

# BPCE

Winkel-Planetengetriebe



# Qualitätsgetriebe produziert in Deutschland

Als mittelständischer Getriebebauer blicken wir heute auf eine mehr als 75-jährige Tradition zurück. Seit mehr als 30 Jahren "dreht" sich für uns alles um die rechtwinklige Kraftübertragung. Damals wie heute treibt uns eines an: Die Lösung Ihrer antriebstechnischen Herausforderungen. Technisch kompetent, wirtschaftlich, zuverlässig und schnell.

Mit unserem umfassenden Produktprogramm, welches in der Metropolregion Hamburg entwickelt, montiert und in alle Welt vertrieben wird, haben wir uns einen hohen, und seit Jahren stetig wachsenden Marktanteil sichern können.

Die ATEK Standardbaureihen sind teils innerhalb weniger Stunden lieferbar. Ob zum Beispiel anwendungsspezifische Antriebslösungen für den Sondermaschinen- oder Serienprodukt für den allgemeinen Maschinenbau: Das ATEK Baukastensystem lässt keine Wünsche offen. Unsere Kunden profitieren von ausgereiften Antriebslösungen, höchster Produkt- und Prozess-Qualität, fundiertem Know-how und einem wettbewerbsfähigen Preis-/Leistungsverhältnis.

www.atek.de

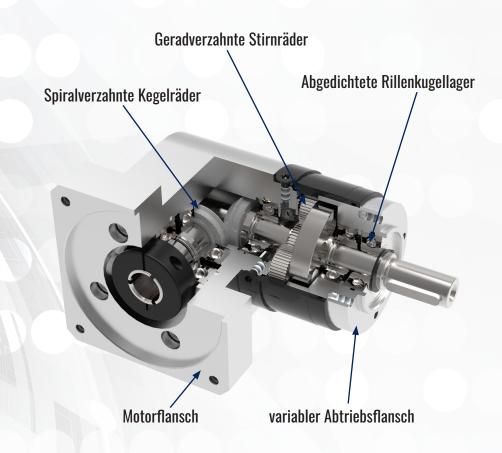




## Das neue ATEK Winkel-Planetengetriebe BPCE

Das neue ATEK Winkel-Planetengetriebe BPCE kombiniert die Eigenschaften der bekannten, kompakten, spiralverzahnten und geräuscharmen ATEK Winkelgetriebe mit denen eines Planetengetriebes.

Die spiralverzahnte Kegelradstufe sorgt für eine geräuscharme und kompakte Kraftübertragung um die Ecke, das Planetengetriebe ermöglicht mit seiner hohen Leistungsdichte hohe Drehmomente und hohe Übersetzungen auf engstem Raum.


Die Kombination überzeugt durch hohe Verdrehsteifigkeit und geringem Verdrehspiel.

Der Antriebsflansch des Winkel-Planetengetriebes ist frei konfigurierbar und kann individuell an Ihren Motor angepasst werden.

Für höchste Flexibilität und Servicefreundlichkeit sind die Winkel-Planetengetriebe wartungsarm, lebensdauergeschmiert und für die Montage in allen Einbaulagen optimiert. Sie erhalten somit die größtmögliche Freiheit bei der Positionierung in ihrem Bauraum.

Das neue Getriebe in Economy-Ausführung überzeugt mit einem sehr guten Preis-Leistungs-Verhältnis und mit den gewohnt kurzen Lieferzeiten.

Je nach Anwendung können Sie aus den unterschiedlichen Baugrößen und -arten (Abtriebsflansch) die für Sie passende wählen.



Stand 11/2018 3



## Der Produktschlüssel

# BPCE 060 005:1 COF

#### Typ

B Kegelradgetriebe

Planetengetriebe

C Antriebseite: Flansch für Servomotor

**Economy** 

#### Baugröße

|     | CO        | COQ         | COP   | COF   |
|-----|-----------|-------------|-------|-------|
|     | Nenngröße | n per Bauar | t     |       |
| 040 | 40mm      |             | 50mm  |       |
| 060 | 60mm      | 60mm        | 70mm  | 64mm  |
| 080 | 80mm      | 80mm        | 90mm  | 90mm  |
| 120 | 120mm     | 120mm       | 120mm | 110mm |

#### **Bauart Abtrieb**

CO Abtriebswelle

COQ Abtriebswelle, Quadratflansch

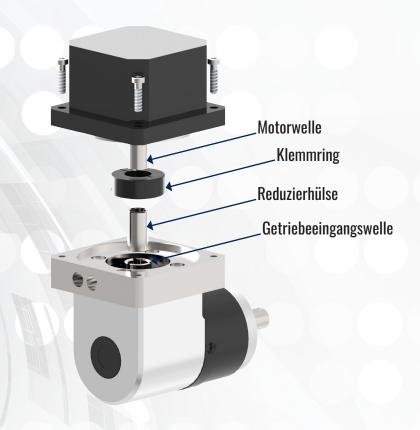
**COP** Abtriebswelle, verstärkte Ausführung

**COF** Flansch-Abtriebswelle(Roboterflansch)

#### Übersetzung\*

| 3:1  | P.G       |
|------|-----------|
| 4:1  | ges P     |
| 5:1  | ufig      |
| 7:1  | Einstufig |
| 10:1 | ш         |

| 9:1  |       |
|------|-------|
| 12:1 |       |
| 15:1 |       |
| 16:1 |       |
| 20:1 | PG    |
| 25:1 | es F  |
| 28:1 | tufig |
| 30:1 | veist |
| 35:1 | 7     |
| 40:1 |       |
| 50:1 |       |
| 70:1 |       |

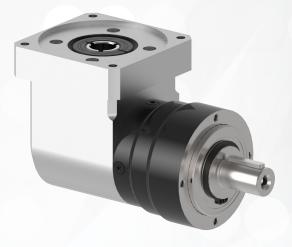

100:1

\*weitere Übersetzungen auf Anfrage



# Klemmdurchmesser und Motorwellendurchmesser

| Getriebebaugröße →              | 040  |      | 060   |       | 080   | 120   |
|---------------------------------|------|------|-------|-------|-------|-------|
| Getriebeeingangswelle →         | 8 mm | 9 mm | 11 mm | 14 mm | 19 mm | 24 mm |
| Motorwellendurchmesser <b>↓</b> |      |      |       |       |       |       |
| 4 mm                            |      |      |       |       |       |       |
| 5 mm                            |      |      | •     |       |       |       |
| 6 mm                            | •    |      | •     |       |       |       |
| 6,35 mm                         | •    |      | •     |       |       |       |
| 7 mm                            |      | •    | •     |       |       |       |
| 8 mm                            | •    |      | •     |       |       |       |
| 9 mm                            |      | •    | •     | •     |       |       |
| 9,5 mm                          |      |      | •     | •     |       |       |
| 9,525 mm                        |      |      | •     | •     |       |       |
| 10 mm                           |      |      |       | •     | •     |       |
| 11 mm                           |      |      | •     | •     | •     |       |
| 12 mm                           |      |      |       | •     | •     |       |
| 12,7 mm                         |      |      |       | •     | •     |       |
| 14 mm                           |      |      |       | •     | •     | •     |
| 15,875 mm                       |      |      |       |       | •     | •     |
| 16 mm                           |      |      |       |       | •     | •     |
| 19 mm                           |      |      |       |       | •     | •     |
| 19,05 mm                        |      |      |       |       |       | •     |
| 20 mm                           |      |      |       |       |       | •     |
| 22 mm                           |      |      |       |       |       | •     |
| 24 mm                           |      |      |       |       |       | •     |



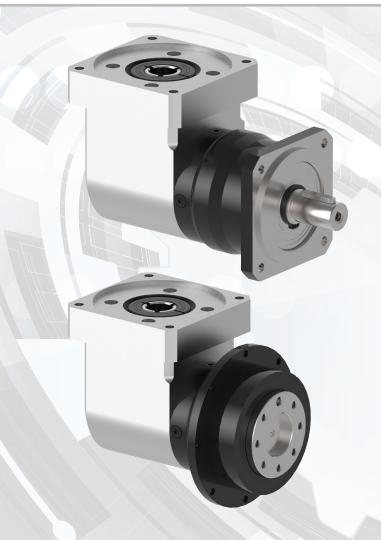

Stand 11/2018 5



### **Bauarten**






#### **CO** Bauart mit Abtriebswelle

Das neue ATEK Winkel-Planetengetriebe mit Abtriebswelle, zeichnet sich durch eine sehr kompakte Bauform aus.

#### **COP Bauart mit Abtriebswelle, verstärkte Ausführung**

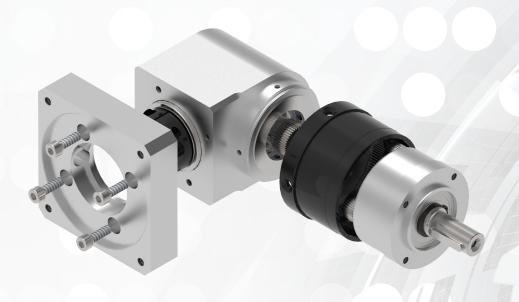
Das neue ATEK Winkel-Planetengetriebe mit Abtriebswelle und -lagerung in verstärkter Ausführung ermöglicht die Montage Ihrer Antriebselemente direkt auf die Abtriebswelle.





#### **COQ Bauart mit quadratischem Abtriebsflansch**

Das neue ATEK Winkel-Planetengetriebe mit quadratischem Abtriebsflansch ermöglicht die besonders leichte Montage.


#### **COF Bauart mit Roboterflansch und höchster Verdrehsteifigkeit**

Das neue ATEK Winkel-Planetengetriebe mit kompakter Flansch-Abtriebswelle (Roboterflansch). Die genormte Schnittstelle nach DIN ermöglicht eine einfache Montage von verschiedenen Applikationen und sorgt für eine hohe Verdrehsteifigkeit.

Das BPCE ist einfach montierbar, lebensdauergeschmiert und durch die Spiralverzahnung in der Winkelstufe extrem geräuscharm. Die Ausführung E vereint alle Vorteile aus unserem Economy-Bereich.



# Allgemeine technische Leistungsdaten



| Verzahnung des Planetengetriebes  | Geradverzahnt                |
|-----------------------------------|------------------------------|
| Verzahnung des Kegelradgetriebes  | Spiralverzahnt               |
| Anzahl der Planetengetriebestufen | 1- oder 2- stufig            |
| Übersetzung des Kegelradgetriebes | 1:1                          |
| Übersetzung des Planetengetriebes | 3:1 bis 100:1                |
| Abtriebswellenlagerung            | Rillenkugellager             |
| Abdichtung                        | 2 RS- Lagerdichtung          |
| Lebensdauer (L 10h)               | 20.000 h                     |
| Betriebstemperatur                | -25 °C / +90 °C              |
| Schutzart                         | IP 54                        |
| Schmierung                        | Fett                         |
| Wartungsintervalle                | Keine, Lebensdauergeschmiert |
| Einbaulage                        | allseitig                    |
| Referenzbetriebsart               | S1                           |
| Referenzbetriebsfaktor            | 1                            |
| Referenztemperatur der Umgebung   | +20 °C                       |



|                                 |                                                           |                                                                                                                                                                                                                                    |                                                       | 1- stufig                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                |                                                       |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        | 2- stufig                                              | [                                                      |                                                        |                                                        |                                                        |                                                        |                                                        |
|---------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| i                               |                                                           | 3                                                                                                                                                                                                                                  | 4                                                     | 5                                                                                                                                                                                                                                                                                                                                       | 7                                                                                                                                                                                                                                              | 10                                                    | 9                                                      | 12                                                     | 15                                                     | 16                                                     | 20                                                     | 25                                                     | 28                                                     | 30                                                     | 35                                                     | 40                                                     | 50                                                     | 70                                                     | 100                                                    |
| T <sub>2N</sub>                 | Nm                                                        | 3                                                                                                                                                                                                                                  | 4                                                     | 5                                                                                                                                                                                                                                                                                                                                       | 6,5                                                                                                                                                                                                                                            | 4,5                                                   | 8                                                      | 10                                                     | 10                                                     | 10                                                     | 10                                                     | 11                                                     | 13                                                     | 12                                                     | 12                                                     | 12                                                     | 11                                                     | 15                                                     | 9                                                      |
| T <sub>2B</sub>                 | Nm                                                        | 4,8                                                                                                                                                                                                                                | 6,4                                                   | 8                                                                                                                                                                                                                                                                                                                                       | 10,4                                                                                                                                                                                                                                           | 7,2                                                   | 12,8                                                   | 16                                                     | 16                                                     | 16                                                     | 16                                                     | 17,6                                                   | 20,8                                                   | 19,2                                                   | 19,52                                                  | 19,52                                                  | 17,76                                                  | 23,2                                                   | 13,6                                                   |
| T <sub>2NOT</sub>               | Nm                                                        | 9                                                                                                                                                                                                                                  | 12                                                    | 15                                                                                                                                                                                                                                                                                                                                      | 19,5                                                                                                                                                                                                                                           | 13,5                                                  | 24                                                     | 30                                                     | 30                                                     | 30                                                     | 30                                                     | 33                                                     | 39                                                     | 36                                                     | 36,6                                                   | 36,6                                                   | 33,3                                                   | 43,5                                                   | 25,5                                                   |
| n <sub>1</sub>                  | min <sup>-1</sup>                                         |                                                                                                                                                                                                                                    |                                                       |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                |                                                       |                                                        |                                                        |                                                        | 40                                                     | 00                                                     |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |
| T <sub>2Nref</sub>              | Nm                                                        | 4,5                                                                                                                                                                                                                                | 6                                                     | 7,5                                                                                                                                                                                                                                                                                                                                     | 8,5                                                                                                                                                                                                                                            | 5                                                     | 16,5 <sup>4)</sup>                                     | 20 4)                                                  | 18 <sup>4)</sup>                                       | 20 4)                                                  | 20 4)                                                  | 18                                                     | 20                                                     | 16                                                     | 20                                                     | 18                                                     | 18                                                     | 18                                                     | 13                                                     |
| T <sub>2Bref</sub>              | Nm                                                        | 7                                                                                                                                                                                                                                  | 10                                                    | 12                                                                                                                                                                                                                                                                                                                                      | 14                                                                                                                                                                                                                                             | 8                                                     | 26                                                     | 32                                                     | 29                                                     | 32                                                     | 32                                                     | 29                                                     | 32                                                     | 26                                                     | 32                                                     | 29                                                     | 29                                                     | 29                                                     | 21                                                     |
| n <sub>2ref</sub>               | min <sup>-1</sup>                                         |                                                                                                                                                                                                                                    |                                                       |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                |                                                       |                                                        |                                                        |                                                        | 10                                                     | 10                                                     |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |
| j <sub>t</sub>                  | arcmin                                                    |                                                                                                                                                                                                                                    |                                                       | < 21                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                |                                                       |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        | < 25                                                   |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |
| Wirkungsgrad bei Volllast 94 93 |                                                           |                                                                                                                                                                                                                                    |                                                       |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                |                                                       |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |
| n <sub>1max</sub>               | min <sup>-1</sup>                                         |                                                                                                                                                                                                                                    |                                                       |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                |                                                       |                                                        |                                                        |                                                        | 80                                                     | 00                                                     |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |
| Qg                              | db(A)                                                     |                                                                                                                                                                                                                                    |                                                       |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                |                                                       |                                                        |                                                        |                                                        | <=                                                     | 70                                                     |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |
|                                 | $\begin{aligned} & & & & & & & & & & & & \\ & & & & & & $ | $\begin{array}{c c} T_{2B} & Nm \\ T_{2NOT} & Nm \\ n_1 & min^{-1} \\ \hline T_{2Nref} & Nm \\ T_{2Bref} & Nm \\ \hline n_{2ref} & min^{-1} \\ \hline j_t & arcmin \\ r_1 & 0 \\ \hline n_{1max} & min^{-1} \\ \hline \end{array}$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | i   3   4     T <sub>2N</sub> Nm   3   4     T <sub>2B</sub> Nm   4,8   6,4     T <sub>2NOT</sub> Nm   9   12     n <sub>1</sub> min <sup>-1</sup> T <sub>2Nref</sub> Nm   4,5   6     T <sub>2Bref</sub> Nm   7   10     n <sub>2ref</sub> min <sup>-1</sup> 1     j <sub>t</sub> arcmin   γ     n <sub>1max</sub> min <sup>-1</sup> 1 | i 3 4 5   T <sub>2N</sub> Nm 3 4 5   T <sub>2B</sub> Nm 4,8 6,4 8   T <sub>2NOT</sub> Nm 9 12 15   n <sub>1</sub> min <sup>-1</sup> T <sub>2Nref</sub> Nm 4,5 6 7,5   T <sub>2Bref</sub> Nm 7 10 12   n <sub>2ref</sub> min <sup>-1</sup> < 21 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

Vorläufige Daten - Änderungen möglich.

Stand 11/2018 9

 $<sup>^{1)}</sup>$  maximal 1.000 Zyklen pro Stunde.  $\rm T_{28}^{-}$  Anteil an der Gesamtlebensdauer < 5%

<sup>2)</sup> maxinal 1.000 mal während der Getriebelebensdauer zulässig

<sup>&</sup>lt;sup>3)</sup> bei 1m Abstand und Nennantriebsdrehzahl n1, ohne Last, i=5

<sup>&</sup>lt;sup>4)</sup> Lebensdauer abweichend: 10.000 h

<sup>5)</sup> Verzahnungslebensdauer: 20.000 h

<sup>6)</sup> Lebensdauer: 20.000 h



|                                                            |                    |                   |                                                            |    |      |      |    |    | 2- stufig | g   |     |     |     |      |    |     |     |       |     |     |
|------------------------------------------------------------|--------------------|-------------------|------------------------------------------------------------|----|------|------|----|----|-----------|-----|-----|-----|-----|------|----|-----|-----|-------|-----|-----|
| Übersetzung                                                | i                  |                   | 3                                                          | 4  | 5    | 7    | 10 | 9  | 12        | 15  | 16  | 20  | 25  | 28   | 30 | 35  | 40  | 50    | 70  | 100 |
| Nennabtriebsdrehmoment bei n1 = 4000 <sup>6)</sup>         | T <sub>2N</sub>    | Nm                | 9                                                          | 11 | 14   | 20   | 18 | 17 | 34        | 35  | 38  | 41  | 43  | 45   | 30 | 47  | 51  | 49    | 45  | 37  |
| Max. Beschleunigungsmoment bei n1 = 4000 1) 6)             | T <sub>2B</sub>    | Nm                | 14                                                         | 18 | 22   | 31   | 29 | 28 | 54        | 56  | 61  | 66  | 68  | 73   | 48 | 76  | 81  | 79    | 72  | 59  |
| Not-Aus Drehmoment <sup>2)</sup>                           | T <sub>2NOT</sub>  | Nm                | 26                                                         | 33 | 42   | 59   | 54 | 52 | 102       | 105 | 115 | 123 | 128 | 136  | 90 | 142 | 152 | 148   | 136 | 110 |
| Nennantriebsdrehzahl n <sub>1</sub> min <sup>-1</sup> 4000 |                    |                   |                                                            |    |      |      |    |    |           |     |     |     |     |      |    |     |     |       |     |     |
| Abtriebsdrehmoment bei n2ref = 100 <sup>5)</sup>           | T <sub>2Nref</sub> | Nm                | n 12 16 20 25 15 36 4) 44 4) 44 44 40 44 36 44 40 44 44 35 |    |      |      |    |    |           |     |     |     |     |      |    |     |     |       |     |     |
| Max. Beschleunigungsmoment bei n2ref = 100 1) 5)           | T <sub>2Bref</sub> | Nm                | 19                                                         | 26 | 32   | 40   | 24 | 58 | 70        | 70  | 70  | 70  | 64  | 70   | 58 | 70  | 64  | 70    | 70  | 56  |
| Referenzdrehzahl                                           | n <sub>2ref</sub>  | min <sup>-1</sup> |                                                            |    |      |      |    |    |           |     | 10  | 00  |     |      |    |     |     |       |     |     |
| Verdrehspiel                                               | j <sub>t</sub>     | arcmin            | <u> </u>                                                   |    | < 16 | (/// | // |    |           |     |     |     |     | < 18 |    |     |     | 11-11 | 77  |     |
| Wirkungsgrad bei Volllast 94 93                            |                    |                   |                                                            |    |      |      |    |    |           |     |     |     |     |      |    |     |     |       |     |     |
| max. Antriebsdrehzahl                                      | n <sub>1max</sub>  | min <sup>-1</sup> |                                                            |    |      |      |    |    |           |     | 60  | 00  |     |      |    |     |     |       |     |     |
| Laufgeräusch <sup>3)</sup>                                 | Qg                 | db(A)             |                                                            |    |      |      |    |    |           |     | <=  | 70  |     |      |    |     |     |       |     |     |

Vorläufige Daten - Änderungen möglich.

| Bauart                                      |                 |    | CO  | COP  | COQ  | COF  |
|---------------------------------------------|-----------------|----|-----|------|------|------|
| Radialkraft bezogen auf Mitte Abtriebswelle | F <sub>r2</sub> | N  | 419 | 1163 | 1163 | 636  |
| Axialkraft bezogen auf Getriebeachse        | F <sub>a2</sub> | N  | 500 | 1350 | 1350 | 1200 |
| Kippmoment                                  | M <sub>K2</sub> | Nm | 15  | 48   | 48   | 14   |

 $<sup>^{1)}</sup>$  maximal 1.000 Zyklen pro Stunde.  $\rm T_{26}^{-}$  Anteil an der Gesamtlebensdauer < 5%  $^{2)}$  maximal 1.000 mal während der Getriebelebensdauer zulässig

<sup>3)</sup> bei 1m Abstand und Nennantriebsdrehzahl n1, ohne Last, i=5

<sup>4)</sup> Lebensdauer abweichend: 10.000 h 5) Verzahnungslebensdauer: 20.000 h

<sup>6)</sup> Lebensdauer: 20.000 h



|                                                             |                    |                   |                     | 1  | l- stufig | 5   |      |                  |                  |       |       |       | 2   | 2- stufię | g   |     |     |     |     |     |
|-------------------------------------------------------------|--------------------|-------------------|---------------------|----|-----------|-----|------|------------------|------------------|-------|-------|-------|-----|-----------|-----|-----|-----|-----|-----|-----|
| Übersetzung                                                 | i                  |                   | 3                   | 4  | 5         | 7   | 10   | 9                | 12               | 15    | 16    | 20    | 25  | 28        | 30  | 35  | 40  | 50  | 70  | 100 |
| Nennabtriebsdrehmoment bei n1 = 3000 <sup>6)</sup>          | T <sub>2N</sub>    | Nm                | 17                  | 23 | 29        | 41  | 36   | 47               | 60               | 63    | 66    | 71    | 72  | 77        | 45  | 73  | 78  | 74  | 68  | 66  |
| Max. Beschleunigungsmoment bei n1 = 3000 1)6)               | T <sub>2B</sub>    | Nm                | 27                  | 37 | 46        | 66  | 58   | 75               | 96               | 101   | 106   | 113   | 115 | 123       | 72  | 117 | 125 | 118 | 109 | 106 |
| Not-Aus Drehmoment <sup>2)</sup>                            | T <sub>2NOT</sub>  | Nm                | 51                  | 69 | 87        | 123 | 109  | 141              | 180              | 189   | 199   | 212   | 215 | 231       | 135 | 219 | 234 | 222 | 204 | 198 |
| Nennantriebsdrehzahl                                        | n <sub>1</sub>     | min <sup>-1</sup> | n <sup>1</sup> 3000 |    |           |     |      |                  |                  |       |       |       |     |           |     |     |     |     |     |     |
| Abtriebsdrehmoment bei n2ref = 100 <sup>5)</sup>            | T <sub>2Nref</sub> | Nm                | 30 4)               | 40 | 50        | 65  | 38   | 87 <sup>4)</sup> | 95 <sup>4)</sup> | 86    | 76    | 76    | 71  | 76        | 86  | 72  | 76  | 72  | 65  | 43  |
| Max. Beschleunigungsmoment bei n2ref = 100 <sup>1) 5)</sup> | T <sub>2Bref</sub> | Nm                | 48                  | 64 | 80        | 104 | 60,8 | 139,2            | 152              | 137,6 | 121,6 | 121,6 | 114 | 122       | 138 | 115 | 122 | 115 | 104 | 69  |
| Referenzdrehzahl                                            | n <sub>2ref</sub>  | min <sup>-1</sup> |                     |    |           |     |      |                  |                  |       | 10    | 10    |     |           |     |     |     |     |     |     |
| Verdrehspiel                                                | j <sub>t</sub>     | arcmin            |                     |    | < 13      |     |      |                  |                  |       |       |       |     | < 15      |     |     |     |     |     |     |
| Wirkungsgrad bei Volllast 94 93                             |                    |                   |                     |    |           |     |      |                  |                  |       |       |       |     |           |     |     |     |     |     |     |
| max. Antriebsdrehzahl                                       | n <sub>1max</sub>  | min <sup>-1</sup> |                     |    |           |     |      |                  |                  |       | 60    | 00    |     |           |     |     |     |     |     |     |
| Laufgeräusch <sup>3)</sup>                                  | Qg                 | db(A)             | <b>lb(A)</b> <= 73  |    |           |     |      |                  |                  |       |       |       |     |           |     |     |     |     |     |     |

Vorläufige Daten - Änderungen möglich.

| Bauart                                      |                 |    | CO   | COP  | COQ  | COF  |
|---------------------------------------------|-----------------|----|------|------|------|------|
| Radialkraft bezogen auf Mitte Abtriebswelle | $F_{r2}$        | N  | 732  | 1315 | 1888 | 1958 |
| Axialkraft bezogen auf Getriebeachse        | F <sub>a2</sub> | N  | 1000 | 2000 | 2500 | 2990 |
| Kippmoment                                  | M <sub>K2</sub> | Nm | 30   | 63   | 92   | 53   |

 $<sup>^{\</sup>rm D}$  maximal 1.000 Zyklen pro Stunde. T  $_{\rm 28^-}$  Anteil an der Gesamtlebensdauer < 5%  $^{\rm D}$  maxinal 1.000 mal während der Getriebelebensdauer zulässig

<sup>3)</sup> bei 1m Abstand und Nennantriebsdrehzahl n1, ohne Last, i=5

<sup>&</sup>lt;sup>4)</sup> Lebensdauer abweichend: 10.000 h <sup>5)</sup> Verzahnungslebensdauer: 20.000 h

<sup>6)</sup> Lebensdauer: 20.000 h

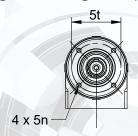


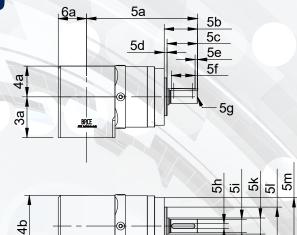
|                                                             |                    |                   |                                                                     |     | 1- stufig |      |     |                |     |       |     |     |     | 2- stufig |     |     |     |      |     |     |
|-------------------------------------------------------------|--------------------|-------------------|---------------------------------------------------------------------|-----|-----------|------|-----|----------------|-----|-------|-----|-----|-----|-----------|-----|-----|-----|------|-----|-----|
| Übersetzung                                                 | i                  |                   | 3                                                                   | 4   | 5         | 7    | 10  | 9              | 12  | 15    | 16  | 20  | 25  | 28        | 30  | 35  | 40  | 50   | 70  | 100 |
| Nennabtriebsdrehmoment bei n1 = 2600 <sup>6)</sup>          | T <sub>2N</sub>    | Nm                | 41                                                                  | 54  | 68        | 95   | 80  | 120            | 162 | 183   | 196 | 163 | 156 | 166       | 226 | 145 | 205 | 195  | 172 | 123 |
| Max. Beschleunigungsmoment bei n1 = 2600 1) 6)              | T <sub>2B</sub>    | Nm                | 66                                                                  | 86  | 109       | 152  | 128 | 192            | 259 | 293   | 314 | 261 | 249 | 266       | 361 | 232 | 328 | 312  | 275 | 197 |
| Not-Aus Drehmoment <sup>2)</sup>                            | T <sub>2NOT</sub>  | Nm                | 123                                                                 | 162 | 204       | 285  | 240 | 360            | 486 | 549   | 588 | 489 | 467 | 498       | 677 | 435 | 615 | 585  | 516 | 369 |
| Nennantriebsdrehzahl                                        | n <sub>1</sub>     | min <sup>-1</sup> |                                                                     |     |           |      |     |                |     |       | 26  | 00  |     |           |     |     |     |      |     |     |
| Abtriebsdrehmoment bei n2ref = 100 <sup>5)</sup>            | T <sub>2Nref</sub> | Nm                | 60 80 100 135 95 180 200 188 200 200 188 164 220 164 200 188 164 94 |     |           |      |     |                |     |       |     |     |     |           |     |     |     |      |     |     |
| Max. Beschleunigungsmoment bei n2ref = 100 <sup>1) 5)</sup> | T <sub>2Bref</sub> | Nm                | 96                                                                  | 128 | 160       | 216  | 152 | 288            | 320 | 300,8 | 320 | 320 | 301 | 262       | 352 | 262 | 320 | 301  | 262 | 150 |
| Referenzdrehzahl                                            | n <sub>2ref</sub>  | min <sup>-1</sup> |                                                                     |     |           |      |     |                |     |       | 10  | 00  |     |           |     |     |     |      |     |     |
| Verdrehspiel                                                | j <sub>t</sub>     | arcmin            | ///-                                                                |     | < 13      | (/// | /   | <i>J. 2002</i> |     |       |     |     |     | < 15      |     |     |     | 11-1 |     |     |
| Wirkungsgrad bei Volllast 94 93                             |                    |                   |                                                                     |     |           |      |     |                |     |       |     |     |     |           |     |     |     |      |     |     |
| max. Antriebsdrehzahl                                       | n <sub>1max</sub>  | min <sup>-1</sup> |                                                                     |     |           |      |     |                |     |       | 48  | 00  |     |           |     |     |     |      |     |     |
| Laufgeräusch <sup>3)</sup>                                  | Qg                 | db(A)             |                                                                     |     |           |      |     |                |     |       | <=  | 75  |     |           |     |     |     |      |     |     |

Vorläufige Daten - Änderungen möglich.

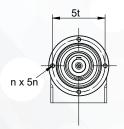
COF Bauart COP COQ Radialkraft bezogen auf Mitte Abtriebswelle 1890 2714 2440 2400 2500 2500 3300 Axialkraft bezogen auf Getriebeachse 4000  $\mathsf{F}_{\mathsf{a2}}$ Nm 108 180 109 109 Kippmoment

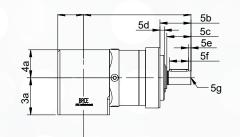
 $<sup>^{\</sup>rm II}$  maximal 1.000 Zyklen pro Stunde, T $_{\rm 28}$  - Anteil an der Gesamtlebensdauer < 5%  $^{\rm II}$  maximal 1.000 mal während der Getriebelebensdauer zulässig

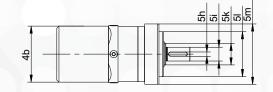

<sup>3)</sup> bei 1m Abstand und Nennantriebsdrehzahl n1, ohne Last, i=5


<sup>&</sup>lt;sup>4)</sup> Lebensdauer abweichend: 10.000 h <sup>5)</sup> Verzahnungslebensdauer: 20.000 h

<sup>6)</sup> Lebensdauer: 20.000 h



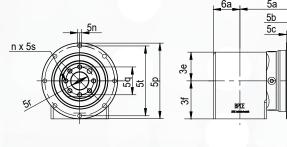


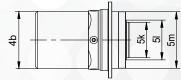

Abmessungen COP (einstufiges Planetengetriebe)



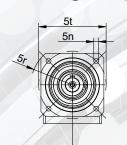


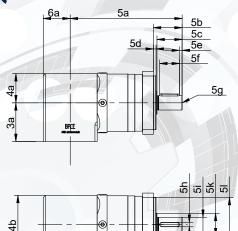



| BA  | BG  | 3a   | 4a   | 4b    | 5a    | 5b   | 5c   | 5d  | 5e  | 5f   | 5g     | 5h   | 5i   | 5k   | 51   | 5m    | 5n     | 5t    | 5р | 5q | 5r | 5s | 6a   |
|-----|-----|------|------|-------|-------|------|------|-----|-----|------|--------|------|------|------|------|-------|--------|-------|----|----|----|----|------|
|     | 040 | 30,0 | 20,0 | 40,0  | 87,5  | 26,0 | 18,0 | 2,0 | 2,5 | 18,0 | M3x9   | 3,0  | 10h7 | 12,0 | 26h7 | 40,0  | M4x7   | 34,0  |    |    |    |    | 20,0 |
| 00  | 060 | 43,0 | 32,5 | 65,0  | 117,1 | 35,0 | 30,0 | 3,0 | 2,5 | 25,0 | M5x12  | 5,0  | 14h7 | 17,0 | 40h7 | 60,0  | M5x8   | 52,0  |    |    |    |    | 30,0 |
| CO  | 080 | 54,0 | 40,0 | 80,0  | 142,0 | 40,0 | 36,0 | 3,0 | 2,0 | 32,0 | M6x16  | 6,0  | 20h7 | 25,0 | 60h7 | 80,0  | M6x10  | 70,0  |    |    |    |    | 40,0 |
|     | 120 | 70,0 | 60,0 | 120,0 | 177,0 | 55,0 | 50,0 | 4,0 | 5,0 | 40,0 | M10x22 | 8,0  | 25h7 | 35,0 | 80h7 | 115,0 | M10x16 | 100,0 |    |    |    |    | 57,5 |
|     | 040 | 30,0 | 20,0 | 40,0  | 89,5  | 24,5 | 18,0 | 3,0 | 2,0 | 18,0 | M4x10  | 4,0  | 12h7 | 15,0 | 35h7 | 50,0  | M4x7   | 44,0  |    |    |    |    | 20,0 |
| 200 | 060 | 43,0 | 32,5 | 65,0  | 124,5 | 36,0 | 28,0 | 3,0 | 2,0 | 25,0 | M5x12  | 5,0  | 16h7 | 30,0 | 52h7 | 70,0  | M5x8   | 62,0  |    |    |    |    | 30,0 |
| COP | 080 | 54,0 | 40,0 | 80,0  | 150,5 | 46,0 | 36,0 | 4,0 | 2,0 | 32,0 | M8x19  | 6,0  | 22h7 | 35,0 | 68h7 | 90,0  | M6x10  | 80,0  |    |    |    |    | 40,0 |
|     | 120 | 70,0 | 60,0 | 120,0 | 186,0 | 68,0 | 58,0 | 5,0 | 4,0 | 50,0 | M12x28 | 10,0 | 32h7 | 50,0 | 90h7 | 120,0 | M8x20  | 108,0 |    |    |    |    | 57,5 |


Vorläufige Daten - Änderungen möglich.

Maßangaben in mm





# Abmessungen COF (einstufiges Planetengetriebe)





Abmessungen COQ (einstufiges Planetengetriebe)





| BA  | BG  | 3a   | 4a   | 4b    | 5a    | 5b   | 5c   | 5d  | 5e  | 5f   | 5g     | 5h  | 5i   | 5k   | 5I    | 5m    | 5n    | 5t    | 5р    | 5q   | 5r   | 5s    | 6a   |
|-----|-----|------|------|-------|-------|------|------|-----|-----|------|--------|-----|------|------|-------|-------|-------|-------|-------|------|------|-------|------|
| COF | 040 | -    | -    |       | -     | -    | -    | -   | -   | -    | -      | -   | -    | -    | -     | -     | -     | -     | -     | -    | -    | -     | -    |
|     | 060 | 43,0 | 32,5 | 65,0  | 76,0  | 19,5 | 4,0  | 4,0 |     |      |        |     |      | 40h7 |       | 64,0  | D4,5  | 79,0  | 86,0  | 31,5 | 20,0 | M5x7  | 30,0 |
|     | 080 | 54,0 | 40,0 | 80,0  | 107,5 | 30,0 | 7,0  | 6,0 |     |      |        |     |      | 63h7 |       | 90,0  | D5,5  | 109,0 | 118,0 | 50,0 | 31,5 | M6x10 | 40,0 |
|     | 120 | 70,0 | 60,0 | 120,0 | 139,0 | 29,0 | 8,0  | 6,0 |     |      |        |     |      | 80h7 |       | 110,0 | D5,5  | 135,0 | 145,0 | 63,0 | 40,0 | M6x12 | 57,5 |
| COQ | 040 | -    | -    | -     | -     | -    | -    | -   | -   | -    | -      | -   | -    | -    | -     | -     | -     | -     | -     | -    | -    | -     | -    |
|     | 060 | 43,0 | 32,5 | 65,0  | 124,5 | 32,0 | 28,0 | 3,0 | 4,0 | 20,0 | M5x12  | 5,0 | 16h7 | 20,0 | 60h7  |       | D5,5  | 75,0  |       |      | 46,0 |       | 30,0 |
|     | 080 | 54,0 | 40,0 | 80,0  | 152,0 | 40,0 | 36,0 | 3,0 | 4,0 | 28,0 | M6x16  | 6,0 | 20h7 | 35,0 | 80h7  |       | D6,5  | 100,0 |       |      | 58,0 |       | 40,0 |
|     | 120 | 70,0 | 60,0 | 120,0 | 186,0 | 55,0 | 50,0 | 4,0 | 5,0 | 40,0 | M10x22 | 8,0 | 25h7 | 35,0 | 110h7 | D8,5  | 130,0 |       | ·     | 72,5 |      | 57,5  | 57,5 |

Vorläufige Daten - Änderungen möglich.



# **ATEK Vertriebspartner in Deutschland**

20 HEINRICH WOLF GmbH & Co. KG Albert-Einstein-Str. 12 23701 Eutin Tel.: +49 4521 79677-0

Fax: +49 4521 79677-29 info@wolf-eutin.de

www.wolf-eutin.de

30 INFRA Antriebe Hans Nelk GmbH

Alter Kirchpfad 6 32657 Lemgo Tel.: +49 5261 3445 Fax: +49 5261 15641 info@infra-antriebe.de www.infra-antriebe.de

40 Hasske und Meermann Antriebstechnik GmbH Forststrasse 51 40721 Hilden

Tel.: +49 2103 5821-0 Fax: +49 2103 5821-25 hi@hasskeundmeermann.de www.hasskeundmeermann.de

50 Hasske und Meermann Antriebstechnik GmbH

Anhauser Str. 76 Herr Karsten Jensch 89547 Gerstetten-Dettingen Joseph-Keilberth-Straße 47 Tel.: +49 7324 91012-0 01239 Dresden Fax: +49 7324 91012-25 Tel.: +49 173 7085997 info@b-k-antriebstechnik.de k.jensch@hasskeundmeermann.de www.b-k-antriebstechnik.de http://www.hasskeundmeermann.de

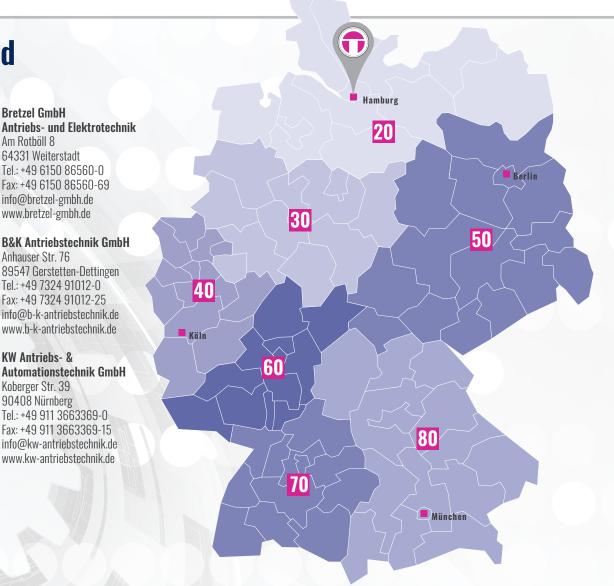
> 80 KW Antriebs- & **Automationstechnik GmbH**

**Bretzel GmbH** 

Am Rotböll 8

64331 Weiterstadt

Tel.: +49 6150 86560-0


Fax: +49 6150 86560-69

70 B&K Antriebstechnik GmbH

info@bretzel-gmbh.de

www.bretzel-gmbh.de

Koberger Str. 39 90408 Nürnberg Tel.: +49 911 3663369-0 Fax: +49 911 3663369-15 info@kw-antriebstechnik.de www.kw-antriebstechnik.de



# Qualität und Know-How bis ins kleinste Detail.



Siemensstrasse 47 • D-25462 Rellingen Tel.: +49 - (0)4101 7953-0 E-Mail: atek@atek.de • Web: www.atek.de

#### Vorkauf

Tel.: +49 - (0)4101 7953-22 / 23 / 42 Fax: +49 - (0)4101 7953-21 E-Mail: sales@atek.de

#### Einkauf / Materialwirtschaft

Tel.: +49 - (0)4101 7953-11 Fax: +49 - (0)4101 7953-21 E-Mail: purchase@atek.de