F		allocations are	e the same	e as the /S	PD-D (Motor	Direction) sig	- page 6	6-58

									Continued fro	in previo	is pay
Parameter No.	Size	N	ame		Setting Range	Setting Unit	Default Setting	Applicable Motors	When Enabled	Classi- fication	Reference
	2	Input Signa 4	al Selectio	ns	0000 to FFFF	-	8888	-	After restart	Setup	-
			/ZCLAM	P (Zer	o Clamping I	nput) Sigr	nal Allocat	ion	Applicable Motors	Refere	ence
			0	Activ	e when CN1-	40 input s	ignal is ON	l (closed).			
			1	Activ	e when CN1-	41 input s	ignal is ON	l (closed).			
			2	Activ	e when CN1-	42 input s	ignal is ON	l (closed).			
			3	Activ	e when CN1-	43 input s	ignal is ON	l (closed).			
			4	Activ	e when CN1-	44 input s	ignal is ON	l (closed).			
			5	Activ	e when CN1-	45 input s	ignal is ON	l (closed).			
			6	Activ	e when CN1-	46 input s	ignal is ON	l (closed).			
		n.DDDX	7	The :	signal is alwa	ys active.					
			8	The s	signal is alwa	ys inactive			All	page 6	5-24
			9	Activ	ve when CN1-	40 input s	ignal is OF	F (open).			
			A	Activ	e when CN1-	41 input s	ignal is OF	F (open).			
			В		e when CN1-	· · · ·	0	· · · /			
n50D			С		e when CN1-	•	-				
			D	Activ	e when CN1-	44 input s	ignal is OF	F (open).			
			E		e when CN1-	· · · ·	0	· · · /			
			F		ve when CN1-		-				
			/INHIBIT	(Refe	erence Pulse	Inhibit Inp	ut) Signal	Allocation	Applicable Motors	Refere	ence
		n.□□X□	0 to F		allocations and Clamping In				All	page (6-39
			/G-SEL (Gain	Selection Inp	ut) Signal	Allocation	I	Applicable Motors	Refere	ence
		n.¤X¤¤	0 to F		allocations and Clamping In				All	page 8	3-66
			/P-DET (Polari	ty Detection	Input) Sig	nal Alloca	tion	Applicable Motors	Refere	ence
		n.XDDD	0 to F		allocations ar Clamping In				Linear	-	

Continued from previous page.

Parameter No.	Size	N	ame	Setting Range	Setting Unit	Default Setting	Applicable Motors	When Enabled	Classi- fication	Refe enc
	2	Output Sig	nal Selec-	0000 to 6666	-	3211	All	After restart	Setup	-
				0000		<u>l</u>	Į	rootart		<u></u>
				sitioning Compl	etion Outr	ut) Signal	Allocation		Refere	ance
			· · · ·	isabled (the abo		, 0			Therefe	nce
				Output the signa	0		,	ut terminal.		
		n.DDDX		Dutput the signa						
			3 (Output the signa	l from the C	CN1-29 or	CN1-30 outp	ut terminal.	page 6	5-36
			4 (Output the signa	l from the C	CN1-37 ou	tput terminal.			
				Output the signa						
Pn50E			6 (Output the signa	I from the (CN1-39 ou	tput terminal.			
			/V-CMP (S	peed Coincider	nce Detecti	on Output) Signal Alloc	ation	Refere	ence
		n.□□X□		he allocations a on) signal alloca		e as the /C	OIN (Position	ing Comple-	page 6	6-26
			/TGON (Ro	tation Detectio	n Output) \$	Signal Allo	cation		Refere	ence
		n.¤X¤¤		he allocations a on) signal alloca		e as the /C	OIN (Position	ing Comple-	page 6	6-10
			/S-RDY (S	ervo Ready) Sig	inal Allocat	ion			Refere	ence
		n.XOOO		he allocations a on) signal alloca		e as the /C	OIN (Position	ing Comple-	page 6	5-10
	2	Output Sig tions 2	nal Selec-	0000 to 6666	-	0000	All	After restart	Setup	-
			/CLT (Torq	ue Limit Detecti	on Output) Signal All	ocation		Refere	ence
			0 [isabled (the abo	ove signal o	output is no	ot used).			
			1 (Output the signa	l from the C	CN1-25 or	CN1-26 outp	ut terminal.		
		n.000X	2 (Output the signa	l from the C	CN1-27 or	CN1-28 outp	ut terminal.		
		11.000X		Output the signa				ut terminal.	page 6	5-72
				Output the signa						
				Output the signa						
			6	Output the signa	I from the (CN1-39 ou	tput terminal.			
Pn50F										
Pn50F			/VLT (Spee	d Limit Detection	on) Signal /	Allocation			Refere	ence
Pn50F		n.🗆🗆 X 🗆		d Limit Detection he allocations a Dutput) signal all	re the sam		LT (Torque Li	mit Detectior		
Pn50F		n.□□X□	0 to 6	he allocations a Dutput) signal all	re the sam ocations.	e as the /C	CLT (Torque Lii	mit Detectior	1	6-45
Pn50F		n.00X0	0 to 6	he allocations a	re the sam ocations. Allocation re the sam	e as the /C			page (6-45
Pn50F			0 to 6 7 /BK (Brake 0 to 6 7	The allocations a Dutput) signal all Output) Signal all Output) Signal The allocations a	re the sam ocations. Allocation re the sam ocations.	e as the /C e as the /C			Page 6	6-45 ence 5-35

							(Continued fr	om previou	us page.
Parameter No.	Size	N	lame	Setting Range	Setting Unit	Default Setting	Applicable Motors	When Enabled	Classi- fication	Refer- ence
	2	Output Sig tions 3	gnal Selec-	0000 to 0666	-	0000	All	After restart	Setup	-
		-	/NEAR (Ne	ar Output) Signa	I Allocatio	n	•		Refere	ence
				Disabled (the abo	v		,			
			-	Output the signal						
		n.🗆 🗆 🗆 X		Dutput the signal					_	
				Output the signal				ut terminal.	page 6	5-38
D. 540				Output the signal Output the signal			•			
Pn510				Output the signal						
							tp at to minan			_
		n.🗆 🗆 X 🗆	Reserved p	parameter (Do no	ot change.	.)				
		n.¤X¤¤	Allocation	eference Pulse I					Refere	ence
				he allocations ar ions.	e the same	e as the /N	IEAR (Near) si	ignal alloca-	page 6	6-34
		n.XDDD	Reserved p	parameter (Do no	ot change)				
	2	Output Sig Settings	gnal Inverse	0000 to 1111	-	0000	All	After restart	Setup	page 6-6
			Output Sig	nal Inversion for	CN1-25 #	and CN1-2	P6 Terminals			
		n.000X		he signal is not i						
				he signal is inver						
			Output Cia	nol Inversion for	ON1 07					
		n.□□X□		nal Inversion for						
Pn512				The signal is inver						
				nal Inversion for		and CN1-3	su terminais			
		n.🗆X🗆 🗆		he signal is not in he signal is inver						
					leu.					
				nal Inversion for		Ferminal				
		n.XDDD		he signal is not in						
			1 T	he signal is inver	iea.					;
	2	Output Sig Settings 2	gnal Inverse	0000 to 0011	-	0000	All	After restart	Setup	page 6-6
		oottiingo L						rootart		00
				nal Inversion for		Ferminal				
		n.🗆🗆 🗆 X		he signal is not in						
			1 T	he signal is inver	ted.					
Pn513			Output Sig	nal Inversion for	CN1-39	Ferminal				
		n.🗆🗆 X 🗆	T 0	he signal is not i	nverted.					
			1 T	he signal is inver	ted.					
		n.¤X¤¤	Reserved p	parameter (Do no	ot change)				
		n.XDDD	Reserved p	parameter (Do no	ot change)				

Continued from previous page.

Parameter No.	Size	N	ame		Setting Range	Setting Unit	Default Setting	Applicable Motors	When Enabled	Classi- fication	Refer- ence
	2	Output Sig tions 4	inal Selec-		0000 to 0666	-	0000	All	After restart	Setup	-
		n.000X	1	·	neter (Do no neter (Do no		•				
Pn514		n.0X00	0 1 2 3 4 5	Disable Output Output Output Output	t the signal 1 t the signal 1 t the signal 1 t the signal 1	ve signal o from the C from the C from the C from the C from the C	utput is no N1-25 or N1-27 or N1-29 or N1-29 out		ut terminal.	Refere	ence
	I	n.X000	Reserved	param	neter (Do no	ot change.)				

				0.001	0.00	D.C. II		Continued fro	•	
Parameter No.	Size	N	ame	Setting Range	Setting Unit	Default Setting	Applicable Motors	When Enabled	Classi- fication	Refer ence
		Input Signa	al Selection	-	Office			After		
	2	6		FFFF	-	8888	All	restart	Setup	-
			0-11/11							
			<u> </u>	olute Data Reque	• •	•			Refere	ence
				Active when CN1		0	. ,			
				Active when CN1		-				
				Active when CN1 Active when CN1	· · ·	•	. ,			
				Active when CN1		0	()			
				Active when CN1		0	, ,			
				Active when CN1		0	. ,			
		n.000X		The signal is alwa	•	igna is Or	(CIUSEU).			
				Enable when 5 V	-	CN1-/			— page 6	6-73
				Active when CN1			F (open)			
				Active when CN1		-				
				Active when CN1		0	· · · /			
			-	Active when CN1	· · ·	•				
				Active when CN1		0	(1)			
				Active when CN1		-				
				Active when CN1		0				
						<u> </u>	,		_	
n515			PSEL (Re	foranco Dulco Ini						
			cation	lerence i uise in	out multip	lication Sv	vitching Inpu	t) Signal Allo	Refere	ence
			cation	Active when CN1	•		U 1	t) Signal Allo	- Refere	ence
			cation ` 0		-40 input s	ignal is ON	V (closed).	t) Signal Allo	- Refere	ence
			cation 0 1	Active when CN1	-40 input s -41 input s	ignal is ON ignal is ON	V (closed).	t) Signal Allo	- Refere	ence
			cation 0 1 2	Active when CN1 Active when CN1	-40 input s -41 input s -42 input s	ignal is ON ignal is ON ignal is ON	V (closed). V (closed). V (closed).	t) Signal Allo	- Refere	ence
			cation 0 1 2 3	Active when CN1 Active when CN1 Active when CN1	-40 input s -41 input s -42 input s -43 input s	ignal is ON ignal is ON ignal is ON ignal is ON	1 (closed). 1 (closed). 1 (closed). 1 (closed).	t) Signal Allo	Refere	ence
			cation 0 1 2 3 4	Active when CN1 Active when CN1 Active when CN1 Active when CN1	-40 input s -41 input s -42 input s -43 input s -44 input s	ignal is ON ignal is ON ignal is ON ignal is ON ignal is ON	1 (closed). 1 (closed). 1 (closed). 1 (closed). 1 (closed).	t) Signal Allo	Refere	ence
			cation 0 1 2 3 4 5 6	Active when CN1 Active when CN1 Active when CN1 Active when CN1 Active when CN1 Active when CN1 Active when CN1	40 input s 41 input s 42 input s 43 input s 44 input s 45 input s 46 input s	ignal is ON ignal is ON ignal is ON ignal is ON ignal is ON ignal is ON	V (closed). V (closed). V (closed). V (closed). V (closed). V (closed).	t) Signal Allo	- Refere	ence
		n.□□X□	cation 0 1 2 3 4 5 6	Active when CN1 Active when CN1 Active when CN1 Active when CN1 Active when CN1 Active when CN1	40 input s 41 input s 42 input s 43 input s 44 input s 45 input s 46 input s	ignal is ON ignal is ON ignal is ON ignal is ON ignal is ON ignal is ON	V (closed). V (closed). V (closed). V (closed). V (closed). V (closed).	t) Signal Allo		
		n.00X0	cation 0 1 2 3 4 5 6 7	Active when CN1 Active when CN1 Active when CN1 Active when CN1 Active when CN1 Active when CN1 Active when CN1	40 input s 41 input s 42 input s 43 input s 44 input s 45 input s 46 input s ys enabled	ignal is ON ignal is ON ignal is ON ignal is ON ignal is ON ignal is ON ignal is ON	V (closed). V (closed). V (closed). V (closed). V (closed). V (closed).	t) Signal Allo	- Refere	
		n.00X0	cation 0 1 2 3 4 5 6 7 8 9	Active when CN1 Active when CN1 Active when CN1 Active when CN1 Active when CN1 Active when CN1 Active when CN1 The signal is alwa Active when CN1	40 input s 41 input s 42 input s 43 input s 44 input s 45 input s 46 input s ys enabled ys inactive 40 input s	ignal is ON ignal is ON ignal is ON ignal is ON ignal is ON ignal is ON ignal is ON 1.	V (closed). V (closed). V (closed). V (closed). V (closed). V (closed). V (closed). V (closed).	t) Signal Allo		
		n.□□X□	cation 0 1 2 3 4 5 6 7 8 9 A	Active when CN1 Active when CN1 Active when CN1 Active when CN1 Active when CN1 Active when CN1 Active when CN1 The signal is alwa Active when CN1 Active when CN1 Active when CN1	40 input s 41 input s 42 input s 43 input s 44 input s 45 input s 46 input s ys enabled ys inactive 40 input s 41 input s	ignal is ON ignal is ON ignal is ON ignal is ON ignal is ON ignal is ON I. ignal is OF ignal is OF	V (closed). V (closed). V (closed). V (closed). V (closed). V (closed). V (closed). V (closed). V (closed). FF (open).	t) Signal Allo		
		n.□□X□	cation 0 1 2 3 4 5 6 7 8 9 A B	Active when CN1 Active when CN1 Active when CN1 Active when CN1 Active when CN1 Active when CN1 Active when CN1 The signal is alwa Active when CN1 Active when CN1 Active when CN1	40 input s 41 input s 42 input s 43 input s 44 input s 46 input s 46 input s ys enabled ys inactive 40 input s 41 input s	ignal is ON ignal is ON ignal is ON ignal is ON ignal is ON ignal is ON 1. ignal is OF ignal is OF	V (closed). V (closed). V (closed). V (closed). V (closed). V (closed). V (closed). V (closed). V (closed). F (open). F (open).	t) Signal Allo		
		n.□□X□	cation 0 1 2 3 4 5 6 7 8 9 A B C	Active when CN1 Active when CN1 Active when CN1 Active when CN1 Active when CN1 Active when CN1 Active when CN1 The signal is alwa Active when CN1 Active when CN1 Active when CN1 Active when CN1 Active when CN1	40 input s 41 input s 42 input s 43 input s 44 input s 45 input s 46 input s ys enabled ys inactive 40 input s 41 input s 42 input s 43 input s	ignal is ON ignal is ON ignal is ON ignal is ON ignal is ON ignal is ON 1. ignal is OF ignal is OF ignal is OF	V (closed). V (closed). V (closed). V (closed). V (closed). V (closed). V (closed). V (closed). V (closed). F (open). F (open). F (open). F (open).	t) Signal Allo		
		n.□□X□	cation 0 1 2 3 4 5 6 7 8 9 A B C D	Active when CN1 Active when CN1	40 input s 41 input s 42 input s 43 input s 44 input s 45 input s 46 input s 46 input s 46 input s 40 input s 41 input s 43 input s 43 input s	ignal is ON ignal is OF ignal is OF ignal is OF ignal is OF	V (closed). V (closed). V (closed). V (closed). V (closed). V (closed). V (closed). V (closed). F (open). F (open). F (open). F (open). F (open).	t) Signal Allo		
		n.□□X□	cation 0 1 2 3 4 5 6 7 8 9 A B C D E	Active when CN1 Active when CN1	40 input s 41 input s 42 input s 43 input s 44 input s 45 input s 46 input s 46 input s 46 input s 40 input s 41 input s 43 input s 44 input s 43 input s	ignal is ON ignal is OF ignal is OF ignal is OF ignal is OF	V (closed). V (closed). V (closed). V (closed). V (closed). V (closed). V (closed). V (closed). F (open). F (open). F (open). F (open). F (open). F (open). F (open).	t) Signal Allo		
		n.□□X□	cation 0 1 2 3 4 5 6 7 8 9 A B C D E	Active when CN1 Active when CN1	40 input s 41 input s 42 input s 43 input s 44 input s 45 input s 46 input s 46 input s 46 input s 40 input s 41 input s 43 input s 44 input s 43 input s	ignal is ON ignal is OF ignal is OF ignal is OF ignal is OF	V (closed). V (closed). V (closed). V (closed). V (closed). V (closed). V (closed). V (closed). F (open). F (open). F (open). F (open). F (open). F (open). F (open).	t) Signal Allo		
		n.□□X□ n.□X□	cation 0 1 2 3 4 5 6 7 8 9 A B C D E F	Active when CN1 Active when CN1	40 input s 41 input s 42 input s 43 input s 44 input s 45 input s 46 input s 46 input s 40 input s 41 input s 43 input s 43 input s 44 input s 43 input s 44 input s	ignal is ON ignal is OF ignal is OF ignal is OF ignal is OF ignal is OF ignal is OF	V (closed). V (closed). V (closed). V (closed). V (closed). V (closed). V (closed). V (closed). F (open). F (open). F (open). F (open). F (open). F (open). F (open).	t) Signal Allo		
			cation 0 1 2 3 4 5 6 7 8 9 A B C D E F Reserved	Active when CN1 Active when CN1	40 input s 41 input s 42 input s 43 input s 44 input s 46 input s 46 input s 46 input s 40 input s 41 input s 43 input s 43 input s 43 input s 44 input s 45 input s 45 input s 46 input s	ignal is ON ignal is OF ignal is OF ignal is OF ignal is OF ignal is OF	V (closed). V (closed). V (closed). V (closed). V (closed). V (closed). V (closed). V (closed). F (open). F (open). F (open). F (open). F (open). F (open). F (open).	t) Signal Allo		

Continued from previous page.

Continued from previous page.

								Continued fro	om previou	us page
Parameter No.	Size	N	ame	Setting Range	Setting Unit	Default Setting	Applicable Motors	When Enabled	Classi- fication	Refer ence
	2	Input Signa 7	al Selection	s 0000 to FFFF	-	8888	All	After restart	Setup	_
			FSTP (For 0 1 2 3 4 5	ced Stop Input) S Enable drive whe Enable drive whe Enable drive whe Enable drive whe Enable drive whe Enable drive whe	en CN1-40 en CN1-41 en CN1-42 en CN1-43 en CN1-44) input sigr input sigr ? input sigr 3 input sigr 1 input sigr	nal is ON (clos nal is ON (clos nal is ON (clos nal is ON (clos	sed). sed). sed). sed).		
Pn516		n.000X	6 7 8	Enable drive whe Set the signal to Set the signal to stop).	en CN1-46 always pr	input sigr ohibit drive	al is ON (clos (always force	sed). e the motor t	. /)
			9 A B C D E	Enable drive whe Enable drive whe Enable drive whe Enable drive whe Enable drive whe Enable drive whe	en CN1-41 en CN1-42 en CN1-43 en CN1-44 en CN1-44	input sigr 2 input sigr 3 input sigr 4 input sigr 5 input sigr	al is OFF (op al is OFF (op al is OFF (op al is OFF (op al is OFF (op	en). en). en). en).		
		n.OOXO	F Reserved	Enable drive whe			nal is OFF (op	en).		
		n.¤X¤¤	Reserved	parameter (Do no	ot change.	.)				
		n.XDDD	Reserved	parameter (Do no	ot change.)				
	2	Output Sig tions 5	nal Selec-	0000 to 0666	-	0654	All	After restart	Setup	page 6-6
Pn517		n.000X	0 1 2 3 4 5 6 ALO2 (Ala	Irm Code Output) Disabled (the above Output the signal Output the signal The allocations are tions.	ve signal o from the C from the C from the C from the C from the C from the C Signal Al	utput is no CN1-25 or CN1-27 or CN1-29 or CN1-37 out CN1-38 out CN1-39 out CN1-39 out	CN1-26 outp CN1-28 outp CN1-30 outp put terminal. put terminal. put terminal.	ut terminal. ut terminal.	signal allo	
		n.0X00	ALO3 (Ala 0 to 6	rm Code Output) The allocations are tions. parameter (Do no	e the same	e as the AL	.01 (Alarm Co	ode Output)	signal allo	ca-
Pn518 ^{*2}	_	n.X000	ALO3 (Ala 0 to 6 Reserved	arm Code Output) The allocations are tions. parameter (Do no	e the same	e as the AL	O1 (Alarm Co	ode Output) :	signal allo	ca-

								Continued fro	· ·	us page.
Parameter No.	Size	Na	ame	Setting Range	Setting Unit	Default Setting	Applicable Motors	When Enabled	Classi- fication	Refer- ence
Pn51E	2	Position De flow Warnir		er- 10 to 100	1%	100	All	Immedi- ately	Setup	page 12-45
Pn520	4	Position De flow Alarm		er- 1 to 1,073,741,823	1 refer- ence unit	524288 0	All	Immedi- ately	Setup	page 8-8, page 12-5
Pn522	4	Positioning Width	Completed	d 0 to 1,073,741,824	1 refer- ence unit	7	All	Immedi- ately	Setup	page 6-36
Pn524	4	Near Signa	l Width	1 to 1,073,741,824	1 refer- ence unit	107374 1824	All	Immedi- ately	Setup	page 6-38
Pn526	4	Position De flow Alarm Servo ON		er- 1 to 1,073,741,823	3 1 refer- ence unit	524288 0	All	Immedi- ately	Setup	page 8-8
Pn528	2	Position De flow Warnir Servo ON		er- 10 to 100	1%	100	All	Immedi- ately	Setup	page 8-8
Pn529	2	Speed Limi Servo ON	it Level at	0 to 10,000	1 min ⁻¹	10000	Rotary	Immedi- ately	Setup	page 8-8
Pn52A	2	Multiplier p closed Rot		0 to 100	1%	20	Rotary	Immedi- ately	Tuning	page 10-8
Pn52B	2	Overload V	Varning Lev	rel 1 to 100	1%	20	All	Immedi- ately	Setup	page 5-43
Pn52C	2	Base Curre at Motor O Detection		10 to 100	1%	100	All	After restart	Setup	page 5-43
Pn52D	2	Reserved p not change		- ⁰⁰	-	50	All	-	-	_
Pn52F	2	Monitor Dis Startup	splay at	0000 to 0FFF	-	OFFF	All	Immedi- ately	Setup	page 13-4
	2	Program Jo Related Se		0000 to 0005	-	0000	All	Immedi- ately	Setup	page 7-20
Pn530	-	n.000X	0 1 2 3 4 5 Reserved	Jogging Operation (Waiting time in F movements in Pr (Waiting time in F in Pn535 \rightarrow Res Pn536 (Waiting time in F in Pn535 \rightarrow Forv Pn536 parameter (Do r	Pn535 → Fo 1536 Pn535 → R 1536 Pn535 → Fo 1536 Pn535 → R 1536 Pn535 → R 1536 Pn535 → R Pn535 → R Pn535 → R vard by trav Pn535 → R vard by trav	everse by t prward by t everse by t prward by t prward by t vel distance everse by t vel distance .)	travel distance travel distance travel distance travel distance travel distance aravel distance e in Pn531) ×	e in Pn531) > e in Pn531) > e in Pn531) > e in Pn531) > e in Pn531 - Number of n	< Number < Number < Number < Number < Number > Waiting t > Waiting t	of of of of of ime s in
		n.XOOO	Reserved	parameter (Do r	not change	.)				
Pn531	4	Program Jo Distance	ogging Trav	rel 1 to 1,073,741,824	1 refer- ence unit	32768	All	Immedi- ately	Setup	page 7-20

		Continued from previous page								
Parameter No.	Size	Name	Setting Range	Setting Unit	Default Setting	Applicable Motors	When Enabled	Classi- fication	Refer- ence	
Pn533	2	Program Jogging Move- ment Speed	1 to 10,000	Rotary: 1 min ⁻¹ Direct Drive: 0.1 min ⁻¹	500	Rotary	Immedi- ately	Setup	page 7-20	
Pn534	2	Program Jogging Accel- eration/Deceleration Time	2 to 10,000	1 ms	100	All	Immedi- ately	Setup	page 7-20	
Pn535	2	Program Jogging Wait- ing Time	0 to 10,000	1 ms	100	All	Immedi- ately	Setup	page 7-20	
Pn536	2	Program Jogging Num- ber of Movements	0 to 1,000	Times	1	All	Immedi- ately	Setup	page 7-20	
Pn550	2	Analog Monitor 1 Offset Voltage	-10,000 to 10,000	0.1 V	0	All	Immedi- ately	Setup	page 9-6	
Pn551	2	Analog Monitor 2 Offset Voltage	-10,000 to 10,000	0.1 V	0	All	Immedi- ately	Setup	page 9-6	
Pn552	2	Analog Monitor 1 Mag- nification	-10,000 to 10,000	× 0.01	100	All	Immedi- ately	Setup	page 9-6	
Pn553	2	Analog Monitor 2 Mag- nification	-10,000 to 10,000	× 0.01	100	All	Immedi- ately	Setup	page 9-6	
Pn55A	2	Power Consumption Monitor Unit Time	1 to 1,440	1 min	1	All	Immedi- ately	Setup	-	
Pn560	2	Residual Vibration Detection Width	1 to 3,000	0.1%	400	All	Immedi- ately	Setup	page 8-56	
Pn561	2	Overshoot Detection Level	0 to 100	1%	100	All	Immedi- ately	Setup	page 8-23, page 8-35	
Pn580	2	Zero Clamping Level	0 to 10,000	1 mm/s	10	Linear	Immedi- ately	Setup	page 6-24	
Pn581	2	Zero Speed Level	1 to 10,000	1 mm/s	20	Linear	Immedi- ately	Setup	page 6-10	
Pn582	2	Speed Coincidence Detection Signal Output Width	0 to 100	1 mm/s	10	Linear	Immedi- ately	Setup	page 6-26	
Pn583	2	Brake Reference Out- put Speed Level	0 to 10,000	1 mm/s	10	Linear	Immedi- ately	Setup	page 5-35	
Pn584	2	Speed Limit Level at Servo ON	0 to 10,000	1 mm/s	10000	Linear	Immedi- ately	Setup	page 8-8	
Pn585	2	Program Jogging Move- ment Speed	1 to 10,000	1 mm/s	50	Linear	Immedi- ately	Setup	page 7-20	
Pn586	2	Motor Running Cooling Ratio	0 to 100	1%/ Max. speed	0	Linear	Immedi- ately	Setup	_	
Pn600	2	Regenerative Resistor Capacity ^{*3}	Depends on model. ^{*4}	10 W	0	All	Immedi- ately	Setup	page 5-56	
Pn601	2	Dynamic Brake Resis- tor Capacity	Depends on model. ^{*4}	10 W	0	All	Immedi- ately	Setup	-	
Pn603	2	Regenerative Resis- tance	0 to 65,535	10 m Ω	0	All	Immedi- ately	Setup	page 5-56	
Pn604	2	Dynamic Brake Resis- tance	0 to 65,535	10 mΩ	0	All	Immedi- ately	Setup	-	
Pn621 to Pn628 ^{*2}	-	Safety Module-Related Parameters	_	_	_	All	_	_	_	

*1. Set a percentage of the motor rated torque.

*2. These parameters are for SERVOPACKs with a Safety Module. Refer to the following manual for details.

 $(\Box \Sigma - V - Series / \Sigma - V - Series for Large-Capacity Models / \Sigma - 7 - Series User's Manual Safety Module (Manual No.: SIEP C720829 06)$

*3. Normally set this parameter to 0. If you use an External Regenerative Resistor, set the capacity (W) of the External Regenerative Resistor.

*4. The upper limit is the maximum output capacity (W) of the SERVOPACK.

14.2 Parameter Recording Table

Use the following table to record the settings of the parameters.

Parameter No.	Default Setting	Name	When Enabled
Pn000	0000	Basic Function Selections 0	After restart
Pn001	0000	Application Function Selec- tions 1	After restart
Pn002	0000	Application Function Selec- tions 2	After restart
Pn006	0002	Application Function Selec- tions 6	Immediately
Pn007	0000	Application Function Selec- tions 7	Immediately
Pn008	0000	Application Function Selec- tions 8	After restart
Pn009	0010	Application Function Selec- tions 9	After restart
Pn00A	0001	Application Function Selec- tions A	After restart
Pn00B	0000	Application Function Selec- tions B	After restart
Pn00C	0000	Application Function Selec- tions C	After restart
Pn00D	0000	Application Function Selec- tions D	After restart
Pn00F	0000	Application Function Selec- tions F	After restart
Pn010	0001	Axis Address Selection for UART/USB Communica- tions	After restart
Pn021	0000	Reserved parameter	_
Pn080	0000	Application Function Selec- tions 80	After restart
Pn081	0000	Application Function Selec- tions 81	After restart
Pn100	400	Speed Loop Gain	Immediately
Pn101	2000	Speed Loop Integral Time Constant	Immediately
Pn102	400	Position Loop Gain	Immediately
Pn103	100	Moment of Inertia Ratio	Immediately
Pn104	400	Second Speed Loop Gain	Immediately
Pn105	2000	Second Speed Loop Inte- gral Time Constant	Immediately
Pn106	400	Second Position Loop Gain	Immediately
Pn109	0	Feedforward	Immediately
Pn10A	0	Feedforward Filter Time Constant	Immediately
Pn10B	0000	Gain Application Selections	*
Pn10C	200	Mode Switching Level for Torque Reference	Immediately
Pn10D	0	Mode Switching Level for Speed Reference	Immediately
Pn10E	0	Mode Switching Level for Acceleration	Immediately

Den		Continued from p	1 0
Parameter No.	Default Setting	Name	When Enabled
Pn10F	0	Mode Switching Level for Position Deviation	Immediately
Pn11F	0	Position Integral Time Con- stant	Immediately
Pn121	100	Friction Compensation Gain	Immediately
Pn122	100	Second Friction Compen- sation Gain	Immediately
Pn123	0	Friction Compensation Coefficient	Immediately
Pn124	0	Friction Compensation Fre- quency Correction	Immediately
Pn125	100	Friction Compensation Gain Correction	Immediately
Pn131	0	Gain Switching Time 1	Immediately
Pn132	0	Gain Switching Time 2	Immediately
Pn135	0	Gain Switching Waiting Time 1	Immediately
Pn136	0	Gain Switching Waiting Time 2	Immediately
Pn139	0000	Automatic Gain Switching Selections 1	Immediately
Pn13D	2000	Current Gain Level	Immediately
Pn140	0100	Model Following Control- Related Selections	Immediately
Pn141	500	Model Following Control Gain	Immediately
Pn142	1000	Model Following Control Gain Correction	Immediately
Pn143	1000	Model Following Control Bias in the Forward Direc- tion	Immediately
Pn144	1000	Model Following Control Bias in the Reverse Direc- tion	Immediately
Pn145	500	Vibration Suppression 1 Frequency A	Immediately
Pn146	700	Vibration Suppression 1 Frequency B	Immediately
Pn147	1000	Model Following Control Speed Feedforward Com- pensation	Immediately
Pn148	500	Second Model Following Control Gain	Immediately
Pn149	1000	Second Model Following Gain Control Correction	Immediately
Pn14A	800	Vibration Suppression 2 Frequency	Immediately
Pn14B	100	Vibration Suppression 2 Correction	Immediately
Pn14F	0021	Control-Related Selections	After restart
Pn160	0010	Anti-Resonance Control- Related Selections	Immediately
Pn161	1000	Anti-Resonance Frequency	Immediately
Pn162	100	Anti-Resonance Gain Cor- rection	Immediately
Pn163	0	Anti-Resonance Damping Gain	Immediately

		Continued from	previous page.
Parameter No.	Default Setting	Name	When Enabled
Pn164	0	Anti-Resonance Filter Time Constant 1 Correction	Immediately
Pn165	0	Anti-Resonance Filter Time Constant 2 Correction	Immediately
Pn166	0	Anti-Resonance Damping Gain 2	Immediately
Pn170	1401	Tuning-less Function- Related Selections	*
Pn181	0	Mode Switching Level for Speed Reference	Immediately
Pn182	0	Mode Switching Level for Acceleration	Immediately
Pn200	0000	Position Control Reference For Selections	After restart
Pn205	65535	Multiturn Limit	After restart
Pn207	0000	Position Control Function Selections	After restart
Pn20A	32768	Number of External Scale Pitches	After restart
Pn20E	64	Electronic Gear Ratio (Numerator)	After restart
Pn210	1	Electronic Gear Ratio (Denominator)	After restart
Pn212	2048	Number of Encoder Output Pulses	After restart
Pn216	0	Position Reference Acceler ation/Deceleration Time Constant	Immediately after the motor stops
Pn217	0	Average Position Reference Movement Time	Immediately after the motor stops
Pn218	1	Reference Pulse Input Mul- tiplier	Immediately
Pn22A	0000	Fully-closed Control Selec- tions	After restart
Pn281	20	Encoder Output Resolution	After restart
Pn282	0	Linear Encoder Pitch	After restart
Pn300	600	Speed Reference Input Gain	Immediately
Pn301	100	Internal Set Speed 1	Immediately
Pn302	200	Internal Set Speed 2	Immediately
Pn303	300	Internal Set Speed 3	Immediately
Pn304 Pn305	500 0	Jogging Speed Soft Start Acceleration	Immediately Immediately
Pn306	0	Time Soft Start Deceleration	Immediately
Pn307	40	Time Speed Reference Filter	Immediately
Pn308	0	Time Constant Speed Feedback Filter Time Constant	Immediately
Pn30A	0	Deceleration Time for Serve OFF and Forced Stops	
Pn30C	0	Speed Feedforward Aver- age Movement Time	Immediately
Pn310	0000	Vibration Detection Selections	Immediately

		Continued from p	
Parameter No.	Default Setting	Name	When Enabled
Pn311	100	Vibration Detection Sensi- tivity	Immediately
Pn312	50	Vibration Detection Level	Immediately
Pn316	10000	Maximum Motor Speed	After restart
Pn324	300	Moment of Inertia Calcula- tion Starting Level	Immediately
Pn380	10	Internal Set Speed 1	Immediately
Pn381	20	Internal Set Speed 2	Immediately
Pn382	30	Internal Set Speed 3	Immediately
Pn383	50	Jogging Speed	Immediately
Pn384	10	Vibration Detection Level	Immediately
Pn385	50	Maximum Motor Speed	After restart
Pn400	30	Torque Reference Input Gain	Immediately
Pn401	100	First Stage First Torque Reference Filter Time Con- stant	Immediately
Pn402	800	Forward Torque Limit	Immediately
Pn403	800	Reverse Torque Limit	Immediately
Pn404	100	Forward External Torque Limit	Immediately
Pn405	100	Reverse External Torque Limit	Immediately
Pn406	800	Emergency Stop Torque	Immediately
Pn407	10000	Speed Limit during Torque Control	Immediately
Pn408	0000	Torque-Related Function Selections	*
Pn409	5000	First Stage Notch Filter Fre- quency	Immediately
Pn40A	70	First Stage Notch Filter Q Value	Immediately
Pn40B	0	First Stage Notch Filter Depth	Immediately
Pn40C	5000	Second Stage Notch Filter Frequency	Immediately
Pn40D	70	Second Stage Notch Filter Q Value	Immediately
Pn40E	0	Second Stage Notch Filter Depth	Immediately
Pn40F	5000	Second Stage Second Torque Reference Filter Fre- quency	Immediately
Pn410	50	Second Stage Second Notch Filter Q Value	Immediately
Pn412	100	First Stage Second Torque Reference Filter Time Con- stant	Immediately
Pn415	0	T-REF Filter Time Constant	Immediately
Pn416	0000	Torque-Related Function Selections 2	Immediately
Pn417	5000	Third Stage Notch Filter Frequency	Immediately
Pn418	70	Third Stage Notch Filter Q Value	Immediately

Continued from previous pag					
Parameter No.	Default Setting	Name	When Enabled		
Pn419	0	Third Stage Notch Filter Depth	Immediately		
Pn41A	5000	Fourth Stage Notch Filter Frequency	Immediately		
Pn41B	70	Fourth Stage Notch Filter Q Value	Immediately		
Pn41C	0	Fourth Stage Notch Filter Depth	Immediately		
Pn41D	5000	Fifth Stage Notch Filter Fre- quency	Immediately		
Pn41E	70	Fifth Stage Notch Filter Q Value	Immediately		
Pn41F	0	Fifth Stage Notch Filter Depth	Immediately		
Pn423	0000	Speed Ripple Compensa- tion Selections	*		
Pn424	50	Torque Limit at Main Circuit Voltage Drop	Immediately		
Pn425	100	Release Time for Torque Limit at Main Circuit Voltage Drop	Immediately		
Pn426	0	Torque Feedforward Aver- age Movement Time	Immediately		
Pn427	0	Speed Ripple Compensa- tion Enable Speed	Immediately		
Pn456	15	Sweep Torque Reference Amplitude	Immediately		
Pn460	0101	Notch Filter Adjustment Selections 1	Immediately		
Pn480	10000	Speed Limit during Force Control	Immediately		
Pn481	400	Polarity Detection Speed Loop Gain	Immediately		
Pn482	3000	Polarity Detection Speed Loop Integral Time Con- stant	Immediately		
Pn483	30	Forward Force Limit	Immediately		
Pn484	30	Reverse Force Limit	Immediately		
Pn485	20	Polarity Detection Refer- ence Speed	Immediately		
Pn486	25	Polarity Detection Refer- ence Acceleration/Deceler- ation Time	Immediately		
Pn487	0	Polarity Detection Con- stant Speed Time	Immediately		
Pn488	100	Polarity Detection Reference Waiting Time	Immediately		
Pn48E	10	Polarity Detection Range	Immediately		
Pn490	100	Polarity Detection Load Level	Immediately		
Pn495	100	Polarity Detection Confir- mation Force Reference	Immediately		
Pn498	10	Polarity Detection Allowable Error Range	Immediately		
Pn49F	0	Speed Ripple Compensa- tion Enable Speed	Immediately		
Pn501	10	Zero Clamping Level	Immediately		

Continued from previous page.	Continued	from	previous	page.
-------------------------------	-----------	------	----------	-------

Parameter No.	Default Setting	Name	When Enabled
Pn502	20	Rotation Detection Level	Immediately
Pn503	10	Speed Coincidence Detec- tion Signal Output Width	Immediately
Pn506	0	Brake Reference-Servo OFF Delay Time	Immediately
Pn507	100	Brake Reference Output Speed Level	Immediately
Pn508	50	Servo OFF-Brake Com- mand Waiting Time	Immediately
Pn509	20	Momentary Power Interrup- tion Hold Time	Immediately
Pn50A	2100	Input Signal Selections 1	After restart
Pn50B	6543	Input Signal Selections 2	After restart
Pn50C	8888	Input Signal Selections 3	After restart
Pn50D	8888	Input Signal Selections 4	After restart
Pn50E	3211	Output Signal Selections 1	After restart
Pn50F	0000	Output Signal Selections 2	After restart
Pn510	0000	Output Signal Selections 3	After restart
Pn512	0000	Output Signal Inverse Set- tings	After restart
Pn513	0000	Output Signal Inverse Set- tings 2	After restart
Pn514	0000	Output Signal Selections 4	After restart
Pn515	8888	Input Signal Selections 6	After restart
Pn516	8888	Input Signal Selections 7	After restart
Pn517	0654	Output Signal Selections 5	After restart
Pn51B	1000	Motor-Load Position Devia- tion Overflow Detection Level	Immediately
Pn51E	100	Position Deviation Over- flow Warning Level	Immediately
Pn520	5242880	Position Deviation Over- flow Alarm Level	Immediately
Pn522	7	Positioning Completed Width	Immediately
Pn524	1073741824	Near Signal Width	Immediately
Pn526	5242880	Position Deviation Over- flow Alarm Level at Servo ON	Immediately
Pn528	100	Position Deviation Over- flow Warning Level at Servo ON	Immediately
Pn529	10000	Speed Limit Level at Servo ON	Immediately
Pn52A	20	Multiplier per Fully-closed Rotation	Immediately
Pn52B	20	Overload Warning Level	Immediately
Pn52C	100	Base Current Derating at Motor Overload Detection	After restart
Pn52D	50	Reserved parameter	_
Pn52F	OFFF	Monitor Display at Startup	Immediately
Pn530	0000	Program Jogging-Related Selections	Immediately
Pn531	32768	Program Jogging Travel Distance	Immediately

Parameter No.	Default Setting	Name	When Enabled
Pn533	500	Program Jogging Move- ment Speed	Immediately
Pn534	100	Program Jogging Accelera- tion/Deceleration Time	Immediately
Pn535	100	Program Jogging Waiting Time	Immediately
Pn536	1	Program Jogging Number of Movements	Immediately
Pn550	0	Analog Monitor 1 Offset Voltage	Immediately
Pn551	0	Analog Monitor 2 Offset Voltage	Immediately
Pn552	100	Analog Monitor 1 Magnifi- cation	Immediately
Pn553	100	Analog Monitor 2 Magnifi- cation	Immediately
Pn55A	1	Power Consumption Moni- tor Unit Time	Immediately
Pn560	400	Residual Vibration Detec- tion Width	Immediately
Pn561	100	Overshoot Detection Level	Immediately
Pn580	10	Zero Clamping Level	Immediately
Pn581	20	Zero Speed Level	Immediately
Pn582	10	Speed Coincidence Detec- tion Signal Output Width	Immediately
Pn583	10	Brake Reference Output Speed Level	Immediately
Pn584	10000	Speed Limit Level at Servo ON	Immediately
Pn585	50	Program Jogging Move- ment Speed	Immediately
Pn586	0	Motor Running Cooling Ratio	Immediately
Pn600	0	Regenerative Resistor Capacity	Immediately
Pn601	0	Dynamic Brake Resistor Capacity	Immediately
Pn603	0	Regenerative Resistance	Immediately
Pn604	0	Dynamic Brake Resistance	Immediately

* The enable timing depends on the digit that is changed. Refer to the following section for details.

Appendices

The appendix provides host controller connection examples, and tables of corresponding SERVOPACK and SigmaWin+ function names.

(15)

15.1	Exam	oles of Connections to Host Controllers .15-2
	15.1.1	Example of Connections to MP2000/MP3000- Series SVA-01 Motion Module
	15.1.2	Example of Connections to Yokogawa Electric's F3YP2□-0P Positioning Module
	15.1.3	for Position Control
	15.1.5	Electric's F3NC3D-0N Positioning Module
	15.1.4	for Position Control 15-5 Example of Connections to an OMRON
		Position Control Unit 15-6
	15.1.5	Example of Connection to Mitsubishi's QD75DD Positioning Module for Position Control 15-7
15.2	Correspon	nding SERVOPACK and SigmaWin+ Function Names
	15.2.1	Corresponding SERVOPACK Utility Function Names
	15.2.2	

15.1.1 Example of Connections to MP2000/MP3000-Series SVA-01 Motion Module

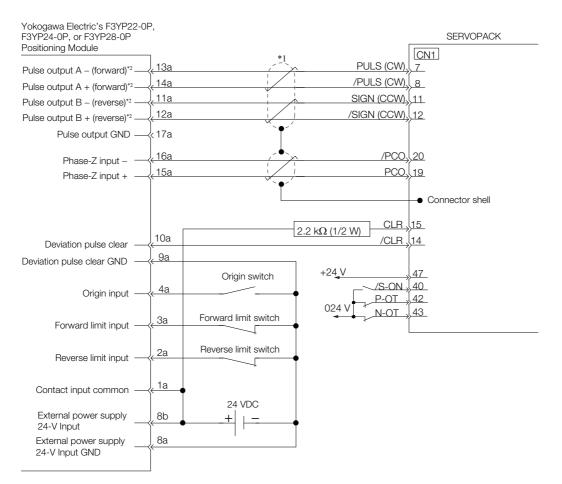
15.1 Examples of Connections to Host Controllers

This section provides examples of connections to host controllers.

15.1.1 Example of Connections to MP2000/MP3000-Series SVA-01 Motion Module

				Analog Monite	or Cable		SERVOPACK
				(model: JZSP			CN5
		AI-GND		-0 0	Black	4	GND
					Black	(3	GND
MP2000/MP3000 Series	_	TMON			White	2	Analog monitor 1 (torque reference monitor)
SVA-01		VTG			Red	(1	Analog monitor 2 (speed monitor)
				-0 0	,		
CN1/CN2							CN1
1 SG			<u> </u>		SG .	2	
_2) AO_0 (NREF)					V-REF	5	
			\geq		PA	33	
_4 PAL					/PA	34	
<u>5</u> PC		Y /	\sim		PC .	19	
<u>6 PCL</u>					/PC	<u>20</u>	
					SG (6	
<u>8</u>); AI_0 (VTG)					,	ĺ	
<u>9</u>) AO_1 (TREF)					T-REF、	9	
10) 0 V (for 24 V)					ALM 🤇	(32	
11), 0 V (for 24 V)					,	,,	
12), DO_2 (PCON)				/C-SEL (Contro	Selection)	41	
13), DO_4					et by user.)	45	
14), DO 3					et by user.)	46	
15), DI_3 (P-OT)				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	P-OT (42	
16), +24V					+24VIN	47	
17), DL_0 (SVALM)					ALM+	(31	
18), DL_2 (ZERO/HOME LS)						> -	
					00	10	
					SG .	10	
20) SEN (5 V)					SEN	4	
AI_1 (TMON)							
_23) PB					PB .	35	
24 PBL					/PB	36	
_ <u>25</u>) SG				TGC)N- (/BRK-)	28	
<u>26)</u> AI-GND				TGO	N+ (/BRK+) 🤇	27	
_27) AO-GND					SG 🤇	(1)	
28)) 0 V (for 24 V)					/S-RDY-	(30	
29), 0 V (for 24 V)					,	í	
30), DO_1 (ALMRST)					/ALM RST 、	44	
31), DO_0 (SV ON)					/S-ON	40	
32), DO_5 (SEN for VS866)					,	»)——	
33), DI_4 (N-OT)					N-OT 、	43	
34), +24V	•					»)—	
35), DI_1 (SRDY)					/S-RDY+、	29	
36), DI_5 (EXT/DEC)		; /		·	BAT-		~.
		`		lí	,	21	
		/			BAT+	21	
Hood FG		/ L				•	Connector shell
				``			、
EXT/DEC input				Battery f	or absolute e	encor	ler (3.6 V)
							A battery is
ZERO/HOME limit switch input				Battery f	or absolute e	encoc	
P-OT input				\\			/ a Rotary
					Brake inter	lock o	output (+)
N-OT input					Brake inter	lock (outout (-)
			L		Drane III.el		

Note: 1. Cables to connect the SERVOPACK to the MP2000/MP3000 are available from Yaskawa. For details, refer to the manual for the Machine Controller.


- 2. Only signals that are applicable to the MP2000/MP3000-Series SVA-01 Motion Module and the SERVO-PACK are shown in the diagram.
- 3. The main circuit power supply for the SERVOPACK in this connection example is three-phase 200 VAC.
- 4. Incorrect wiring may damage the Machine Controller or SERVOPACK. Wire all connections carefully.
- 5. Do not wire any unused signal lines (i.e., leave them open).
- 6. The above wiring diagram shows the connections for only one axis. If you will use other axes, make connections to the SERVOPACK in the same way.
- 7. All normally closed input terminals that are not used at the Machine Controller's I/O connector section must be connected at the connector.
- 8. Set the parameters so that the servo can be turned ON and OFF with the /S-ON (Servo ON) signal.

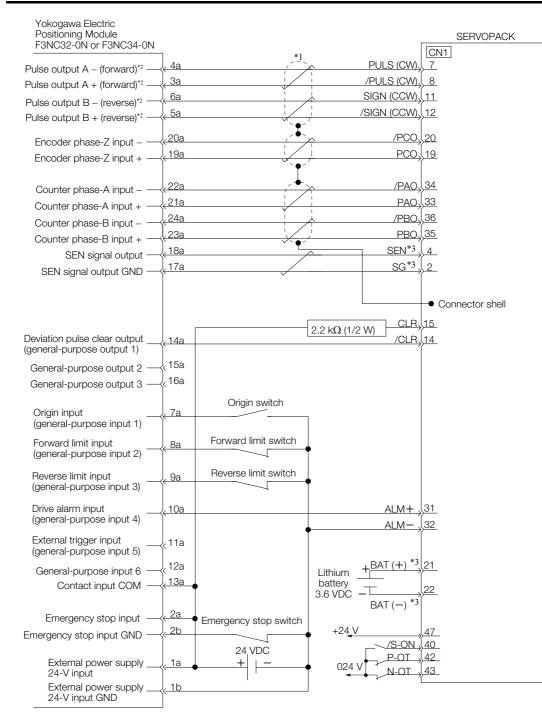
15.1.1 Example of Connections to MP2000/MP3000-Series SVA-01 Motion Module

9. The SERVOPACK provides safety functions to protect people from the hazardous operation of the moving parts of the machine. In order to use the safety functions, the required circuits must be configured for CN8. If the safety functions will not be used, leave the enclosed Safety Jumper Connector connected to the SERVOPACK (CN8). Refer to the following chapter for details.
Chapter 11 Safety Functions

15.1.2 Example of Connections to Yokogawa Electric's F3YP2D-0P Positioning Module for Position Control

15.1.2 Example of Connections to Yokogawa Electric's F3YP2D-0P Positioning Module for Position Control

*1. Indicates shielded twisted-pair cable.


*2. The pulse output from Yokogawa Electric's F3YP2D-0P Positioning Module uses negative logic, so the positive and negative connections are reversed.

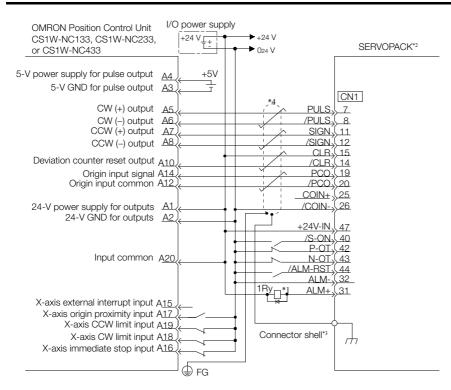
Note: 1. Only signals that are applicable to the SERVOPACK and Yokogawa Electric's F3YP2D-0P Positioning Module are shown in the diagram.

- 2. Incorrect wiring may damage the Positioning Module or SERVOPACK. Wire all connections carefully.
- 3. Do not wire any unused signal lines (i.e., leave them open).
- 4. The above wiring diagram shows the connections for only one axis. If you will use other axes, performing wiring to the SERVOPACK in the same way.

15.1.3 Example of Connections to Yokogawa Electric's F3NC3D-0N Positioning Module for Position Control

15.1.3 Example of Connections to Yokogawa Electric's F3NC3D-0N Positioning Module for Position Control

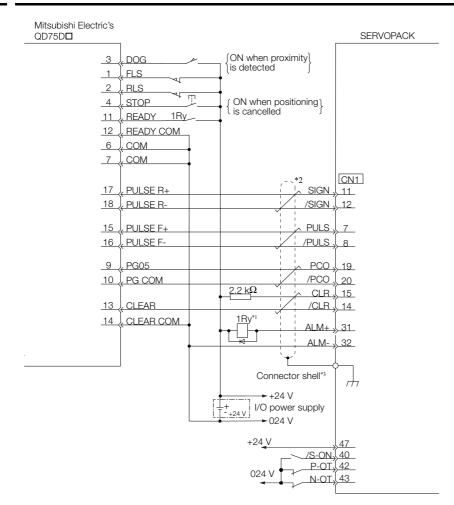
*1. Indicates shielded twisted-pair cable.


- *2. The pulse output from Yokogawa Electric's F3NC3D-0N Positioning Module uses negative logic, so the positive and negative connections are reversed.
- *3. Connect these when using an absolute encoder.

Note: 1. Only signals that are applicable to the SERVOPACK and Yokogawa Electric's F3NC3⁻⁰N Positioning Module are shown in the diagram.

- 2. Incorrect wiring may damage the Positioning Module or SERVOPACK. Wire all connections carefully.
- 3. Do not wire any unused signal lines (i.e., leave them open).
- 4. The above wiring diagram shows the connections for only one axis. If you will use other axes, performing wiring to the SERVOPACK in the same way.

15.1.4 Example of Connections to an OMRON Position Control Unit


15.1.4 Example of Connections to an OMRON Position Control Unit

- *1. The ALM (Servo Alarm) signal is output for approximately five seconds when the power supply is turned ON. Take this into consideration when designing the power ON sequence. Also, use the ALM signal to actuate the alarm detection relay (1Ry) to stop the main circuit power supply to the SERVOPACK.
- *2. Set Pn200 to n. DDD1 (CW and CCW pulse trains with positive logic).
- *3. Connect the shielded wire to the connector shell.
- *4. represents a shielded twisted-pair cable.
- Note: 1. Only the signals that are applicable to the SERVOPACK and the OMRON Position Control Unit are shown in the diagram.
 - 2. The main circuit power supply for the SERVOPACK in this connection example is three-phase 200 VAC.
 - 3. Incorrect wiring may damage the Position Control Unit or SERVOPACK. Wire all connections carefully.
 - 4. Do not wire any unused signal lines (i.e., leave them open).
 - The above wiring diagram shows the connections for only the X axis. If you will use other axes, make connections to the SERVOPACK in the same way.
 - 6. All normally closed input terminals that are not used at the Position Control Unit's I/O connector section must be connected at the connector.
 - 7. Set the parameters so that the servo can be turned ON and OFF with the /S-ON (Servo ON) signal.
 - 8. The SERVOPACK provides safety functions to protect people from the hazardous operation of the moving parts of the machine. In order to use the safety functions, the required circuits must be configured for CN8. If the safety functions will not be used, leave the enclosed Safety Jumper Connector connected to the SERVOPACK (CN8). Refer to the following chapter for details.
 - Chapter 11 Safety Functions

15.1.5 Example of Connection to Mitsubishi's QD75DD Positioning Module for Position Control

15.1.5 Example of Connection to Mitsubishi's QD75D□ Positioning Module for Position Control

- *1. The ALM (Servo Alarm) signal is output for up to five seconds when the power supply is turned ON. Take this into consideration when designing the power ON sequence. Also, use the ALM signal to actuate the alarm detection relay (1Ry) to stop the main circuit power supply to the SERVOPACK.
- *2. represents a shielded twisted-pair cable.

*3. Connect the shielded wire to the connector shell.

- Note: 1. Only the signals that are applicable to the SERVOPACK and Mitsubishi Electric's QD75D□ Positioning Module are shown in the diagram.
 - 2. The main circuit power supply for the SERVOPACK in this connection example is three-phase 200 VAC.
 - 3. Incorrect wiring may damage the Positioning Module or SERVOPACK. Wire all connections carefully.
 - 4. Do not wire any unused signal lines (i.e., leave them open).
 - 5. The above wiring diagram shows the connections for only one axis. If you will use other axes, make connections to the SERVOPACK in the same way.
 - 6. All normally closed input terminals that are not used at the Positioning Module's I/O connector section must be connected at the connector.
 - 7. Set the parameters so that the servo can be turned ON and OFF with the /S-ON (Servo ON) signal.
 - 8. The SERVOPACK provides safety functions to protect people from the hazardous operation of the moving parts of the machine. In order to use the safety functions, the required circuits must be configured for CN8. If the safety functions will not be used, leave the enclosed Safety Jumper Connector connected to the SERVOPACK (CN8). Refer to the following chapter for details.

15.2.1 Corresponding SERVOPACK Utility Function Names

15.2 Corresponding SERVOPACK and SigmaWin+ Function Names

This section gives the names and numbers of the utility functions and monitor display functions used by the SERVOPACKs and the names used by the SigmaWin+.

15.2.1 Corresponding SERVOPACK Utility Function Names

	SigmaWin+	SERVOPACK			
Menu Bar Button	Function Name	Fn No.	Function Name		
	Origin Search	Fn003	Origin Search		
	Reset Absolute Encoder	Fn008	Reset Absolute Encoder		
	Adjust the Speed and Torque Ref-	Fn009	Autotune Analog (Speed/Torque) Reference Off- set		
	erence Offset	Fn00A	Manually Adjust Speed Reference Offset		
		Fn00B	Manually Adjust Torque Reference Offset		
		Fn00C	Adjust Analog Monitor Output Offset		
	Adjust the Analog Monitor Output	Fn00D	Adjust Analog Monitor Output Gain		
		Fn00E	Autotune Motor Current Detection Signal Offset		
	Adjust the Motor Current Detec- tion Signal Offsets	Fn00F	Manually Adjust Motor Current Detection Signal Offset		
Setup	Multiturn Limit Setting	Fn013	Multiturn Limit Setting after Multiturn Limit Disagreement Alarm		
	Reset Option Module Configura- tion Error	Fn014	Reset Option Module Configuration Error		
	Initialize Vibration Detection Level	Fn01B	Initialize Vibration Detection Level		
	Set Absolute Linear Encoder Ori- gin	Fn020	Set Absolute Linear Encoder Origin		
	Reset Motor Type Alarm	Fn021	Reset Motor Type Alarm		
	Software Reset	Fn030	Software Reset		
	Polarity Detection	Fn080	Polarity Detection		
	Tuning-less Level Setting	Fn200	Tuning-less Level Setting		
	Easy FFT	Fn206	Easy FFT		
	Initialize Servo	Fn005	Initializing Parameters		
Parameters	Write Prohibition Setting	Fn010	Write Prohibition Setting		
	Setup Wizard	-	-		
	Autotuning without Host Refer- ence	Fn201	Advanced Autotuning without Reference		
	Autotuning with Host Reference	Fn202	Advanced Autotuning with Reference		
Tuning	Custom Tuning	Fn203	One-Parameter Tuning		
	Adjust Anti-resonance Control	Fn204	Adjust Anti-resonance Control		
	Vibration Suppression	Fn205	Vibration Suppression		
	Moment of Inertia Estimation	-	-		
		Fn011	Display Servomotor Model		
		Fn012	Display Software Version		
Monitoring	Product Information	Fn01E	Display SERVOPACK and Servomotor IDs		
		Fn01F	Display Servomotor ID from Feedback Option Module		
Test Opera-	Jog	Fn002	Jog		
tion	Jog Program	Fn004	Jog Program		
Alarma	Display Alarm History	Fn000	Display Alarm History		
Alarms	Clear Alarm History	Fn006	Clear Alarm History		
Solutions	Mechanical Analysis	-	-		

15.2.2 Corresponding SERVOPACK Monitor Display Function Names

15.2.2 Corresponding SERVOPACK Monitor Display Function Names

SigmaWin+			SERVOPACK			
Menu Bar Button	Name [Unit]	Un No.	Name [Unit]			
	Motor Speed [min ⁻¹]	Un000	Motor Speed [min-1]			
	Speed Reference [min ⁻¹]	Un001	Speed Reference [min ⁻¹]			
	Torque Reference [%]	Un002	Torque Reference [%] (percentage of rated torque)			
	 Rotary Servomotors: Rotational Angle 1 [encoder pulses] (number of encoder pulses from origin within one encoder rotation) Linear Servomotors: Electrical Angle 1 [linear encoder pulses] (linear encoder pulses from the polarity origin) 	Un003	 Rotary Servomotors: Rotational Angle 1 [encoder pulses] (number of encoder pulses from origin within one encoder rotation displayed in decimal) Linear Servomotors: Electrical Angle 1 [linear encoder pulses] (linear encoder pulses from the polarity origin displayed in decimal) 			
Motion Monitor	 Rotary Servomotors: Rotational Angle 2 [deg] (electrical angle from origin within one encoder rotation) Linear Servomotors: Electrical Angle 2 [deg] (electrical angle from polarity ori- gin) 	Un004	 Rotary Servomotors: Rotational Angle 2 [deg] (electrical angle from polarity origin) Linear Servomotors: Electrical Angle 2 [deg] (electrical angle from polarity origin) 			
	Input Reference Pulse Speed [min ⁻¹]	Un007	Input Reference Pulse Speed [min ⁻¹] (displayed only during position control)			
	Position Deviation [reference units]	Un008	Position Error Amount [reference units] (displayed only during position control)			
	Accumulated Load Ratio [%]	Un009	Accumulated Load Ratio [%] (percentage of rated torque: effective torque in cycles of 10 seconds)			
	Regenerative Load Ratio [%]	Un00A	Regenerative Load Ratio [%] (percentage of processable regenerative power: regenerative power consumption in cycles of 10 seconds)			
	Dynamic Brake Resistor Power Con- sumption [%]	Un00B	Power Consumed by DB Resistance [%] (percentage of processable power at DB acti- vation: displayed in cycles of 10 seconds)			
	Input Reference Pulse Counter [ref- erence units]	Un00C	Input Reference Pulse Counter [reference units]			
	Feedback Pulse Counter [encoder pulses]	Un00D	Feedback Pulse Counter [encoder pulses]			

15.2.2 Corresponding	SERVOPACK Monitor Display Function Names
----------------------	--

	SigmaWin+		SERVOPACK
Menu Bar Button	Name [Unit]	Un No.	Name [Unit]
	Fully-closed Loop Feedback Pulse Counter [external encoder resolu- tion]	Un00E	Fully-closed Loop Feedback Pulse Counter [external encoder resolution]
	Upper Limit Setting of Motor Maxi- mum Speed/Upper Limit Setting of Encoder Output Resolution	Un010*1	Upper Limit Setting of Motor Maximum Speed/ Upper Limit Setting of Encoder Output Resolu- tion
	Total Operation Time [100 ms]	Un012	Total Operation Time [100 ms]
	Feedback Pulse Counter [reference units]	Un013	Feedback Pulse Counter [reference units]
Motion	Power Consumption [W]	Un032	Power Consumption [W]
Monitor	Consumed Power [0.001 Wh]	Un033	Consumed Power [0.001 Wh]
	Cumulative Power Consumption [Wh]	Un034	Cumulative Power Consumption [Wh]
	Absolute Encoder Multiturn Data	Un040	Absolute Encoder Multiturn Data
	Position within One Rotation of Absolute Encoder [encoder pulses]	Un041	Position within One Rotation of Absolute Encoder [encoder pulses]
	Lower Bits of Absolute Encoder Position [encoder pulses]	Un042	Lower Bits of Absolute Encoder Position [encoder pulses]
	Upper Bits of Absolute Encoder Position [encoder pulses]	Un043	Upper Bits of Absolute Encoder Position [encoder pulses]
	Polarity Sensor Signal Monitor	Un011	Polarity Sensor Signal Monitor
Status Monitor	Active Gain Monitor	Un014	Effective Gain Monitor (gain settings 1 = 1, gain settings 2 = 2)
	Safety I/O Signal Monitor	Un015	Safety I/O Signal Monitor
Input Sig- nal Moni- tor	Input Signal Monitor	Un005	Input Signal Monitor
Output Signal Monitor	Output Signal Monitor	Un006	Output Signal Monitor
	Installation Environment Monitor – SERVOPACK	Un025	SERVOPACK Installation Environment Monitor [%]
Service Life Moni- tor Product Informa- tion	Installation Environment Monitor – Servomotor ^{*2}	Un026*2	Servomotor Installation Environment Monitor [%]
	Service Life Prediction Monitor – Built-in Fan	Un027	Built-in Fan Remaining Life Ratio [%]
	Service Life Prediction Monitor – Capacitor	Un028	Capacitor Remaining Life Ratio [%]
	Service Life Prediction Monitor – Surge Prevention Circuit	Un029	Surge Prevention Circuit Remaining Life Ratio [%]
	Service Life Prediction Monitor – Dynamic Brake Circuit	Un02A	Dynamic Brake Circuit Remaining Life Ratio [%]
	Motor Doost tion	Un084	Linear Encoder Pitch (Scale pitch = Un084 \times 10 ^{Un085} [pm])
	Motor – Resolution	Un085	Linear Encoder Pitch Exponent (Scale pitch = Un084 × 10 ^{Un085} [pm])
_	-	Un020	Rated Motor Speed [min ⁻¹]
	-	Un021	Maximum Motor Speed [min-1]
		1	· • •

*1. You can use Un010 to monitor the upper limit setting for the maximum motor speed or the upper limit setting for the encoder output resolution.

You can monitor the upper limit of the encoder output resolution setting (Pn281) for the current maximum motor speed setting (Pn385), or you can monitor the upper limit of the maximum motor speed setting for the current Select which signal to monitor with Pn080 = $n.X\square\square\square$ (Calculation Method for Maximum Speed or Divided Out-

If Pn080 = n.1□□□, the encoder output resolution (Pn281) that can be set is displayed.
If Pn080 = n.1□□□, the maximum motor speed (Pn385) that can be set is displayed in mm/s.

*2. This applies to the following motors. The display will show 0 for all other models. SGM7J, SGM7A, SGM7P, SGM7G, and SGMCV

\langle Index angle

Symbols

/ALM-RST12-39
/ALM-RST (Alarm Reset Input) signal12-39
/ВК5-36
/BK (Brake) signal5-36
/CLT (Torque Limit Detection) signal
/COIN (Positioning Completion) signal
/C-SEL6-60
/CSEL(Control Selection) signal
/G-SEL8-67
/HWBB14-45
/HWBB24-45
/INHIBIT
/N-CL
/N-CL (Reverse External Torque Limit) signal
/NEAR
/NEAR (Near) signal
/P-CL6-64
/P-CL (Forward External Torque Limit) signal
/P-CON
/P-CON (Proportional Control) signal
/PSEL6-34
/PSELA6-34
/S-ON
/S-ON (Servo ON) signal
/SPD-A6-54
/SPD-B
/SPD-D
/S-RDY
/S-RDY (Servo Ready) signal
/TGON6-10
/TGON (Rotation Detection) signal
/V-CMP6-26
/V-CMP (Speed Coincidence Detection) signal 6-26
/VLT
/VLT (Speed Limit Detection) signal
/WARN 6-9
/WARN (Warning) signal 6-9
/ZCLAMP

Α

A.CC0
absolute encoder
resetting5-50
wiring4-23
AC power supply input
setting
additional adjustment functions

alarm code output 12-5
alarm reset possibility 12-5
ALM
ALM (Servo Alarm) signal 6-8
ALO16-9
ALO26-9
ALO36-9
analog input circuits 4-40
Analog Monitor Connector 4-46
analog monitor factors9-10
anti-resonance control8-51
automatic detection of connected motor 5-15
automatic gain switching 8-67
automatic notch filters 8-31
autotuning with a host reference 8-35
autotuning without a host reference 8-23

В

base block (BB)
battery
replacement 12-3
block diagram2-10

С

CCW5-17
clearing alarm history 12-41
CLR 6-33
CLR (Position Deviation Clear) signal6-33
CN1 4-30
CN2 4-22
CN3 4-46
CN5 4-46
CN7 4-46
CN8 4-44
coasting 5-40
coasting to a stop 5-40
coefficient of speed fluctuation
compatible adjustment functions 8-84
Computer Connector 4-46
connecting a safety function device 11-13
control method selection 5-12
countermeasures against noise4-5
current control mode selection 8-71
current gain level setting8-71
custom tuning8-42
CW5-17

D

DATA/SHIFT Key 13-3
DC power supply input4-12
setting5-13

DC Reactor

1
1
0
4
3
3
5
0
0
3
0
0

Е

EasyFFT 8-92
EDM1 11-9
EDM1 (External Device Monitor) signal 11-9
electronic gear 5-45
encoder divided pulse output 6-47, 10-7
setting 6-52
signals 6-47
encoder resolution 5-47, 6-52
estimating the moment of inertia 8-15
examples of connections to host controllers 15-2
External Regenerative Resistor 5-56
external torque limits 6-64

F

feedback pulse counter 5-24	
feedforward 8-33, 8-84	
feedforward compensation 8-84	
FG 4-8, 4-32	
forward direction 10-6	ì
forward rotation 5-17	•
friction compensation 8-32, 8-69)
fully-closed system 10-2	

G

gain switching 8-66
grounding 4-8
group 1 alarms 5-41
group 2 alarms 5-41

Н

hard wire base block (HWBB) 11-4
HWBB input signal specifications 11-6
hard wire base block (HWBB) state 11-5
detecting errors in HWBB signal 11-6
resetting 11-5
holding brake 5-35

HWBB11-4, 11-5	
detecting errors in HWBB signal 11-6	
HWBB input signal specifications11-6	
HWBB state	
resetting11-5	

I

•
I/O signals
allocations6-4
functions
monitoring9-5
names4-30
wiring example
initializing the vibration detection level
input signals
allocations6-4
internal set speed6-56
internal set speed control 6-54, 6-58
internal torque limits 6-63
I-P control

L
limiting torque6-63
limiting torque with an analog reference 6-67
limiting torque with an external torque limit and an 6-69
Linear Encoder
wiring example
linear encoder
feedback resolution
scale pitch setting
Linear Servomotor vii
Linear Servomotor Overheat Protection Input 4-30
line-driver output circuits4-43
list of alarms12-5
list of parameters14-2
list of warnings

Μ

Main Circuit Cable vii
manual gain switching 8-67
manual tuning8-74
mechanical analysis 8-90
mode switching (changing between proportional
and PI control) 8-86
MODE/SET Key13-3
Momentary Power Interruption Hold Time 6-12
monitor display (UnDDD) operations
monitor factors
Motion Monitor

Ν

Noise Filter 4-6
Noise Filter connection precautions 4-7
N-OT5-30, 5-31
N-OT (Reverse Drive Prohibit) signal
notch filters

0

offset6-19
open-collector output circuits
operation for momentary power interruptions
origin search7-25
output phase form
overload warnings
overtravel
warnings5-33

Ρ

Panel Operator
key names and functions
status display
PAO6-47, 10-7
parameter settings recording table 14-34
parameters
classification 5-3
initializing parameter settings 5-9
notation (numeric settings) viii
notation (selecting functions) viii, 5-5
setting methods 5-5
write prohibition setting 5-6
РВО6-47, 10-7
PCO6-47, 10-7
photocoupler input circuits
photocoupler output circuits
Pl control
PLUS
polarity detection
polarity sensor
position control
position integral8-89
position loop gain8-75
position reference input circuits
positioning completed width

P-OT 5-30, 5-31
P-OT (Forward Drive Prohibit) signal 5-31
program jogging 7-20
operation pattern7-20
proportional control (P control) 8-72
PULS 4-31
Pulse Reference Input 4-31

R

reference pulse form 6-31
reference pulse inhibition function 6-39
reference pulse input multiplication switching6-34
reference pulse input multiplier 6-34
reference unit5-45
Regenerative Resistor
connection 4-19
regenerative resistor 5-56
regenerative resistor capacity5-56
resetting alarms 12-39
resetting alarms detected in Option Modules 12-42
reverse direction 10-6
risk assessment 11-4
Rotary Servomotor vii

S

Safety Function Signals 4-44
safety functions11-3
application examples 11-10
monitoring
precautions
verification test 11-12
safety input circuits 4-44
scale pitch 5-18
selecting combined control methods6-58
selecting the phase sequence for a Linear Servomotor - 5-23
selecting torque limits 6-63
SEMI F47 function 6-13
Serial Communications Connector 4-46
Serial Converter Unit5-18
Servo Drive vii
servo gains 8-74
servo lockvii
servo OFFvii
servo ON vii
Servo Systemvii
Servomotor vii
Servomotor stopping method for alarms 5-41

SERVOPACK	vii
inspections and part replacement	12-2
part names	
ratings	
specifications	
status display	
status displays	
setting the origin	
setting the position deviation overflow alarm level	- 8-8
setting the position deviation overflow alarm level at servo ON	8-10
setting the vibration detection level	8-10
setting the warning code output	- 6-9
setup parameters	- 5-3
SG	- 6-9
SigmaWin+	vii
SIGN 4-31,	6-31
Sign of Reference Input	4-31
signal allocations	- 6-4
single-phase AC power supply input	
setting	5-14
single-phase, 200-VAC power supply input	
wiring example	
sink circuits	
smoothing	6-35
soft start	6-23
software reset	6-94
source circuits	
speed control	6-16
speed detection method selection	
speed feedforward	8-84
speed limit during torque control	6-45
speed loop gain	8-76
speed loop integral time constant	8-76
speed reference	
automatic offset adjustment	6-19
filter	
manual offset adjustment	
Speed Reference Input Gain	
Spring Opener	
Status Monitor	- 9-3
stopping by applying the dynamic brake	
stopping method for servo OFF	
storage humidity	- 2-5
storage temperature	
surrounding air humidity	- 2-5
surrounding air temperature	- 2-5
switching condition A	8-67
System Monitor	- 9-3

-		
	L	

test without a motor
TH
three-phase AC power supply input
setting5-14
three-phase, 200-VAC power supply input 4-11
time required to brake
time required to release brake
torque control
automatic offset adjustment6-41
manual offset adjustment 6-43
torque feedforward8-84
torque reference
input filter
torque reference filter8-76
Torque Reference Input 4-31
Torque Reference Input Gain 6-40
T-REF 4-31, 6-40, 6-67
T-REF (Torque Reference Input) signal
trial operation
position control
position control from the host controller with
the SERVOPACK used for speed control 7-14
speed control
troubleshooting alarms
troubleshooting warnings 12-46
tuning parameters
tuning-less
load level
rigidity level 8-13
tuning-less function8-11

U

JP Key		 	 	 -13-3
utility function (Fnロロロ) operations	s	 	 	 - 13-8

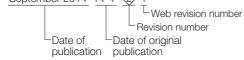
V

vibration suppression 8-	56
V-REF	16
V-REF (Speed Reference Input) signal 6-	16

W

warning code output 1	2-45
writing parameters	5-19

Ζ


zero clamping	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5	-4	0,	, 6	-24	1
zero clamping level-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		- 6	-26	3

Revision History

The revision dates and numbers of the revised manuals are given on the bottom of the back cover.

MANUAL NO. SIEP S800001 26C

Published in Japan September 2014 14-4

Date of Publication	Rev. No.	Web Rev. No.	Section	Revised Contents
March 2015	3>	0	All chapters	Addition: Information on SERVOPACKs with single-phase, 200-VAC power sup- ply input Addition: Information on BTO specification Addition: Information on Safety Modules Partly revised.
			Preface	Addition: Information on dynamic brake Revision: Information on certification for standards
			2.1.1	Revision: Power loss
			2.3.2	Addition: Information on duct-ventilated SERVOPACKs Revision: External dimensions of the following three-phase, 200-VAC SERVO- PACKs: SGD7S-470A, -550A, -590A, and -780A.
			4.3.5	Revision: Illustration of SGD7S-470A, -550A, -590A, and -780A SERVOPACKs.
			4.2, 4.4.3, 4.5.3, 6.12.1	Addition: Information on Battery for absolute encoder
			5.16.1, 5.18.1	Addition: Information on Linear Encoders (ST1381 and ST1382) from Mitutoyo Corporation
			8.12.3, 14.1.2	Revision: Information on Current Control Mode Selection
			Back cover	Revision: Address
September 2014	\diamond	1	12.4	Slightly revised.
July 2014		0	-	Based on Japanese user's manual, SIJP S800001 26C<2> printed in July 2014.
			All chapters	Addition: Information on SGD7S-330A, -470A, -550A, -590A, and -780A
				Addition: Information on supplementary document (Manual No.: SIEP S800001 50)
May 2014	$\langle 1 \rangle$	0	Preface	Revision: Safety Parameters
			3.7	Newly added.
			Chapter 12	Addition: A.EC8 and A.EC9
April 2014	_	-	-	First edition

Σ -7-Series AC Servo Drive $\Sigma\text{-7S}$ SERVOPACK with Analog Voltage/Pulse Train References **Product Manual**

IRUMA BUSINESS CENTER (SOLUTION CENTER)

480, Kamifujisawa, Iruma, Saitama, 358-8555, Japan Phone 81-4-2962-5151 Fax 81-4-2962-6138 http://www.yaskawa.co.jp

YASKAWA AMERICA, INC.

2121, Norman Drive South, Waukegan, IL 60085, U.S.A. Phone 1-800-YASKAWA (927-5292) or 1-847-887-7000 Fax 1-847-887-7310 http://www.yaskawa.com

YASKAWA ELÉTRICO DO BRASIL LTDA.

777, Avenida Piraporinha, Diadema, São Paulo, 09950-000, Brasil Phone 55-11-3585-1100 Fax 55-11-3585-1187 http://www.yaskawa.com.br

YASKAWA EUROPE GmbH

185, Hauptstraβe, Eschborn, 65760, Germany Phone 49-6196-569-300 Fax 49-6196-569-398 http://www.yaskawa.eu.com

YASKAWA ELECTRIC KOREA CORPORATION

9F, Kyobo Securities Bldg. 26-4, Yeouido-dong, Yeongdeungpo-gu, Seoul, 150-737, Korea Phone 82-2-784-7844 Fax 82-2-784-8495 http://www.yaskawa.co.kr

YASKAWA ELECTRIC (SINGAPORE) PTE. LTD.

151, Lorong Chuan, #04-02A, New Tech Park, 556741, Singapore Phone 65-6282-3003 Fax 65-6289-3003 http://www.yaskawa.com.sg

YASKAWA ELECTRIC (THAILAND) CO., LTD. 252/125-126, 27th Floor, Muang Thai-Phatra Tower B, Rachadapisek Road, Huaykwang, Bangkok, 10310, Thailand Phone 66-2693-2200 Fax 66-2693-4200 http://www.yaskawa.co.th

YASKAWA ELECTRIC (CHINA) CO., LTD.

22F, One Corporate Avenue, No.222, Hubin Road, Shanghai, 200021, China Phone 86-21-5385-2200 Fax 86-21-5385-3299 http://www.yaskawa.com.cn

YASKAWA ELECTRIC (CHINA) CO., LTD. BEIJING OFFICE Room 1011, Tower W3 Oriental Plaza, No.1, East Chang An Ave.,

Dong Cheng District, Beijing, 100738, China Phone 86-10-8518-4086 Fax 86-10-8518-4082

YASKAWA ELECTRIC TAIWAN CORPORATION

9F, 16, Nanking E. Rd., Sec. 3, Taipei, 104, Taiwar Phone 886-2-2502-5003 Fax 886-2-2505-1280

YASKAWA ELECTRIC CORPORATION

In the event that the end user of this product is to be the military and said product is to be employed in any weapons systems or the manufacture thereof, the export will fall under the relevant regulations as stipulated in the Foreign Exchange and Foreign Trade Regulations. Therefore, be sure to follow all procedures and submit all relevant documentation according to any and all rules, regulations and laws that may apply. Specifications are subject to change without notice for ongoing product modifications and improvements.

© 2014-2015 YASKAWA ELECTRIC CORPORATION. All rights reserved.

MANUAL NO. SIEP S800001 26D Published in Japan March 2015 14-4 3-0 14-9-10 Original instructions