Metronix Meßgeräte und Elektronik GmbH Kocherstr. 3 38120 Braunschweig Telefon: 0531 8668-0 Telefax: 0531 8668-555

Mounting Instructions PRELIMINARY

BRETZEL GmbH Antriebs- und Elektrotechnik Am Rotböll 8 64331 Weiterstadt

www.bretzel-gmbh.de info@bretzel-gmbh.de Telefon: 0 61 50 / 8 65 60 - 0

Servo drives BL 4000-C

Original instructions

Copyrights

© 2017 Metronix Meßgeräte und Elektronik GmbH. All rights reserved.

The information and data in this document have been composed to the best of our knowledge. However, deviations between the document and the product cannot be excluded entirely. For the devices and the corresponding software in the version handed out to the customer, Metronix guarantees the contractual use in accordance with the user documentation. In the case of serious deviations from the user documentation, Metronix has the right and the obligation to repair, unless it would involve an unreasonable effort. A possible liability does not include deficiencies caused by deviations from the operating conditions intended for the device and described in the user documentation.

Metronix does not guarantee that the products meet the buyer's demands and purposes or that they work together with other products selected by the buyer. Metronix does not assume any liability for damages resulting from the combined use of its products with other products or resulting from improper handling of machines or systems.

Metronix Meßgeräte und Elektronik GmbH reserves the right to modify, amend, or improve the document or the product without prior notification.

This document may, neither entirely nor in part, be reproduced, translated into any other natural or machine-readable language nor transferred to electronic, mechanical, optical or any other kind of data media, without expressive authorisation by the author.

Trademarks

Any product names in this document may be registered trademarks. The sole purpose of any trademarks in this document is the identification of the corresponding products.

ServoCommander[®] is a registered trademark of Metronix Meßgeräte und Elektronik GmbH.

Revision Information		
Author:	Metronix Meßgeräte und Elektronik GmbH	
Manual title:	Mounting Instructions "Servo drives BL 4000-C"	
File name:	MI_BL 4000-C_EN.docx	
Version 0.1	December 2017	

Contents

1	General	1
1.1		4
2	Safety notes for electrical drives and controllers	5
2.1		5
2.2	General notes	5
2.3	Danger resulting from misuse	7
2.4	Safety notes	7
2.4	4.1 General safety notes	7
2.4	4.2 Safety notes for assembly and maintenance	9
2.4	4.3 Protection against contact with electrical parts	10
2.	4.4 Protection against electrical shock by means of protective extra-low voltage (PELV)	11
2.4	4.5 Protection against dangerous movements	11
2.4	4.6 Protection against contact with hot parts	12
2.	4.7 Protection during handling and assembly	13
3	Technical data	14
4	Mechanical installation	18
4.1	Important notes	18
4.2	Mounting	20
5	Electrical installation	21
5.1	Pin assignment I/O communication [X1]	22
5.2	Pin assignment Resolver [X2A]	23
5.3	Pin assignment Encoder [X2B]	24
5.4	Pin assignment CAN [X4]	28
5.5	Wiring diagram Motor [X6] and Power Supply [X9]	29
5.6	Ethernet communication [X18]	32
5.7	USB communication [X19]	33
5.8	Pin assignment SAFE TORQUE OFF [X40]	34
5.9	MicroSD-Card slot	34
6	Functional safety technology	35
6.1	General	35
6.2	Achievable safety level, Safety function according to EN ISO 13849-1 / EN 61800-5-2	35
7	EMC-compliant cabling	36

1 General

1.1 Documentation

This installation information serves the purpose of a safe use of the BL 4000-C series servo drives. It contains safety notes, which must be complied with.

Further information can be found in the following manuals of the BL 4000-C product range:

• **Product Manual "Servo drives BL 4000-C":** Description of the technical data and the device functionality plus notes concerning the installation and operation of the servo drives (German version).

You can find all these documents on our homepage at the download area (<u>http://www.metronix.de</u>). Certificates and declarations of conformity for the products described in this manual can be found at <u>http://www.metronix.de</u>.

2 Safety notes for electrical drives and controllers

2.1 Used symbols

INFORMATION

Important information and notes.

CAUTION!

Nonobservance may result in severe property damages.

DANGER!

Nonobservance may result in property damages and in personal injuries.

CAUTION! DANGEROUS VOLTAGE.

The safety note indicates a possible perilous voltage.

2.2 General notes

In case of damage resulting from non-compliance with the safety notes in this manual, Metronix Meßgeräte und Elektronik GmbH will not assume any liability.

INFORMATION

Prior to the initial use you must read *chapter* 2 *Safety notes for electrical drives and controllers*, starting on *page 5* and *chapter 7 EMC-compliant cabling*, starting on *page 36*.

If the documentation in the language at hand is not understood accurately, please contact and inform your supplier.

Sound and safe operation of the servo drive requires proper and professional transportation, storage, mechanical installation, and project planning – with a consideration of the risks as well as the protective and emergency measures – plus the proper and professional electrical installation, operation, and maintenance of the devices.

Only trained and qualified personnel is authorised to handle electrical devices and systems:

Page 6

TRAINED AND QUALIFIED PERSONNEL

in the sense of this product manual or the safety notes on the product itself are persons who are sufficiently familiar with the project, the setup, assembly, commissioning and operation of the product as well as all warnings and precautions as per the instructions in this manual and who are sufficiently qualified in their field of expertise:

- Education and instruction concerning the standards and accident prevention regulations for the application, or authorisation to switch devices/systems on and off and to ground them as per the standards of safety engineering and to efficiently label them as per the job demands.
- Education and instruction as per the standards of safety engineering regarding the maintenance and use of adequate safety equipment.
- First aid training.

The following notes must be read prior to the initial operation of the system to prevent personal injuries and/or property damages:

INFORMATION

- These safety notes must be complied with at all times.
- Do not try to install or commission the servo drive before carefully reading all safety notes for electrical drives and controllers contained in this document. These safety instructions and all other user notes must be read prior to any work with the servo drive.
- In case you do not have any user notes for the servo drive, please contact your sales representative. Immediately demand these documents to be sent to the person responsible for the safe operation of the servo drive.
- If you sell, rent and/or otherwise make this device available to others, these safety notes must also be included.
- The user must not open the servo drive for safety and warranty reasons.
- Professional control process design is a prerequisite for sound functioning of the servo drive!

DANGER!

Inappropriate handling of the servo drive and non-compliance with the warnings as well as inappropriate intervention in the safety features may result in property damage, personal injuries, electric shock or in extreme cases even death.

Danger resulting from misuse 2.3

DANGER!

High electrical voltages and high load currents! Danger to life or serious personal injury from electrical shock!

DANGER!

High electrical voltage caused by wrong connections! Danger to life or serious personal injury from electrical shock!

DANGER!

Surfaces of device housing may be hot! Risk of injury! Risk of burning!

DANGER!

Danger to life, serious personal injury or property damage due to unintentional movements of the motors!

2.4 **Safety notes**

2.4.1 **General safety notes**

The servo drive corresponds to IP20 degree of protection as well as pollution degree 2. Make sure that the environment corresponds to this degree of protection and pollution degree.

Only use replacement parts and accessories approved by the manufacturer.

The devices must be connected to the mains supply as per EN regulations, so that they can be cut off the mains supply by means of corresponding separation devices (for example main switch, contactor, power switch).

The servo drive may be protected using an AC/DC sensitive 300 mA fault current protection switch, type B (RCD = Residual Current protective Device).

Gold contacts or contacts with a high contact pressure should be used to switch the control contacts.

Preventive interference rejection measures should be taken for control panels, such as connecting contactors and relays using RC elements or diodes.

The safety rules and regulations of the country in which the device will be operated must be complied with.

The environment conditions defined in the product documentation must be kept. Safety-critical applications are not allowed, unless specifically approved by the manufacturer.

For notes on installation corresponding to EMC, please refer to *chapter 7 EMC-compliant cabling*, starting on *page 36*. The compliance with the limits required by national regulations is the responsibility of the manufacturer of the machine or system.

The technical data and the connection and installation conditions for the servo drive are to be found in this product manual and must be met.

\triangle

DANGER!

The general setup and safety regulations for work on power installations (for example DIN, VDE, EN, IEC or other national and international regulations) must be complied with.

Non-compliance may result in death, personal injury or serious property damages.

Without claiming completeness, the following regulations and others apply:

VDE 0100	Erection of power installations with nominal voltages up to 1000 V
EN 1037	Safety of machinery - Prevention of unexpected start-up
EN 60204-1	Safety of machinery - Electrical equipment of machines Part 1: General requirements
EN 61800-3	Adjustable speed electrical power drive systems Part 3: EMC requirements and specific test methods
EN 61800-5-1	Adjustable speed electrical power drive systems Part 5-1: Safety requirements - Electrical, thermal and energy
EN 61800-5-2	Adjustable speed electrical power drive systems Part 5-2: Safety requirements - Functional
EN ISO 12100	Safety of machinery - General principles for design - Risk assessment and risk reduction
EN ISO 13849-1	Safety of machinery - Safety-related parts of control systems Part 1: General principles for design
EN ISO 13849-2	Safety of machinery - Safety-related parts of control systems Part 2: Validation

More standards to be respected by the user:

EN 574	Safety of machinery - Two-hand control devices
EN 1088	Safety of machinery - Interlocking devices associated with guards
EN ISO 13850	Safety of machinery - Emergency stop

2.4.2 Safety notes for assembly and maintenance

The appropriate DIN, VDE, EN and IEC regulations as well as all national and local safety regulations and rules for the prevention of accidents apply for the assembly and maintenance of the system. The plant engineer or the operator is responsible for compliance with these regulations:

The servo drive must only be operated, maintained and/or repaired by personnel trained and qualified for working on or with electrical devices.

Prevention of accidents, injuries and/or damages:

Additionally secure vertical axes against falling down or lowering after the motor has been switched off, for example by means of:

- > Mechanical locking of the vertical axle,
- > External braking, catching or clamping devices or
- > Sufficient balancing of the axle

The motor holding brake supplied by default or an external motor holding brake driven by the servo drive alone is not suitable for personal protection!

Keep the electrical equipment voltage-free using the main switch and protect it from being switched on again until the DC bus circuit is discharged, in the case of:

- Maintenance and repair work
- Cleaning
- Iong machine shutdowns

Prior to carrying out maintenance work make sure that the power supply has been turned off, locked and the DC bus circuit is discharged.

The external or internal brake resistor carries dangerous DC bus voltages during operation of the servo drive and up to 5 minutes thereafter. Contact may result in death or serious personal injury. Wait for this time prior to performing any work on the affected connections. Measure the voltages for your own protection. Contact with these high DC bus circuit voltages may result in death or serious personal injury.

Be careful during the assembly. During the assembly and also later during operation of the drive, make sure to prevent drill chips, metal dust or assembly parts (screws, nuts, cable sections) from falling into the servo drive.

Also make sure that the external power supply of the servo drive (24 V) is switched off.

The DC bus circuit or the mains supply must always be switched off prior to switching off the 24 V servo drive supply.

Carry out work in the machine area only, if AC and/or DC supplies are switched off. Switched off output stages or servo drive enablings are no suitable means of locking. In the case of a malfunction the drive may accidentally be put into action.

This does not apply to drives with the special "Safe Stop" feature in accordance with EN 954-1 CAT 3 or with the "Safe Torque Off" feature in accordance with EN 61800-5-2.

Initial operation must be carried out with idle motors, to prevent mechanical damages for example due to the wrong direction of rotation.

Electronic devices are never fail-safe. It is the user's responsibility, in the case an electrical device fails, to make sure the system is transferred into a secure state.

The servo drive and in particular the brake resistor, externally or internally, can assume high temperatures, which may cause serious burns.

2.4.3 Protection against contact with electrical parts

This section only concerns devices and drive components carrying voltages exceeding 50 V. Contact with parts carrying voltages of more than 50 V can be dangerous for people and may cause electrical shock. During operation of electrical devices some parts of these devices will inevitably carry dangerous voltages.

DANGER!

High electrical voltage!

Danger to life, danger due to electrical shock or serious personal injury!

The appropriate DIN, VDE, EN and IEC regulations as well as all national and local safety regulations and rules for the prevention of accidents apply for the assembly and maintenance of the system. The plant engineer or the operator is responsible for compliance with these regulations:

Before switching on the device, install the appropriate covers and protections against accidental contact. Rack-mounted devices must be protected against accidental contact by means of a housing, for example a switch cabinet. The national regulations for safety/accident prevention must be complied with!

Always connect the ground conductor of the electrical equipment and devices securely to the mains supply. Due to the integrated line filter the leakage current exceeds 3.5 mA!

Comply with the minimum copper cross-section for the ground conductor over its entire length (see for example EN 60800-5-1).

Prior to the initial operation, even for short measuring or testing purposes, always connect the ground conductor of all electrical devices as per the terminal diagram or connect it to the ground wire. Otherwise the housing may carry high voltages which can cause electrical shock.

Do not touch electrical connections of the components when switched on.

Prior to accessing electrical parts carrying voltages exceeding 50 Volts, disconnect the device from the mains or power supply. Protect it from being switched on again.

For the installation the amount of DC bus voltage must be considered, particularly regarding insulation and protective measures. Ensure proper grounding, wire dimensioning and corresponding short-circuit protection.

The device comprises a rapid discharge circuit for the DC bus as per EN 60204-1. In certain device constellations, however, mostly in the case of parallel connection of several servo drives in the DC bus or in the case of an unconnected brake resistor, this rapid discharge may be rendered ineffective. The servo drives can carry voltage until up to 5 minutes after being switched off (residual capacitor charge).

2.4.4 Protection against electrical shock by means of protective extra-low voltage (PELV)

All connections and terminals with voltages of up to 50 Volts at the servo drive are protective extra-low voltage, which are designed safe from contact in correspondence with the following standards:

- International: IEC 60364-4-41
- European countries within the EU: EN 61800-5-1

DANGER!

High electrical voltages due to wrong connections! Danger to life, risk of injury due to electrical shock!

Only devices and electrical components and wires with a protective extra low voltage (PELV) may be connected to connectors and terminals with voltages between 0 to 50 Volts. Only connect voltages and circuits with protection against dangerous voltages. Such protection may be achieved by means of isolation transformers, safe optocouplers or battery operation.

2.4.5 **Protection against dangerous movements**

Dangerous movements can be caused by faulty control of connected motors, for different reasons:

- Improper or faulty wiring or cabling
- Error in handling of components
- Error in sensor or transducer
- Defective or non-EMC-compliant components
- Software error in superordinated control system

These errors can occur directly after switching on the device or after an indeterminate time of operation. The monitors in the drive components for the most part rule out malfunctions in the connected drives. In view of personal protection, particularly the danger of personal injury and/or property damage, this may not be relied on exclusively.

Until the built-in monitors come into effect, faulty drive movements must be taken into account; their magnitude depends on the type of control and on the operating state.

DANGER!

Dangerous movements!

Danger to life, risk of injury, serious personal injuries or property damage!

For the reasons mentioned above, personal protection must be ensured by means of monitoring or superordinated measures on the device. These are installed in accordance with the specific data of the system and a danger and error analysis by the manufacturer. The safety regulations applying to the system are also taken into consideration. Random movements or other malfunctions may be caused by switching the safety installations off, by bypassing them or by not activating them.

2.4.6 Protection against contact with hot parts

DANGER!

Housing surfaces may be hot! Risk of injury! Risk of burning!

Do not touch housing surfaces in the vicinity of heat sources! Danger of burning!

Before accessing devices let them cool down for 10 minutes after switching them off.

Touching hot parts of the equipment such as the housing, which contain heat sinks and resistors, may cause burns!

2.4.7 **Protection during handling and assembly**

Handling and assembly of certain parts and components in an unsuitable manner may under adverse conditions cause injuries.

DANGER!

Risk of injury due to improper handling!

Personal injury due to pinching, shearing, cutting, crushing!

The following general safety notes apply:

Comply with the general setup and safety regulations on handling and assembly.

Use suitable assembly and transportation devices.

Prevent incarcerations and contusions by means of suitable protective measures.

Use suitable tools only. If specified, use special tools.

Use lifting devices and tools appropriately.

If necessary, use suitable protective equipment (for example goggles, protective footwear, protective gloves).

Do not stand underneath hanging loads.

Remove leaking liquids on the floor immediately to prevent slipping.

3 Technical data

Ambient conditions and qualification

Feature	Value	
Admissible temperature ranges	Storage temperature:	-25°C to +70°C
	Operating temperature:	0°C to +40°C +40°C to +50°C at reduced power 4%/K
Admissible installation height	Mounting height maximum 2000 m above msl, above 1000 m above msl with power reduction 1% per 100 m	
Humidity	Relative humidity up to 90%, no bedewing	
Protection degree	IP20	
Protection class	1	
Pollution degree	2	

Dimensions and weight

Feature	Value
Dimensions including the mounting plate (H*W*D)	245 mm*50 mm*163 mm
Housing dimensions (H*W*D)	200 mm*50 mm*163 mm
Weight	approx. 1,5 kg

Performance data [X9]

Feature	Value
Supply voltage	1 x 240 VAC [± 10%], 50…60 Hz
24V supply	24 VDC [± 20%]
Intermediate circuit voltage for a supply voltage of 230 VAC	325 VDC

Internal brake resistor [X9]

Feature	Value
Brake resistance	75 Ω
Pulse power	2 kW
Continuous power	8 W

External brake resistor [X9]

Feature	Value
Brake resistance external	75 Ω
Continuous power	max. 2000 W

Motor connection specifications [X6]

Feature	Value	
Specifications for operation with 1x 230 VAC [± 10%], 50 Hz		
Output power	800 VA	
Max. output power for 3 s	2,0 kVA	
Output current	4 A _{RMS}	
Max. output current for 3 s	8 A _{RMS}	
Max. output current for 0,5 s	12 A _{RMS}	
Max. PWM frequency	20 kHz (software programmable)	
Brake output (BR+)	2A (max. 3A altogether incl. DOUTx outputs)	

Maximum motor cable length

for interference emission according to EN 61800-3 for PWM \leq 10 kHz

Feature	Value
Category C2	$I \le 25 \text{ m}$
Category C3	$I \le 25 m$
Cable capacity of a phase against shield or between two lines	$C^{\circ} \leq 200 \text{ pF/m}$

Derating of the cable length

Feature	Value
f _{PWM} = 12 kHz	l ≤ 21 m
f _{PWM} = 16 kHz	l ≤ 15 m
f _{PWM} = 20 kHz	l ≤ 12 m

Resolver [X2A]

Feature	Value
Resolution	14 Bit
Delay time signal detection	< 200 µs
Speed resolution	approx. 10 min ⁻¹
Absolute accuracy of angle detection	< 0,1°
Max. rotational speed	16.000 min ⁻¹

Digital inputs and outputs [X1]

Feature	Value
Signal level	24V (8V30V) active high, conforming with EN 61131-2
DOUT0	24 V
DOUT1	max. 1 A,
DOUT2	max. 3A altogether Incl. Brake output

Analogue input [X1]

Feature	Value
Analogue input AIN0	±10 V input range, 12 Bit, differentially

Incremental encoder input [X1]

Feature	Value
Parameterisable number of encoder lines	1 – 2 ²⁸ lines/rev
Trace signals: A, #A, B, #B, N, #N	As per RS422 specification
Max. input frequency	1000 kHz
Pulse direction interface: CLK, #CLK, DIR, #DIR, RESET, #RESET	As per RS422 specification
Output supply	5 V, max. 200 mA

Incremental encoder output [X1]

Feature	Value
Number of lines	Programmable $1 - 2^{13}$ and 2^{14} lines/revolution
Connection level	Differential / RS422 specification
Encoder signals A, B, N	As per RS422 specification
Output impedance	$R_{a,diff}$ = 66 Ω
Limit frequency	f _{Limit} > 1,8 MHz (lines/s)
Edge triggering (min. pulse width)	Can be limited by parameters

Communication interfaces

Feature	Value
Ethernet [X18]	RJ 45, 10/100 MBaud, UDP communication
USB [X19]:	According to USB 2.0, USB-B, slave-client
MicroSD-Card	File systems FAT16, FAT32

4 Mechanical installation

4.1 Important notes

- Only use the servo drive BL 4000-C as a built-in device for switch cabinets
- Mounting position vertical with supply lines [X9] on top
- Mount to control cabinet plate using a fastening strap
- Installation free spaces: Keep a minimum distance of 100 mm to other components each above and underneath the device to ensure sufficient venting.

For optimal wiring of the motor cable and angle encoder cable on the bottom of the device an installation free space of 150mm is recommended!

• Mounting distance:

The servo drive BL 4000-C may be installed adjacently in one switch cabinet without a gap, proper usage and installation on a heat-dissipating rear panel provided. Please note that excessive heat may cause premature aging and/or damaging of the device. In case the servo drives BL 4000-C are subject to high thermal stress, a mounting distance of 59 mm is recommended!

Figure 1:Servo drive: Front view – Installation free space and mounting distance

4.2 Mounting

The servo drive BL 4000-C has attachment lugs on the top and the bottom of the device. These lugs are used to mount the servo drive vertically to a control cabinet plate.

The lugs are part of the cooling body profile. This is why the best possible heat transfer to the control cabinet plate has to be ensured.

Please use M5 screws for the mounting of the servo drives.

Recommended tightening torque for an M5 screw of property class 5.6: 2.8 Nm.

5 Electrical installation

INFORMATION

If they have the same DC bus voltage, it is possible to couple multiple servo drives of the BL 4000-C series.

CAUTION!

If the DC buses are connected, the power supplies must be connected to the same mains phase.

This means, if two BL 4000-C are coupled in the DC bus, only the connection L1/N is possible for both devices. It is not allowed to connect the DC Busses if the devices are connected to different mains phases.

It is forbidden to supply device 1 via L1/N and device 2 via L2/N, if the DC buses are coupled.

CAUTION!

Operation with DC bus coupling together with devices of the ARS 2000 FS / SE series is not allowed.

5.1 Pin assignment I/O communication [X1]

X1				
Pin N	lo.	Denomination	Value	Specification
1		#AIN1	±10V	Set point input 0 differential max 30V input voltage
	14	AIN1	$R_l \ge 30 k\Omega$	Set point input 0, unerential, max. Sov input voltage
2		#AIN0	±10V	Set point input 0 differential max 30V input voltage
	15	AIN0	R₁≥30kΩ	Cet point input o, unioronida, max. cov input voltage
3		A/CLK	RS422	Incremental encoder signal A (In or Out) / Stepper motor signal CLK
	16	#A/CLK	RS422	Incremental encoder signal A# (In or Out) / Stepper motor signal CLK
4		B/DIR	RS422	Incremental encoder signal B (In or Out) / Stepper motor signal DIR
	17	#B/DIR	RS422	Incremental encoder signal B# (In or Out) / Stepper motor signal DIR
5		Ν	RS422	Incremental encoder index pulse N (In or Out)
	18	#N	RS422	Incremental encoder index pulse N# (In or Out)
6		GND24		Ground Auxiliary voltage for IOs at X1
	19	DIN0	24V	Target selection positioning Bit 0
7		DIN1	24V	Target selection positioning Bit 1
	20	DIN2	24V	Target selection positioning Bit 2
8		DIN3	24V	Target selection positioning Bit 3
	21	DIN4	24V	Start Positioning (High-Speed Input)
9		DIN5	24V	Sample (High-Speed Input)
	22	DIN6	24V	Input end switch 0 (locks n < 0)
10		DIN7	24V	Input end switch 1 (locks n > 0)
	23	DIN8	24V	High-Speed Input (Homing / Flysing Saw)
11		5V	5V / 200mA	Encoder supply (see Pin 318)
	24	24V	24V / 100mA	Auxiliary voltage for IOs at X1
12		DOUT0	24V	Output freely programmable
	25	DOUT1	24V	Output freely programmable
13		DOUT2	24V	Output freely programmable

5.2 Pin assignment Resolver [X2A]

X2A					
Pin N	lo.	Denomination	Value	Specification	
1		S2	3,5V _{RMS} 5-10kHz	SINE trace signal, differential	
	6	S4	$R_i > 5k\Omega$		
2		S1	3,5V _{RMS} 5-10kHz	COSINE trace signal, differential	
	7	S3	$R_i > 5k\Omega$		
3		AGND	0V	Shield for signal pairs (inner shield)	
	8	MT-	GND (0 V)	Reference potential temperature sensor	
4		R1	$7V_{RMS} \ / \ 5\text{-}10 kHz \\ I_A \le 150 mA_{RMS}$	Carrier signal for resolver	
	9	R2	GND (0V)		
5		MT+	+3,3V / Ri=2kΩ	Motor temperature sensor, normally closed contact, PTC, NTC, KTY	

INFORMATION

The Motor temperature sensor can either be connected to X2A, X2B OR X6. It is not possible to connect multiple sensors.

INFORMATION

In addition, a low-impedance connection of the outer cable shield to the housing of the servo drive has to be established. Therefore, the outer cable shield of the angle encoder cable must be connected to the housing of the angle encoder connector.

Figure 5: Pin assignment: Resolver connection [X2A]

- The outer shield is always connected to PE (connector housing) on the servo drive.
- The three inner shields are connected on one side of the servo drive BL 4000-C to Pin 3 of [X2A].

5.3 Pin assignment Encoder [X2B]

At the 15-pole D-Sub connection [X2B], motors with encoder can be fed back. The possible incremental encoders for the encoder connection are divided into several groups. The universal encoder input [X2B] can be used for one of the described encoder types

CAUTION!

In case of wrong activated voltage supply, the encoder can be destroyed! Make sure the correct supply voltage is activated, before connected to [X2B]. Therefore, start the parameterization software *Metronix ServoCommander*® and select *Parameters / Device parameters / Angle encoder settings*.

Angle encoder settings	
Commutating-encoder	▼ X2A ▼ X2B ▼ X10 ▼ X11
active X2B	
Encoder list Settings	Parameter set management
Encoder type: Power supply: Line count:	Analogue ~

Figure 6: Metronix ServoCommander[®]: Angle encoder settings [X2B]

X2B – Analog incremental encoder

-				
Pin N	IO .	Denomination	Value	Specification
1		MT+		Motor temperature sensor, normally closed contact, PTC, NTC, KTY
	9	U_SENS+		Sensor input for encoder supply
2		U_SENS-		Sensor input for encoder suppry
	10	US		Supply voltage
3		GND		Reference potential Supply voltage and motor temperature sensor
	11	R		Reset pulse trace signal (differential) from high-
4		#R		resolution incremental encoder
	12	COS_Z1/ A		COSINE commutation signal (differential) from high- resolution incremental encoder
5		#COS_Z1 / #A		
	13	SIN_Z1 / B		SINE commutation signal (differential) from high-
6		#SIN_Z1 / #B		resolution incremental encoder
	14	COS_Z0/ C	COSINE trace signal (differential) from high	COSINE trace signal (differential) from high-
7		#COS_Z0 / #C		resolution incremental encoder
	15	SIN_Z0 / D	SINE trace signal (differential) from high-res	SINE trace signal (differential) from high-resolution
8		#SIN_Z0 / #D		incremental encoder

D-SUB connector at X2B

Output of the analog incremental encoder interface at the motor

Figure 7: Pin assignment: Analog incremental encoder [X2B]

Pin N	lo.	Denomination	Value	Specification
1		MT+		Motor temperature sensor, normally closed contact, PTC, NTC, KTY
	9	U_SENS+		
2		U_SENS-		Sensor input for encoder supply
	10	US		Supply voltage
3		GND		Reference potential Supply voltage and motor temperature sensor
	11			
4				
	12	DATA / SL+		Bidirectional RS485 data line (differential)
5		#DATA / SL-		(EnDat / HIPERFACE / BiSS)
	13	SCLK / MA+		Clock output RS485 (differential)
6		#SCLK / MA-		(EnDat, BiSS)
	14	COS_Z0/ C	COSINE trace signal (differential) from h	COSINE trace signal (differential) from high-
7		#COS_Z0 / #C		resolution incremental encoder
	15	SIN_Z0 / D		SINE trace signal (differential) from high-resolution
8		#SIN_Z0 / #D		incremental encoder

X2B – Incremental encoder with serial communication interface

D-SUB connector at X2B

Output of the incremental encoder with serial communication interface at the motor

Figure 8: Pin assignment: Incremental encoder with serial communication interface (for example EnDat, HIPERFACE®, BiSS) [X2B]

Pin N	lo.	Denomination	Value	Specification	
1		MT+		Motor temperature sensor, normally closed contact, PTC, NTC, KTY	
	9	U_SENS+			
2		U_SENS-		Sensor input for encoder suppry	
	10	US		Supply voltage	
3		GND		Reference potential Supply voltage and motor temperature sensor	
	11	Ν		Reset pulse trace signal (differential) from high-	
4		#N		resolution incremental encoder	
	12	H_U		Phase U hall sensor for commutation	
5		H_V		Phase V hall sensor for commutation	
	13	H_W		Phase W hall sensor for commutation	
6					
	14	А		A trace signal (differential) from digital incremental	
7		#A		encoder	
	15	В		B trace signal (differential) from digital incremental	
8		#B		encoder	

X2B – Digital incremental encoder

D-SUB connector at X2B

Output of the digital incremental encoder at the motor

Figure 9: Pin assignment: Digital incremental encoder [X2B]

5.4 Pin assignment CAN [X4]

X4				
Pin No.		Denomination	Values	Specification
1		-	-	Not occupied
	6	GND	0V	CAN-GND, galvanically connected to GND in servo drive
2		CANL		CAN-Low signal line
	7	CANH		CAN-High signal line
3		GND	0V	See Pin no. 6
	8	-	-	Not occupied
4		-	-	Not occupied
	9	-	-	Not occupied
5		Cable shield	PE	Connection for cable shield

Figure 10: CAN bus cabling example

Figure 11: Connection to power supply [X9]

The servo drive BL 4000-C is connected to the supply voltage, the motor, the brake resistor and the holding brakes as shown in *Figure 5*. The operation of the servo drive BL 4000-C requires a 24V supply source for the electronics, which is connected to the terminals +24V and GND24V. The connection to the supply for the power output stage is either made to terminals L and N for AC supply or to ZK+ and ZK- for DC supply.

Figure 12: Supply [X9]

Pin 1 ist labeled in Figure 2.

The motor is connected to the terminals U, V, W via motor cable to [X6]. Digital motor temperature sensors are connected to the terminals MT+ and MT- at motor connector [X6]. Analogue motor temperature sensors are connected via the encoder cable to [X2A] or [X2B].

Figure 13: Motor connection with Motortemperature sensor [X6]

Pin 1 ist labeled in Figure 3.

Figure 14: Motor connection with Hiperface DSL [X6]

- Connect the inner shields and the total shield to the backplane of the Control Cabinet by using appropriate EMC shield clamps.
- Maximum length of unshielded cores 35 mm

The servo drive BL 4000-C must be connected to ground with its PE connection.

The BL 4000-C must be completely wired first. Only then the operating voltages for the DC bus and the electronics supply may be switched on.

CAUTION!

•

The servo drive will be damaged

- in the case of inversed wiring of the operating voltage connections,
- in the case of excessive operating voltage or
- in the case of confusing the connections for operating voltage and motor!

CAUTION! DANGEROUS VOLTAGE.

The signals for the temperature sensor "MT-" (PIN 4) and "MT+" (PIN 5) on the motor connector plug [X6] are not situated on safety extra-low voltage

(PELV - protective extra-low voltage). The connections are designed for non-PELV temperature sensors. The isolation to PELV is part inside the BL 4000-C.

5.6 Ethernet communication [X18]

Ethernet interface [X18]

Technical data	
Functions	UDP communication, 10/100 MBaud, automatic selection
Connector type	RJ 45 socket
Communication protocol	UDP communication

Ethernet interface [X18]

Pin No.	Specification	
1	Transmission signal + (TX+)	Pair 3
2	Transmission signal- (TX-)	Pair 3
3	Receiver signal + (RX+)	Pair 2
4	nc	Pair 1
5	nc	Pair 1
6	Receiver signal- (RX-)	Pair 2
7	nc	Pair 4
8	nc	Pair 4

Figure 16: Pin assignment: Ethernet interface [X18]

5.7 USB communication [X19]

The BL 4000-C servo drive comprises a USB (universal serial bus) communication interface, which is for connection via PC and for using the parameterisation tool Metronix ServoCommander[®]

The USB communication interface requires no auxiliary power supply.

USB interface [X19]

Technical data	
Functions	USB 2.0, Slave–Client, 12 MBaud to 480 MBaud
Connector type	USB-B, no current consumption from the bus (integrated power supply)
Communication protocol	Metronix specific (generic device)

USB interface [X19]

Pin assignment		
1	VCC	+5 VDC
2	D-	Data -
3	D+	Data +
4	GND	GND

Figure 17: Pin assignment: USB interface [X19]

5.8 Pin assignment SAFE TORQUE OFF [X40]

For further information concerning the safety function please refer to the Product Manual "Servo drives BL 4000-C", chapter 6 "Functional safety technology".

SAFE TORQUE OFF [X40]

Pin No.	Denomination	Value	Specification
1	STO-A	0 V / 24 V	Control input A for STO function.
2	0V-A	0 V	Reference potential for STO-A.
3	STO-B	0 V / 24 V	Control input B for STO function.
4	0V-B	0 V	Reference potential for STO-B.
5	DIN6	24V	Connected to X1, Pin 22
6	DIN7	24V	Connected to X1, Pin 10
7	24V	+24 V DC	Auxiliary supply 24 V DC
8	0V	0 V	Reference potential for auxiliary supply.

5.9 MicroSD-Card slot

The BL 4000-C servo drive comprises a MicroSD-Card slot for the support of Firmware downloads and uploads and downloads of parameter sets.

SD-Card slot

Technical data	
Card types	MicroSD
File systems	FAT16 and FAT32
Functions	Load a parameter set (DCO file), save the current parameter set (DCO file), load a firmware file
File names	Only file and directory names according to the 8.3 standard are supported.

6 Functional safety technology

This chapter provides information on the BL 4000-C SE servo drives with the integrated safety function STO ("Safe Torque Off").

6.1 General

The servo drive BL 4000-C series devices with STO are delivered with integrated functions for safetyrelated motion monitoring and motion control.

Use the function "Safe Torque Off" (STO) whenever you have to reliably disconnect the energy supply to the motor in your particular application.

6.2 Achievable safety level, Safety function according to EN ISO 13849-1 / EN 61800-5-2

The servo drive BL 4000-C series devices with integrated Safe torque Off (STO) function fulfill the basic test requirements

- Category 4 / PL e according to EN ISO 13849-1,
- SIL CL 3 according to EN 61800-5-2 / EN 62061 / IEC 61508,

and can be used in applications up to cat. 4 / PL e according to EN ISO 13849-1 and SIL 3 to EN 62061 / IEC 61508.

The achievable safety level depends on the other components used to achieve a safety function.

INFORMATION

For further information please refer to the Product Manual "STO (Safe Torque Off) for the servo drives BL 4000-C".

7 EMC-compliant cabling

The following must be considered for an EMC-compliant setup of the drive system:

- Suitable installation and suitable wiring of all connection cables provided, the servo drives BL 4000-C fulfill the requirements of the corresponding product standard EN 61800-3. This standard refers to "classes" and so-called "environments". The first environment includes mains supplies serving residential buildings and the second environment includes mains supplies exclusively serving industrial buildings.
- The servo drive BL 4000-C must be installed in a steel switch cabinet. In most cases a standard model will sufficiently attenuate emitted interference. The cable shields must be connected with the switch cabinet housing by means of metal cable glands for usage in the first environment.
- The control cabinet bed plate must be conducting (zinc-coated design). The imperative central grounding point should also be located on the control cabinet bed plate.
- In order to keep the leakage currents and the losses in the motor connection cable as small as possible, the servo drive BL 4000-C should be located as close to the motor as possible.
- Motor cable and angle encoder cable must be shielded.
- The shield of the motor cable must be connected to the housing of the servo drive BL 4000-C (shield connection terminal). The cable shield also has to be connected to the associated servo drive so that the leakage currents can flow back into the servo drive causing the leakage. In the first environment the shield of the motor cable also has to be connected to the control cabinet housing by means of metal cable glands.
- The mains-end PE connection must be connected to the PE connection point of the supply connection [X9].
- The inner PE conductor of the motor cable must be connected to the PE connection point of the motor connection [X6].
- The signal lines must be as far away from the power cables as possible. They should not be placed parallel. If intersections cannot be avoided, they should be perpendicular (that is at a 90° angle), if possible.
- Unshielded signal and control lines should not be used. If their use is inevitable they should at least be twisted.
- Even shielded cables will inevitably have short unshielded ends (unless shielded connector housings are used). In general, the following applies:
 - Connect the inner shields to the corresponding pins of the connectors; maximum length 40 mm.
 - Length of the unshielded cores 35 mm maximum.
 - Connect the total shield on the servo drive plane to the control cabinet mounting plate as described in Chapte 5.5.
 - Connect the total shield on the motor side plane to the connector housing or motor housing; maximum length 40 mm.

DANGER!

For safety reasons, all PE ground conductors must be connected prior to initial operation.

The EN 61800-5-1 regulations for protective earthing must be complied with during installation!